2020届江苏省南通市海安高级中学高三阶段测试三数学试题(解析版)
- 格式:doc
- 大小:2.09 MB
- 文档页数:24
2023届江苏省南通市海安市实验中学高三下学期开学考试数学试题一、单选题1.若2(1i)1i z +=-,则z =( )A .1i 22-B .1i 22--C .1i 22+D .1i 22-+【答案】B【分析】根据题意,由复数的运算即可得到结果. 【详解】因为2(1i)1i z +=-,则()()221i i 1i1i i 11i2i 2i 2221i z -⨯--+=====---+ 故选:B2.设集合{}{}2|1,|4M x x N x x =<-=<,则()M N ⋃=R ( )A .{}2x x >-B .{}12x x -≤<C .{}1x x ≥-D .{}2x x <【答案】A【分析】根据题意,将集合N 化简,然后由集合的运算即可得到结果.【详解】因为{}{}2|422N x x x x =<=-<<,且{}1M x x =≥-R ,所以{}()2M N x x ⋃=>-R 故选:A3.如图所示是我国古代舂米用的一种青石制成的石臼,其外形是正四棱台,糙米(杂粮等)放在中间凿出的半球内,利用石锤等工具对糙米进行加工.已知该石臼上口宽和高都等于0.8m ,下底边长与球的直径都等于0.6m ,则该石臼的体积约为(参考数据:π 3.14≈)( )A .0.213mB .0.283mC .0.343mD .0.463m【答案】C【分析】根据台体体积公式和球的体积公式求解.【详解】正四棱台的体积为 ()()11212110.640.360.640.360.80.4033V S S S S h =++=++⨯⨯≈3m , 半球的体积为331414π 3.140.30.062323R ⨯=⨯⨯⨯≈3m ,所以该石白的体积约为0.400.060.34-=3m , 故选:C.4.在ABC 中,2AB DA =,2CE EA =,直线DE 与直线BC 交于点F .设AB a =,AC b =,则DF =( )A .2193a b +B .5193a b +C .93105a b + D .23510a b +【答案】C【分析】根据题意,可得2133DE DA DC =+,再由,,F B C 三点共线,利用共线定理求解即可. 【详解】如下图所示:由题可知,()22213333DE DC CE DC CA DC CD DA DA DC =+=+=++=+,由共线定理可知,存在实数λ满足()1DF DB DC λλ=+-, 又因为2AB DA =,所以3DB DA =, 因此()31DF DA DC λλ=+-, 又2133DE DA DC =+与()31DF DA DC λλ=+-共线, 所以3211λλ=-,解得2=5λ,则()2323355525DF DB DC AB DA AC =+=⨯++ 33135525AB AB AC =+⨯+93105a b =+. 故选:C.5.已知函数()f x 的定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为( )A .()()2,04,∞-⋃+B .()(),15,∞∞--⋃+C .()(),24,-∞-+∞D .()()1,05,∞-⋃+【答案】B【分析】根据()()2f x f x +=-可得()f x 关于直线1x =对称,根据()()24f f -=-可得()()240f f -==,结合函数()f x 的单调性可得函数图象,根据图象列不等式求解集即可.【详解】解:函数()f x ,满足()()2f x f x +=-,则()f x 关于直线1x =对称, 所以()()()244f f f -==-,即()()240f f -==, 又()f x 在[)1,+∞上递增,所以()f x 在(),1-∞上递减, 则可得函数()f x 的大致图象,如下图:所以由不等式()10xf x ->可得,20210x x -<<⎧⎨-<-<⎩或414x x >⎧⎨->⎩,解得10x -<<或5x >,故不等式()10xf x ->的解集为()(),15,∞∞--⋃+. 故选:B.6.已知圆C :222(2)(2)(0)x y r r -+-=>,过点()4,0P 的直线与圆C 交于A ,B 两点.若PA AB r ==,则r 的值为( ) A 26B 36C 22D 33【答案】A【分析】根据题意,取AB 中点为D ,由勾股定理可得2||CP ,然后再根据,C P 的坐标得到2||CP ,列出方程即可得到r .【详解】取AB 中点为D ,则可得CD AB ⊥,因为PA AB r ==,则AC BC AB r ===,即ABC 为等边三角形, 所以3CD =,322r r PD r =+=,在直角三角形CDP 中,222||||CD PD CP +=,则222233||32r CP r ⎫⎛⎫=+=⎪ ⎪⎪⎝⎭⎝⎭又因为()()2,2,4,0C P ,即()()222||42028CP =-+-=所以238r =,解得26r =故选:A7.已知等差数列{}n a 的前n 项和为n S ,若数列{}n b 满足:对任意的*N n ∈,都有1+=-n n a b n ,且2n n S b =,则20a =( ) A .20 B .39 C .63 D .81【答案】B【分析】首先设出等差数列的首项和公差,利用条件,根据待定系数法求等差数列{}n a 的通项公式,即可求解.【详解】设等差数列的首项为1a ,公差为d ,则()11n a a n d +-=, ()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭ 因为1+=-n n a b n ,所以()()1111n n b a n d n d a =-+-=-+--,因为2n n S b =,所以()()()()22221111211122d d n a n d n d d a n d a ⎛⎫+-=-+---+-- ⎪⎝⎭,则()()()()2112112211210dd d a d d a d a ⎧=-⎪⎪⎪-=---⎨⎪⎪--=⎪⎩,解得:112a d =⎧⎨=⎩,所以()11221n a n n =+-⨯=-,那么20220139a =⨯-=. 