最短路径问题说课稿
- 格式:docx
- 大小:10.33 KB
- 文档页数:5
课题学习《最短路径问题》说课稿各位领导、专家、同仁们大家好:今天我说课的的内容是:人教八年级上册第13章第四节课题学习最短路径问题。
下面我将从:教材分析、学情分析、教学目标、教学重难点、教法、学法、教学手段、教学过程、板书设计、反思十个方面展开我的说课。
一、教材分析:本节课的内容是在学习了轴对称图形及两点之间线段最短知识的基础上学习的最短路径问题。
同时为我们今后解决坐标系下线段和最短的问题打下基础。
所以本节课的学习既是对前面所学知识的应用又为今后学习新知识做了铺垫,起到了呈上起下的作用。
二、学情分析1、已有的知识与能力:八年级学生已经学习了“两点之间线段最短”“垂线段最短”这些关于距离最短问题的解决依据。
也初步接触了逻辑推理证明的方法。
2、未接触的知识能力:由于八年级学生首次遇到线段和最小,所以无从下手,另外证明两条线段和最小时要选取另外一点,学生想不到、不会用,所以利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短是本节课的难点。
3.综合能力方面:八年级学生这一阶段的学生思维能力发展较快,自我意识增强,有较强的求知欲和表现欲,在情感方面他们能进行自我教育。
经过一年多新课程理念的熏陶及实践,学生已有了初步的自主学习、合作探究的能力,但部分学生存在不自信,羞于表现等思想顾虑,但又希望能得到他人的肯定。
因此我的教学目标分了三层,照顾不同程度的学生。
在教学活动中尽量让他们参与到活动中来,减少他们的恐惧感,通过学生间的合作学习,降低他们的学习难度,使各层次的学生都有所收获,使他们体验到成功的喜悦。
通过以上教材与学情分析我制定了本节课教学目标:三、教学目标:1、知识与能力目标:(1)能利用轴对称解决简单的最短路径问题。
(2)能将实际问题中的“地点”、“河”抽象为数学中的“点”、“直线”,把实际问题抽象为数学问题。
2、过程与方法目标:(1)使学生经历提出问题——合作探究——动手操作——组间对比——理论证明——解决问题的过程。
最短路径问题说课稿人教版【说课稿】一、教材分析本节课是人教版高中数学选修七第一单元的内容,主要涉及最短路径问题的相关知识。
通过本节课的学习,学生将了解最短路径问题的基本概念和求解方法,培养学生的逻辑思维、分析问题和解决问题的能力。
二、教学目标1. 知识与技能:(1)了解最短路径问题的基本概念;(2)掌握迪杰斯特拉算法和弗洛伊德算法的求解过程;(3)能够应用所学知识解决实际问题。
2. 过程与方法:(1)通过引入实际问题,激发学生的兴趣;(2)采用示例分析和归纳总结的方式,帮助学生理解和掌握算法的求解过程;(3)结合实际问题,进行实际操作和实践。
3. 情感态度与价值观:(1)培养学生的合作意识和团队精神;(2)培养学生解决实际问题的能力;(3)培养学生的创新思维和实践能力。
三、教学重难点1. 教学重点:(1)最短路径问题的基本概念;(2)迪杰斯特拉算法和弗洛伊德算法的求解过程。
2. 教学难点:(1)迪杰斯特拉算法和弗洛伊德算法的求解过程的理解;(2)如何将所学知识应用到实际问题的解决中。
四、教学过程1. 导入新课通过展示一个实际问题,如从一个城市到另一个城市的最短路径问题,引起学生的兴趣,并激发学生思考如何解决这个问题。
2. 知识讲解(1)介绍最短路径问题的概念和应用背景;(2)介绍迪杰斯特拉算法的求解过程,并通过示例进行讲解;(3)介绍弗洛伊德算法的求解过程,并通过示例进行讲解。
3. 讲解示例通过一个具体的实例,如一个城市的交通网络图,讲解迪杰斯特拉算法和弗洛伊德算法的求解过程。
引导学生逐步分析问题,理解算法的求解思路和步骤。
4. 练习与巩固(1)设计一些练习题,让学生在课堂上进行个人或小组讨论,并进行解答;(2)布置一些课后作业,让学生巩固所学知识。
5. 拓展延伸通过介绍最短路径问题在实际生活中的应用,如导航系统、物流配送等,引导学生思考最短路径问题的实际意义和应用前景。
五、板书设计(根据实际情况设计)六、教学反思本节课通过引入实际问题,结合算法的求解过程,帮助学生理解最短路径问题的基本概念和求解方法。
人教版数学八年级上册《13.4 课题学习最短路径问题》说课稿1一. 教材分析人教版数学八年级上册《13.4 课题学习最短路径问题》这一节,是在学生学习了平面直角坐标系、一次函数、二次函数等基础知识后,引入的一个新的课题。
本节内容主要介绍了最短路径问题的概念、求解方法以及应用。
通过本节内容的学习,使学生能够了解最短路径问题的背景,掌握解决最短路径问题的方法,提高学生解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面直角坐标系、一次函数、二次函数等基础知识,具备了一定的逻辑思维能力和问题解决能力。
但是,对于最短路径问题,学生可能较为陌生,需要通过实例讲解和练习,使学生理解和掌握。
三. 说教学目标1.知识与技能目标:了解最短路径问题的概念,掌握解决最短路径问题的方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过合作交流,培养学生解决问题的能力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:最短路径问题的概念、求解方法。
2.教学难点:如何运用所学知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法、合作交流法。
2.教学手段:利用多媒体课件、板书、教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过一个实际问题,引入最短路径问题的概念。
2.讲解新课:讲解最短路径问题的求解方法,结合实例进行分析。
3.练习巩固:学生独立完成课后练习题,教师进行讲解和指导。
4.拓展延伸:引导学生思考如何将所学知识应用到实际问题中。
5.课堂小结:总结本节课的主要内容和知识点。
七. 说板书设计板书设计如下:最短路径问题1.概念:从起点到终点的最短路线2.求解方法:b.动态规划法3.应用:实际问题解决八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