故选:B8.已知函数()ln =f x a x ,存在两条过原点的直线与曲线()y f x =相切,则实数a 的取值范围是( )A .()2e ,0-B .()3,e ∞--C.()D .32,e ∞⎛⎫-- ⎪⎝⎭【答案】D【分析】根据导数的几何意义设切点坐标为()00,x y,则切线方程为()()000ln a y a x x x x ⎛⎫-=-⎪⎪⎭,又切线过零点得方程0ln 0a x a -=在()00,x ∈+∞上有两不相等的实根,设函数()ln h x a x a =-,求导确定单调性求值即可得实数a 的取值范围. 【详解】解:设切点坐标为()00,x y ,又()af x x=',则切线斜率()00a k f x x '=又00ln y a x =,则切线方程为:()()000ln a y a x x x x ⎛⎫-=-⎪⎪⎭,又切线过原点,则()()000ln a a x x x ⎛⎫-=-⎪⎪⎭,即方程0ln 0a x a -=在()00,x ∈+∞上有两不相等的实根,设()ln h x a x a =-,()0,x ∈+∞,则()a h x x '== 当0a ≥时,()0h x '>恒成立,()h x 在()0,x ∈+∞上单调递增,不可能存在两个零点,故不符合题意;当a<0时,()0h x '=得2x a =,当()20,x a ∈时,()0h x '<,()h x 单调递减,()2,x a ∞∈+时,()0h x '>,()h x 单调递增,要使得()0h x =两个不同的零点,则()()()22min ln 32ln 0h x h a a a a a a a ⎡⎤==-=---<⎣⎦,解得32e a <-,又()e 2e 0h =>,x →+∞时,()h x →+∞,故当32e a <-时,()0h x =有两个零点,则实数a 的取值范围是32,e ∞⎛⎫-- ⎪⎝⎭.故选:D.二、多选题9.在正四棱柱1111ABCD A B C D -中,底面边长为1,若直线1BD 与1BC 所成的角为30°,则( ) A .直线1BD 与直线11A B 所成的角为60° B .直线1BD 与直线1B C 所成的角为90° C .直线1BD 与平面11AA D D 所成的角为30° D .直线1BD 与平面11AA B B 所成的角为60° 【答案】AC【分析】运用向量的夹角公式,结合题干的异面直线所成的角,先求出四棱柱的高.对于AB 选项,继续使用夹角公式求出异面直线所成的角,对于CD 选项,根据线面角的定义,作辅助线,先找出线面角,然后进行计算求解.【详解】由于正四棱柱即为长方体,设长方体的高1AA h =,则体对角线21BD h =21BC h =111BD BD DD BA BC BB =+=++,11BC BC BB =+,又()()222111111BD BC BA BC BB BC BB BC BB h ⋅=++⋅+=+=+,由题意211111cos ,BD BC BD BC BD BC h ⋅====h =212BD h ==.A 选项,设直线1BD 与直线11AB 所成的角为α,()211111BD A B BA BC BB AB AB ⋅=++⋅=-=-,又1112,1BD A B ==,于是1111111111cos cos ,2BD A B BD A B BD A B α⋅===,即直线1BD 与直线11A B 所成的角为60,A 选项正确; B 选项,()()221111110BD B C BA BC BB BC BB BC BB ⋅=++⋅-=-=-≠,即直线1BD 与直线1B C 不垂直,B 选项错误;C 选项,连接1AD ,显然BA ⊥平面11ADD A ,即1BD A ∠为直线1BD 与平面11AA D D 所成的角,在直角三角形1BAD 中,12BD =,1BA =,且190BAD ∠=,此时11sin 2BD A ∠=,故130BD A ∠=,C 选项正确;D 选项,连接1A B ,显然11A D ⊥平面11ABB A ,即11A BD ∠为直线1BD 与平面11ABB A 所成的角,在直角三角形11BA D 中,12BD =,13BA =,且1190BA D ∠=,此时113cos A BD ∠=1130A BD ∠=,D 选项错误. 故选:AC10.已知函数()2sin()(0)f x x ωϕω=+>的图象的一条对称轴为π4x =,则( ) A .当02ω<<时,()f x 在π(0,)2上存在零点B .π4是()f x 的导数()f x '的一个零点C .()f x 在区间ππ(,)42上单调,则04ω<≤D .当ω为偶数时,()f x 是偶函数 【答案】BC【分析】根据三角函数的图象性质与周期之间的关系可判断A,C ,根据对称轴与极值点的关系可判断B ,利用特殊值举反例可判断D. 【详解】对于A ,当02ω<<时,周期2ππT ω=>,所以π44T >, 因为区间π(0,)4的区间长度为π44T<,所以()f x 在π(0,)4上不存在零点,根据对称性可得,()f x 在π(0,)2上不存在零点,A 错误;对于B ,因为图象的一条对称轴为π4x =,所以π4x =为函数()f x 的一个极值点,所以π()04f '=,所以π4是()f x 的导数()f x '的一个零点,B 正确;对于C ,因为()f x 在区间ππ(,)42上单调,且图象的一条对称轴为π4x =,所以区间ππ(,)42的长度ππ1242T -≤,即π2T ≥,也即2ππ2ω≥, 解得04ω<≤,C 正确;对于D ,例如,2,2πωϕ==,则()2sin 2f x x =为奇函数,D 错误; 故选:BC.11.在平面直角坐标系xOy 中,P 是直线l :x +y +2=0上一点(除去与x 轴的交点),过P 作抛物线C :x 2=2y 的两条切线,切点分别为A ,B ,直线P A ,PB 与x 轴分别交于点M ,N ,则( ) A .直线AB 过定点(-1,2) B .MNC .