最短路径问题说课稿最短路径问题说课稿作为一位兢兢业业的人民教师,时常需要用到说课稿,借助说课稿可以有效提升自己的能力。
那么说课稿应该怎么写才合适呢?以下是为大家提供的最短路径问题说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
一、教材分析1、特点与地位:重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在运输、通讯网络等方面具有一定的实用意义。
2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。
根据教学大纲安排,重点讲解第一种情况问题的解决。
安排一个课时讲授。
教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析1、知识目标:掌握最短路径概念、能够求解最短路径。
2、能力目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。
(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。
3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。
三、教法分析课前充分准备,研读教材,查阅相关资料,制作多媒体课件。
教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法” ,同时辅以多媒体课件,以启发的方式展开教学。
由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反响控制好教学进度是本节课成功的关键。
四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。
全国初中数学优秀课一等奖教师说课稿:最短路径–说课稿一. 教材分析《最短路径》是人教版初中数学八年级上册的一章内容,主要介绍了最短路径问题的相关知识。
本章内容是学生在学习了图论的基础上,进一步探究图的应用。
通过本章的学习,学生能够理解最短路径的概念,掌握最短路径的求解方法,提高解决问题的能力。
二. 学情分析八年级的学生已经掌握了图论的基本知识,具备了一定的逻辑思维能力。
但是,对于复杂的最短路径问题,学生还需要进一步的引导和培养。
因此,在教学过程中,我将会以学生为主体,注重培养学生的动手操作能力和思维能力。
三. 说教学目标1.知识与技能:使学生理解最短路径的概念,掌握最短路径的求解方法。
2.过程与方法:通过小组合作,培养学生的团队协作能力,提高学生解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的探索精神。
四. 说教学重难点1.教学重点:最短路径的概念,最短路径的求解方法。
2.教学难点:对于复杂的最短路径问题,如何引导学生找到解决方法。
五. 说教学方法与手段在本节课中,我将采用问题驱动的教学方法,引导学生主动探究最短路径问题。
同时,我会利用多媒体教学手段,以动画、图片等形式,直观地展示最短路径问题的解决过程。
六. 说教学过程1.导入:通过一个实际问题,引发学生对最短路径的兴趣。
2.探究:引导学生分组讨论,自主探究最短路径的求解方法。
3.展示:各小组展示自己的探究成果,其他小组进行评价。
4.讲解:对学生的探究成果进行总结,讲解最短路径问题的解决方法。
5.练习:布置一些相关的练习题,让学生巩固所学知识。
6.总结:对本节课的内容进行总结,强调最短路径在实际生活中的应用。
七. 说板书设计板书设计如下:最短路径问题1.定义:从图中一个顶点到另一个顶点的最短路径。
2.求解方法:a.迪杰斯特拉算法b.贝尔曼-福特算法c.动态规划法八. 说教学评价本节课的评价方式主要有两种:一是课堂表现,包括学生的参与度、思考问题的深度等;二是课后作业,包括练习题的完成情况、对知识的掌握程度等。
八年级数学上册 13.4 课题学习最短路径问题说课稿(新版)新人教版一. 教材分析八年级数学上册13.4课题学习“最短路径问题”是新人教版教材中的一项重要内容。
这一节内容是在学生掌握了平面直角坐标系、一次函数、几何图形的性质等知识的基础上进行学习的。
本节课的主要内容是最短路径问题的研究,通过实例引导学生了解最短路径问题的背景和意义,学会利用图论知识解决实际问题。
教材中给出了两个实例:光纤敷设和城市道路规划,让学生通过解决这两个实例来理解和掌握最短路径问题的求解方法。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、一次函数等知识有了一定的了解。
但是,对于图论知识以及如何利用图论解决实际问题还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握图论知识,并能够将其应用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生了解最短路径问题的背景和意义,掌握利用图论知识解决最短路径问题的方法。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,让学生体验到数学在实际生活中的应用价值。
四. 说教学重难点1.教学重点:最短路径问题的求解方法。
2.教学难点:如何将实际问题转化为图论问题,并利用图论知识解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题来学习和掌握最短路径问题的求解方法。
2.教学手段:利用多媒体课件辅助教学,通过展示实例和动画效果,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过展示光纤敷设和城市道路规划的实例,引导学生了解最短路径问题的背景和意义。
2.新课导入:介绍图论中最短路径的概念和相关的数学知识。
3.实例分析:分析光纤敷设和城市道路规划两个实例,引导学生将其转化为图论问题。
4.方法讲解:讲解如何利用图论知识解决最短路径问题,包括迪杰斯特拉算法和贝尔曼-福特算法等。
尊敬的各位老师,大家好!今天我将为大家讲解“最短路径问题”这一课,我们使用的教材是人民教育出版社的版本。
一、教材分析本节课主要探讨了图论中的一个经典问题——最短路径问题。