∠MPN 为锐角D .OA OB ⋅最小值为-1【答案】ABD【分析】对A :由()()1122,,,A x y B x y 写出切线方程,将()00,P x y 代入可得直线AB 方程,整理可得恒过定点;对B :联立直线AB 与抛物线方程得12x x +,12x x ,求出M ,N 的横坐标,求M N x x -的最小值即可;对C :将PM PN ⋅化为()00322x x ⎛⎫++ ⎪⎝⎭判断正负即可;对D : 将OA OB ⋅22121214x x x x =+视为关于12x x 的函数求最小值;【详解】设()()()()1122000,,,,,,2A x y B x y P x y x ≠-,由22x y =得y x '=,所以()11,A x y 处切线斜率1k x = ,所以切线PA 的方程为:()211111y y x x x x x x -=-=⋅-,将112y x 2=代入得1112y y x x y -=⋅-,整理得切线PA 的方程为:11y y x x +=⋅,同理切线PB 的方程为:22y y x x +=⋅, 将()00,P x y 代入切线PA ,PB 方程得0110y y x x +=⋅,0220y y x x +=⋅ , 所以直线00:AB y y x x +=⋅,即00y x x y =⋅-,将0020x y ++=代入得:AB 0002(1)2y x x x x x =⋅++=++, 所以直线AB 过定点(-1,2),故A 正确;将直线AB 的方程002y x x x =⋅++代入 22x y =得2002240x x x x -⋅--=,由直线AB 过抛物线内定点(-1,2)知直线一定与抛物线有两个交点, 所以1201202,24x x x x x x +=⋅=--,在直线PA 的方程11y y x x +=⋅中令0y =得M 的横坐标11112M y x x x ==,故11,02M x ⎛⎫ ⎪⎝⎭, 同理N 的横坐标212N x x =,21,02N x ⎛⎫ ⎪⎝⎭, 所以1212M N x x x x -=-()21212142x x x x =+-()200144242x x =++20024x x =++()20133x =++≥当01x =-时MN 3B 正确;10020011,,22PM PN x x y x x y ⎛⎫⎛⎫⋅=---- ⎪⎪⎝⎭⎝⎭()220012120124x x x x x x y =-+++()()22000001224224x x x x x =-⋅+--+--()00322x x ⎛⎫=++ ⎪⎝⎭,当0322x -<<-时0PM PN ⋅<,MPN ∠为钝角,故C 错误;1212OA OB x x y y ⋅=+22121214x x x x =+()21212114x x =+-≥-,当122x x =-即01x =-时,OA OB ⋅最小值为-1,故D 正确; 故选:ABD【点睛】结论点睛:定义:已知曲线22:0G ax cy dx ey f ++++=,则称点()00,P x y 和直线0000:022dx dx ey ey l axx cyy f ++++++=是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.已知点P 关于圆锥曲线G 的极线是直线l ,则三者的位置关系是: ①若点P 在曲线G 上,则直线l 是曲线G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图:12.若函数2()ln (R)f x ax x a =-∈有两个极值点12,x x ,且12x x <,则下列结论正确的是( ) A .20ea << B .1201x x <<< C .1()1f x < D .12ln ln 2x x +>【答案】ACD【分析】对于选项A 、B ,()f x 有两个极值点,则()0f x '=在(0,)+∞上有2个不同的根,分离参数画图可得a 的范围及1x 、2x 的范围. 对于选项C ,将112ln x a x =代入1()f x 可得关于1ln x 的二次函数,求其范围即可. 对于选项D ,运用比值代换法构造函数求导研究其范围. 【详解】由题意知,()0f x '=在(0,)+∞上有2个不同的根, 又∵2ln 2ln ()x ax xf x a x x-'=-=, ∴2ln 0ax x -=,即:2ln xa x=,∴2ln y a x y x =⎧⎪⎨=⎪⎩在(0,)+∞上有2个不同的交点,令2ln ()xh x x=,(0)x > ∴22(1ln )()x h x x -'=, ()00e h x x '>⇒<<,()0e h x x '<⇒>,∴()h x 在(0,e)上单增,在(e,)+∞上单减,又∵2(e)e h =,(1)0h =,当0x →时,()h x →-∞,当x →+∞时,()0h x →,∴()h x 的图象如图所示,∴当20ea <<时,y a =与2ln ()xh x x=在(0,)+∞上有2个不同的交点,121x e x <<<. 故选项A 项正确,选项B 项错误; 对于C 项,由题意知,1112ln ()x a h x x ==, ∴2211111()(ln )2ln (ln )f x ax x x x =-=-,又∵11e x <<,∴10ln 1x <<,令1ln t x =,则01t <<,则22y t t 在(0,1)上单调递增, ∴1y <,即:1()1f x <.故选项C 项正确; 对于D 项,设211x t x =>,12(1e )x x <<< ∴1211212ln 2ln 2ln x x tx a x x tx ===,解得:1ln ln 1t x t =- ∴2ln ln 1t tx t =-, ∴12(1)ln ln ln 1t tx x t ++=-,1t >, 令(1)ln ()1t tg t t +=-,1t > 则222ln 1()(1)t t t g t t t -+-'=-,令2()2ln 1m t t t t =-+-,则()2ln 22m t t t '=-+-,1()2(1)m t t ''=-,∵1t >, ∴()0m t ''>∴()m t '在(1,)+∞上单调递增, ∴()(1)0m t m ''>=,∴()m t 在(1,)+∞上单调递增, ∴()(1)0m t m >=, ∴()0g t '>,∴()g t 在(1,)+∞上单调递增, ∴()(1)g t g >1111ln (1)ln lim ()limlim 211t t t t t t tt g t t →→→+++===-∴()2g t >,即:12ln ln 2x x +>,故选项D 正确. 故选:ACD.【点睛】极值点偏移问题的解法(1)(对称化构造法)构造辅助函数:对结论120()2x x x +><型,构造函数0()()(2)F x f x f x x =--;对结论2120()x x x ><型,构造函数20()()()x F x f x f x=-,通过研究F (x )的单调性获得不等式.(2)(比值代换法)通过代数变形将所证的双变量不等式通过代换12x t x =化为单变量的函数不等式,利用函数单调性证明.三、填空题13.写出满足πsin sin()5θθ=+的一个θ的值为______.【答案】2π5(答案不唯一) 【分析】根据两角正弦值相等,则两角关于ππ,Z 2x k k =+∈对称,即可求解. 【详解】当ππ2π,Z 5k k θθ++=+∈,即2ππ,Z 5k k θ=+∈时, πsin sin()5θθ=+,所以可取当0k =时2π5θ=,故答案为:2π5(答案不唯一). 14.3名男同学、2名女同学排成一行,则至多2名男生相邻的概率为______. 【答案】710##0.7 【分析】根据排列数求3名男同学、2名女同学排成一行与至多2名男生相邻的方法总数,在利用古典概型公式求解概率即可.【详解】解:3名男同学、2名女同学排成一行的总的方法数为:55A 120=,则至多2名男生相邻的方法总数为:3222232323A A A A A 6262684+=⨯+⨯⨯=,所以多2名男生相邻的概率为84712010=. 故答案为:710. 15.若函数()|e |=+-x f x a x 的最小值为1-,则=a ______. 【答案】e -【分析】分类讨论,根据函数的单调性与最值的关系求解. 【详解】当0a ≥时,()e x f x a x =+-,()e 1x f x '=-,当0x >时,e ()10x f x '=->,当0x <时,()e 10x f x '=-<, 所以()e x f x a x =+-在(,0)-∞单调递减,在(0,)+∞单调递增, 所以min ()(0)11f x f a ==+=-解得2a =-,与0a ≥矛盾;当a<0时,e ,ln()()e ,ln()x x a x x a f x a x x a ⎧+-≥-=⎨---<-⎩,(i)若ln()0a -<,即10a -<<,则有()f x 在(,0)-∞单调递减,(0,)+∞单调递增,所以min ()(0)11f x f a ==+=-解得2a =-,与10a -<<矛盾; (ii)若ln()0a -≥,即1a ≤-,则有()f x 在(,ln())a -∞-单调递减,(ln(),)a -+∞单调递增, 所以min ln()ln )(())1(a f x a f --=-=-=解得a e =-,满足题意; 综上,a e =-, 故答案为:e -.16.已知椭圆C :22221(0)x y a b a b+=>>的离心率为55,F 是左焦点,过F 且倾斜角为45°的直线交C于点A ,B .设M ,N 分别是AF 和BF 的中点,O 为坐标原点,若509+=OM ON ,则OMN 的面积为______. 【答案】10109##10109 【分析】设右焦点为2F ,连接22,AF BF , 由中位线知221009AF BF +=,再由224AB AF BF a ++=及弦AB 的长可以求出c 值,再由MN 长及原点到AB 的距离求出OMN 的面积.【详解】设右焦点为2F ,连接22,AF BF ,M 为AF 的中点,O 为2FF 中点,221,//2OM AF OM AF ∴=,同理221,//2ON BF ON BF =, ()2215029OM ON AF BF ∴+=+=,221009AF BF ∴+=,2255,5c e a c a c a ==∴==, 22222,4a b c b c =+∴=, ∴椭圆方程可化为2222154x y c c+=,设直线:AB y x c =+,()()1122,,,A x y B x y ,由2222154x y c c y x c ⎧+=⎪⎨⎪=+⎩得22910150x cx c +-=, ()22(10)49150c c ∆=-⨯⨯->, 22121210155,993x x c x x c c ∴+=-=-=-, 212||11AB x ∴=+-()2121224x x x x =+-221020293c c ⎡⎤⎛⎫-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1659c =, 224AB AF BF a ++=,10049a +==, 80140|,||||929c AB MN AB ∴====,原点到直线:AB y x c =+的距离为d ==所以1140||229MONSMN d ==⨯=故答案为【点睛】椭圆中两个周长为定值的三角形:若过椭圆焦点1F 的直线与椭圆交于A B ,两点,另一焦点为2F , ①2ABF △周长为定值4a ; ②12AF F △周长为定值22a c +;这两个三角形的边长为焦半径时可以与椭圆的定义联系在一起使用,而三角形的周长也可以与三角形内切圆半径结合使用.四、解答题17.从下列三个条件①②③中任意选择两个条件填入空格:①π3ACB ∠=;②AB AD ;③sin ∠BAD =2sin ∠ABC .已知D 是△ABC 的边BC 上一点,AC =CD ,且满足条件 和 . (1)证明另一个条件成立;(2)若△ABC 的外接圆半径为1,求△ABC 的面积. 注:如果选择多个条件分别解答,则按第一个解答计分. 【答案】(1)详见解析【分析】(1)根据条件,结合正余弦定理,即可证明;(2)根据(1)的结果,结合正弦定理求边长,最后根据三角形的面积公式,即可求解. 