本节内容既是对前面学习的图的认知和表示的延续和深化,又为后续进行最短路算法的学习做好铺垫。
图是日常生活、社会科学和计算机科学中的一个基本概念,有着广泛的应用。
在很多问题中,例如,城市的街道图、拓扑排序、路径问题、网络的流量问题等,人们需要从一个或者多个点找到一个路线到达目的顶。
对于最短路径问题的研究,对于这些问题的解决具有重要的意义。
二、教学目标1. 知识与技能:理解最短路径问题的概念,掌握迪杰斯特拉算法和弗洛伊德算法的基本原理和实现方法。
2. 过程与方法:通过实例分析,使学生能够应用这两种算法解决实际问题。
3. 情感态度与价值观:通过本节课的学习,培养学生的问题解决能力和团队协作精神,激发学生对数学的兴趣和热爱。
三、教学重点与难点1. 教学重点:迪杰斯特拉算法和弗洛伊德算法的实现和应用。
2. 教学难点:如何根据具体问题选择合适的算法,理解算法的原理和实现过程。
四、教学方法与手段本节课主要采用案例教学、实验教学和讨论式教学相结合的方法,通过实例分析、实验操作和小组讨论,帮助学生理解和掌握最短路径问题的解决方法。
五、教学过程设计1. 引入新课(5分钟)通过实际问题引入最短路径问题,让学生了解该问题的实际应用背景。
2. 迪杰斯特拉算法(20分钟)(1)原理讲解:通过图论知识,介绍迪杰斯特拉算法的基本原理。
(2)代码演示:使用编程语言(如Python)实现迪杰斯特拉算法,并展示代码。
(3)实验操作:学生分组进行实验操作,尝试使用迪杰斯特拉算法解决实际问题。
(4)讨论与总结:小组讨论实验结果,分享算法应用经验,教师总结并点评。
3. 弗洛伊德算法(15分钟)(1)原理讲解:介绍弗洛伊德算法的基本原理,与迪杰斯特拉算法的区别和联系。
(2)代码演示:展示弗洛伊德算法的代码实现。
最短路径问题说课稿
宦吉成
—、教材分析
1、特点与地位:
重点中的重点。
本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。
2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:
(1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。
(2)难点:求解最短路径算法的程序实现。
3、教学安排:
最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。
根据教学大纲安排,重点讲解第一种情况问题的解决。
安排一个课时讲授。
教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。
二、教学目标分析
1、知识目标:掌握最短路径概念、能够求解最短路径。
2、能力目标:
(1)通过将旅游景点线路选择问题抽象成求最短路径问题,
培养学生的数据抽象能力。
(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。
3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。
三、教法分析课前充分准备,研读教材,查阅相关资料,制作多媒体课件。
教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。
由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。
四、学法指导
1、课前上次课结课时给学生布置任务,使其有针对性的预习。
2、课中指导学生讨论任务解决方法,引导学生分析本节课
知识点。
3、课后给学生布置同类型任务,加强练习。
五、教学过程分析
(一)课前复习(3〜5分钟)回顾“路径''的概念,为引出“最短路径”做铺垫。
教学方法及注意事项:
(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。
(2)提示学生“温故而知新”,养成良好的学习习惯。
(二)导入新课(3〜5分钟)以城市公路网为例,基于求
两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。
教学方法及注意事项:
(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。
(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。
(三)讲授新课(25〜30分钟)
1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。
(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。
(3、5分钟)教学方法及注意事项:
①主要采用讲授法,将实际问题用图形表示出来。
语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点
到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。
)一边用语言描述,一边在黑上画图。
②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。
③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。
④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。
教学方法及注意事项:
①启发式教学,如何实现按路径长度递增产生最短路径?
②结合案例分析求解最短路径过程中(重点)注意此处最好借助黑板,按照算法思想的步骤。
同样,也是只示范一部分,余下部分由学生独立思考完成。
(四)课堂小结(3〜5分钟)
1、明确本节课重点
2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?
(五)布置作业
1、书面作业:复习本次课内容,准备一道备用习题,灵活把
握时间安排。
六、教学特色以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。
在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。