【详解】(1)若选择①②,设角,,A B C 所对的边分别为,,a b c ,因为AC CD =,且π3ACB ∠=,所以ACD 是等边三角形,AD CD b ==,因为77AB AD b ==,ABC 中,根据余弦定理,2222cos AB AC BC AC BC ACB =+-⋅⋅∠,即2227b b a ab =+-,整理为2260a ab b --=,解得:2a b =-(舍)或3a b =, 所以32BD a b b b b =-=-=,ABD △中,根据正弦定理,sin 22sin BAD BD bABC AD b∠===∠,即sin 2sin BAD ABC ∠=∠,故③正确;若选择①③,设角,,A B C 所对的边分别为,,a b c ,因为AC CD =,且π3ACB ∠=,所以ACD 是等边三角形,AD CD b ==,所以120ADB ∠=,ABD △中,根据正弦定理,sin 2sin BAD BD BDABC AD b∠===∠,所以2BD b =,ABD △中,根据余弦定理,2222cos120AB AD BD AD BD =+-⋅⋅,所以22222427AB b b b b =++=,即77AB b AD ==,故②正确; 若选择②③,设角,,A B C 所对的边分别为,,a b c ,设AD x =,因为77AB AD x ==,sin 2sin BAD BD BDABC AD x∠===∠,所以2BD x =,ABD △中,根据余弦定理,222222471cos 2222AD BD AB x x x ADB AD BD x x +-+-∠===-⋅⋅, 因为()0,πADB ∠∈,120ADB ∴∠=,即ADC 60∠=,又因为AC CD =,所以ACD 是等边三角形,60ACB ∠=,故①正确;(2)因为ABC 外接圆的半径为1,根据正弦定理可知,22sin AB R ACB ==∠,解得:b = 根据(1)的证明可知37a b ==,所以11sin 22ABC S ab ACB =∠==18.已知数列{}n a 的各项均为正数,其前n 项和n S 满足11111n n n S a a +=-+,n ∈N *. (1)证明:数列{}n a 是等比数列;(2)若111132n n n a S a ++≤≤对任意n ∈N *恒成立,求a 1.【答案】(1)证明见解析 (2)12a =【分析】(1)根据n a 与n S 的关系,利用相减法结合0n a >,可得211n n n a a a +-=,即可证明;(2)由11111n n n S a a +=-+,令1n =,可得等比数列{}n a 的公比2111aq a a ==+,则前n 项和()111nn S a =+-,()1111nn a a a +=+,根据不等式111132n n n a S a ++≤≤对任意*N n ∈恒成立,结合数列()1111n a ⎧⎫⎪⎪-⎨⎬+⎪⎪⎩⎭的单调性,则可列不等式求得1a 的值.【详解】(1)证明:因为11111n n n S a a +=-+,*N n ∈,所以111n n n n n a a S a a +++=-①, 当2n ≥时,1111n n n n n a a S a a ---+=-②,则①-②得:1111n n n n n n n n n a a a aa a a a a +-+-=---,因为0n a >, 所以11111n n n n n n a a a a a a +-+-=---,整理得:211n n n a a a +-=,即11n n n n a a a a +-=,所以数列{}n a 是等比数列; (2)解:由于111n n n n n a a S a a +++=-,则当1n =时,21112111a a S a a a +=+=-,整理得2211a a a =+,所以等比数列{}n a 的公比2111aq a a ==+,则()()()1111111111nn n a a S a a ⎡⎤-⎣⎦=++-+=-,()1111n n a a a +=+, 若111132n n n a S a ++≤≤,因为0n a >,则()()()1111111111132n n na a a a a +≤+-≤+,所以()1111111321n a a a ≤-≤+对任意*N n ∈恒成立,又数列()1111n a ⎧⎫⎪⎪-⎨⎬+⎪⎪⎩⎭单调递增,所以()()1111111111na a -≤-<++,即()11111111na a a ≤-<++, 则1111131112a a a a ⎧≤⎪+⎪⎨⎪≥⎪⎩,所以122a ≤≤,即12a =. 19.某地开展生态环境保护主题的知识竞赛,满分为100分,现从参赛者的答卷中随机抽取100份作为样本,经统计得到如下成绩分布表.若规定对竞赛的得分类别作如下规定:得分大于90分的为“优秀”,得分大于80不大于90分的为“良好”,(1)估计所有参赛者的得分的平均数和中位数;(2)从获得“良好”和“优秀”等第的样本试卷中,按分层抽样抽取6份,再从中随机抽取3份,获“优秀”者奖励200元购书券,获“良好”者奖励100元购书券,记购书券总金额为X (单位:元),求X 的分布列和数学期望.【答案】(1)82.282.5;(2)分布列见解析;400(元)【分析】(1)根据平均数的估计方法即可求得平均数的估计值;根据中位数的计算方法可求得中位数的估计值;(2)算出良好和优秀试卷的比例,可得抽取的份数,确定X 的可能取值,根据超几何分布算出每个值对应的概率,可得分布列,根据期望的计算公式即可求得数学期望. 【详解】(1)由表可估计所有参赛者的得分的平均数为83240206575859582.2100100100100⨯+⨯+⨯+⨯=, 因为前两组的频率之和为0.080.320.400.5+=<,第四组为0.2, 故估计中位数为0.50.4801082.50.4-+⨯=. (2)由题意可知“良好”和“优秀”的比例为2:1,故按分层抽样抽取6份,“良好”试卷由4份,“优秀”试卷有2份, 则X 的取值可能为300元、400元、500元,则3436C 1(300)C 5P X ===,214236C C 3(400)C 5P X ===,124236C C 1(500)C 5P X ===,则X 的分布列如下: X 300400500P 15 35 15故131()300400500400555E X =⨯+⨯+⨯=(元).20.如图,在三棱柱111ABC A B C 中,AC ⊥BC ,AC =BC =2,123BC =,BC 1与1B C 交于点E ,平面11AA C C ⊥平面ABC ,145︒∠=A AC ,是侧棱1AA 上一点.(1)若D 为1AA 的中点,证明:1//A E 平面BCD . (2)是否存在点D ,使得二面角1B CD B --314D 的位置;若不存在,请说明理由. 【答案】(1)详见解析(2)存在,D 为1AA 的三等分点处,即1113A D AA =或1123A D AA =.【分析】(1)由线面平行的判定定理即可证明1//A E 平面BCD. (2)首先假设存在,使得二面角1B CD B --314的两个平面的法向量,即可求得二面角1B CD B --的正弦值为31414时点D 的位置. 【详解】(1)取1CC 的中点F ,连接1,EF A F ,F 为1CC 的中点,E 为1CB 的中点,11//EF B C ∴,又11//BC B C ,//EF BC ∴,F 为1CC 的中点,1//CF AA ∴且112CF AA =,D 为1AA 的中点,1112A D AA ∴=, 11//,CF A D CF A D ∴∴=,∴四边形1A DCF 为平行四边形,1//A F DC ∴, 1A F ⊂面1A EF ,DC ∴⊄面1A EF ,故//DC 面1A EF ,同理//BC 面1A EF ,又DC ⊂面BDC ,BC ⊂面BDC 且BCDC C =,所以面1A EF //面BDC ,又1A E ⊂面1A EF ,∴1//A E 平面BCD (2)连接1A C ,面11AAC C ⊥面ABC 且面11AAC C面ABC AC =,又BC AC ⊥∴BC ⊥面11AAC C ,又1CC ⊂面ABC ,1BC CC ∴⊥221122CC BC BC ∴=-=,在11ACC △中,22111111122cos 45482222AC AC CC AC CC =+-⋅⋅︒=+-⨯⨯=, 则2221111A C A C CC +=,111AC AC ∴⊥即1A C AC ⊥,则1AC ⊥面ABC , 分别以1,,CA CB CA 为,,x y z 轴建立如图所示的空间直角坐标系,设1122A D AA λλ==,则()()()()10,0,0,0,2,0,2,0,22,2,2,2C B D B λλ--,()0,2,0CB ∴=,()2,0,22CD λλ=-,()12,2,2CB =-,设平面BCD 的一个法向量为(),,m x y z =, 则00CB m CD m ⎧⋅=⎪⎨⋅=⎪⎩即()202220y x z λλ=⎧⎨+-=⎩令1x λ=-,则0,y z λ==,()1,0,m λλ=-; 设平面1B CD 的一个法向量为(),,n a b c =, 则100CB n CD n ⎧⋅=⎪⎨⋅=⎪⎩即()22202220a b c a c λλ-++=⎧⎨+-=⎩令1a λ=-,则1,b c λ=-=,()1,1,n λλ=--;(22cos ,m n m n m nλ⋅∴<>===⋅,1m n <>=, 解得13λ=或23λ=,所以存在点D ,使得二面角1B CD B --D 为1AA 的三等分点处,即1113A D AA =或1123A D AA =.21.已知双曲线C :22221x y a b -=(a >0,b >0)的左、右顶点为12,A A ,P (4,1)是C 上一点,且直线P A 1与P A 2的斜率乘积为14.(1)求C 的方程.(2)设直线l 与C 交于点M ,N ,且PM ⊥PN .证明:直线l 过定点.【答案】(1)221123y x -=; (2)过定点205,33⎛⎫- ⎪⎝⎭,证明见解析.【分析】(1)由直线P A 1与P A 2的斜率乘积为14及P (4,1)在双曲线上求解2a ,2b ,从而得到双曲线方程;(2)先考虑直线MN 斜率存在时,设出其方程,联立双曲线方程,得到两根之和,两根之积,利用0AM AN ⋅=得到20350k m ++=或410k m +-=,排除不合要求的情况,求出所过定点,再考虑直线MN 斜率不存在时,设(),M t n ,则(),N t n -,由0AM AN ⋅=求出t ,去掉不合要求的情况,证明出结论.【详解】(1)由题意知()()12,0,,0A a A a -,则12111444PA PA k k a a =⨯=+-,解得212a =,将P (4,1)代入222112x y b-=得23b =,故双曲线方程为221123y x -=; (2)当直线MN 斜率存在时, 设直线:MN y kx m =+,联立双曲线方程得:()2224184120k x kmx m -+++=,则要满足2410k -≠,且()()2222644414120k k m m ∆=-+>-,解得:22123m k >-且214k ≠,设()()1122,,,M x y N x y ,则122841km x x k -+=-,212241241m x x k +-=,()212122284122421y y k x x m m k m mk k --+=+-+==-+,()()()22222121212121241k m y y kx m kx m k x x k x k m x m -=++=+++-=, ()()()()1122121212124,14,141610PM PN x y x y x x x x y y y y ⋅=--⋅--=-+++-++=,所以222222212214123241640141411m km k mk k m k k -+++---++-=+, 即()22221412321722410k m k m km m -+++++-=,整理得2280323250k mk m m +++-=,即()()280323510k mk m m +++-=,即()()2035410k m k m +++-=, 所以20350k m ++=或410k m +-=, 当20350k m ++=时20533k m =--,满足0∆>,此时直线方程为2052053333k y kx k x ⎛⎫=--=-- ⎪⎝⎭,直线恒过定点205,33⎛⎫- ⎪⎝⎭,当410k m +-=时41m k =-+,此时直线方程为()4141y kx k k x =-+=-+,直线恒过定点()4,1P ,舍去.当直线MN 斜率不存在时,设(),M t n ,则(),N t n -,且221123t n -=,此时()()()224,14,1410PM PN t n t n t n ⋅=--⋅---=-+-=, 解得:203t =或4t =, 因为点M 和N 都异于点A ,故4t =时不合要求,舍去,故203t =,此时直线MN 经过点205,33⎛⎫- ⎪⎝⎭,综上:直线MN 过定点,定点坐标为205,33⎛⎫- ⎪⎝⎭.【点睛】处理定点问题的思路:(1)确定题目中的核心变量(此处设为k ),(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式,(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立,此时要将关于k 与,x y 的等式进行变形,直至找到()00,x y ,①若等式的形式为整式,则考虑将含k 的式子归为一组,变形为“()k ⋅”的形式,让括号中式子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去k 变为常数.22.已知函数()(1)e =-ax f x x (a ≠0). (1)讨论函数f (x )的单调性;(2)若a =1,证明:曲线y =f (x )与直线y =x +1恰有两个公共点,且这两个公共点关于点(0,1)对称. 【答案】(1)答案见解析. (2)证明见解析.【分析】(1)求导后分类讨论0a =、0a >、0a <时的()f x 的单调性.(2先构造函数研究单调性,再由零点存在性定理可证得有两个公共点;先设一个交点坐标,再判断此点关于点(0,1)对称的点是否也在()y f x =与1y x =+上即可. 【详解】(1)∵()e (1)e e (1)ax ax ax f x x a ax a '=+-⋅=-+, 当0a >时,1()01f x x a'>⇒>-,1()01f x x a '<⇒<-,∴()f x 在1(,1)a -∞-上单调递减,在1(1,)a-+∞单调递增;当0a <时,1()01f x x a '>⇒<-,1()01f x x a'<⇒>-, ∴()f x 在1(,1)a -∞-上单调递增,在1(1,)a-+∞单调递减;综述:当0a >时,()f x 在1(,1)a -∞-上单调递减,在1(1,)a-+∞单调递增;当0a <时,()f x 在1(,1)a -∞-上单调递增,在1(1,)a-+∞单调递减;(2)①证曲线与直线有两个公共点,当1a =时,()(1)e x f x x =-,令(1)e 1x x x -=+, ∵=1x -不是方程(1)e 1x x x -=+的根,∴(1)e 101xx x --=+,令(1)e ()11xx g x x -=-+,1x ≠-,则22(1)e ()0(1)x x g x x +'=>+, ∴()g x 在(,1)-∞-,(1,)-+∞上单调递增, 又()23210e g -=-<,3235102e g ⎛⎫-=-> ⎪⎝⎭,∴由零点存在性定理可知,()g x 在(,1)-∞-上有一个零点,又(1)10g =-<,2e (2)103g =->,∴由零点存在性定理可知,()g x 在(1,)-+∞上有一个零点, ∴()g x 有两个零点,即:()y f x =与1y x =+恰有两个公共点. ②证两个公共点关于(0,1)对称,设00(,)x y 为()(1)e x f x x =-与()1h x x =+的一个交点,则0000(1)e 1xy x x =-=+,又0000000001()(1)e (1)1(1)121x x f x x x x y y x ---=--=-+⨯=-+=--+=-+, 000()12h x x y -=-+=-,∴点00(,2)x y --也是()y f x =与()1y h x x ==+的一个交点, 又∵()y f x =与1y x =+恰有两个公共点, ∴两交点分别为:00(,)x y ,00(,2)x y --, 又∵点00(,)x y 与点00(,2)x y --关于点(0,1)对称, ∴两个公共点关于点(0,1)对称.∴综述:()y f x =与1y x =+恰有两个公共点,且两个公共点关于点(0,1)对称.。
故答案为:10. 第1页共21页2020届江苏省南通市海安高级中学高三下学期阶段考试数学试题一、填空题1.已知集合 A 1,0,3 , B {1,2,3},则 Al B ________________ 【答案】{3}【解析】由交集的定义AB ⑶,应填答案⑶.【答案】姮2【解析】由已知得 Z 2 1 i ,将其整理成 i1 Z -2 3. -i 2,即可求出模【详解】解:由题意知,Z 2 i2 i 1 i 1 3i 1 3. 1 i1 i 1 i22i 2所以:Z h 23 2尿V 222故答案为:.2【点睛】本题考查了复数的运算,考查了复数的模•本题的易错点在于化简时,错把i2计算• 3.某人5次上班途中所用的时间(单位:分钟)分别为 12, 8, 10, 11, 的平均数为 ________【答案】10【解析】代入求解平均数的公式计算即可 【详解】解:平均数-12 8 10 11 9 10.5【点睛】 2 .已知复数Z 满足1 i Z2 i ,则复数Z 的模为当成了 1来9•则这组数• 2,0【解析】根据流程框图进行循环计算,跳出循环时b 的值即为所求 【详解】解:第一次循环:b 2,a 2;第二次循环:b 4,a 3•此时a 3不成立故答案为:4. 【点睛】本题考查了程序框图•对于循环结构是常考的题型,一般做法为根据框图,计算每次循环 的结果,注意,临界即跳出循环时的计算结果 •通常循环框图常和数列求和综合到一块 • 5 •在平面直角坐标系 XOy 中,已知双曲线χ2y 21的右焦点与抛物线2y 2px p 0的焦点重合,则 P 的值为 ______________ .【答案】2 2【解析】求出双曲线的右焦点2,0 ,令P\ 2即可求出P 的值•2【详解】 解双曲线c21 1 2,即右焦点为^2,0 .即抛物线y2 2px P 0的焦点为本题考查了平均数的计算•易错点为计算出错b 的值为所以^2'2 ,解得P 2丿2 .故答案为:2 2. 【点睛】本题考查了双曲线的标准方程,考查了抛物线的方程•易错点是误把P 当做了抛物线焦 点的横坐标•6.已知一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,则这2只球颜色相同的概率为 ________ . 【答案】0.4【解析】从中一次随机摸2只球,写出基本事件总数 n 和这2只球颜色相同包含的基本 事件数m,由古典概型概率公式计算即可. 【详解】一个口袋中有形状、大小都相同的5只球,其中3只白球,2只红球.从中一次随机摸出2只球,基本事件总数 n= C I = 10, 这2只球颜色相同包含的基本事件个数m= C l C 2 = 4,m 4•••这2只球颜色相同的概率为 P= =0.4.n 10故答案为:0.4. 【点睛】本题考查古典概型概率的求法 ,考查运算求解能力,是基础题. 7 .现有一个橡皮泥制作的圆锥,底面半径为 1 ,高为4.若将它制作成一个总体积不变 的球,则该球的表面积为 ________ . 【答案】44 3 4【解析】 求出圆锥的体积,则由题意,设球的半径为r ,可得一r 3—,求出球的半径,进33而可求球的表面积. 【详解】4 3 4 2则4 r3 ,解得r「所以表面积为4 r 4故答案为:4 【点睛】本题考查了圆锥的体积,考查了球的体积,考查了球的表面积.结合方程的思想,根据题意 第3解:由题意知,圆锥的体积为-3I 2 4 ..设球的半径为r3页共21页求出球的半径•对于球的问题,一般都要首先明确半径的大小8.已知等比数列a n的前n项的和为S n ,aι 16 9®,则a3的值为__________________ .【答案】43【解析】由S6 9S3可得S3 q 1 9S3,进而可求出公比的值,即可求a s的值•【详解】解:S6 a1a2 a3 a°a§a6 d a? a? ^q3 a2q3a3q3S3 q3 1Q S6 9S3S3q3 1 9S3解得,q = 2 .所以a3 a^24.故答案为:4.【点睛】本题考查了等比数列的通项公式,考查了等比数列的前n项和.等比数列问题,一般可采用基本量法进行求解,但是这种方法计算量比较大.因此,对于等比数列的问题,一般首先考虑利用性质简化计算.UiX r IrIJDr IJrill9.已知e ,∈2是夹角为60°的两个单位向量,a 3e∣2e? , b 2e∣ ke? k R ,r r r且a (a b) 8则k的值为___________ .【答案】67【解析】由题意知;;b 3e1 2e23∈r1 2ee2 2e r1 ke r28 ,进而可求k的值.【详解】r r r r r r r r r r r r r解:a a b 3e 2e23e12e22e1ke23e12e2e1 2 k e23e⅛2 3k 8 6 & 2 2+k e2 3 3k 8 cos60o 2 2k 7k 11 8.2解得k 6.7故答案为:6.7【点睛】本题考查了平面向量的数量积.对于向量的数量积问题若题目中无向量的坐标,则在求数量积时,一般套用定义求解;若题目中已知了向量的坐标,求数量积时一般代入数量积的坐标公式.10.在平面直角坐标系XOy中,已知圆C : x2y22x 8 0 ,直线6BC 【解析】由tan BADBC tanDACBAC ,可得BC613 15d 6 BC 1 - 13 15,进而l : y k X 1 ,k R 过定点A ,与圆C 交于点B, D ,过点A 作BC 的平行线交CD 于点E ,则AEC 的周长为 ____________ . 【答案】5【解析】由题意得A(1,0),圆心为C 1,0 ,半径为r 3,由平行可知-EA ED ,化简后CB CD可得EA CE r ,进而可求三角形的周长• 【详解】解:当 X 1 时,y 0 与 k 无关则 A(1,0)∙圆 C :x2y 22x 8 x 1y 29所以,圆的圆心为C 1,0 ,半径为r 3.则由题意知,ED r CE故答案为:5. 【点睛】,考查了圆的标准方程•本题的关键在于,由平行得比例关 系•若联立直线与圆的方程,求解各点的坐标,这种思路也可以求出最后答案 ,但计算量太大•11.如图,已知两座建筑物 AB,CD 的高度分别为15m 和9m,且AB BC CD ,从 建筑物AB 的顶部A 看建筑物CD 的张角为 CAD ,测得tan CAD —,则B,C 间13可求B,C 间的距离.Q EA 与CB 平行EA ED 即EA 』 CB CD r r EA CE r则 AEC 的周长AC AE CEAC r 2 3 5.本题考查了直线过定点的问题 白勺距离 _____ m.【答案】12【详解】BC 解:由题意知tan BAD -AB CDBC~6^tan DAC BACBC 6tan DAC tan BAC 1 tan DAC tan BAC2BC239BC 180 0 ,解得BCBC6 j⅛,整理得1 -13 151512 或BC .Q BC CD 9, BC 122故答案为:12.【点睛】本题考查了三角恒等变换的应用•难点在于已知正切值的使用•有的同学可能由正切值求出正弦和余弦,结合正弦定理和余弦定理列出方程进行求解•由于本题所给的正切值求出的正弦余弦值数比较大,因此这种思路计算量较大,效率不高而且容易做错•m12 •设曲线yx+1m 0在X t,t 1处的切线为I ,则点P 2t, 1 到I的最大距离为【答案】、.2【解析】求出切线方程为mx 2t 1 y 2mt m 0 ,从而则P 2t, 1 到I的距离可用t表示出来,结合基本不等式即可求解【详解】解:y'整理得mxd2 d22mt2mt2mt2则切线方程为0•则P2t,2m2 m2m41的距离2m,当且仅当1 2 即d 2.2m2t 1 2- 2t 1时等号成立【答案】{3,5} 第7页共21页【点睛】本题考查了切线的求解,考查了点到直线的距离,考查了基本不等式•求最值常见的思路 有导数法、函数图像法、函数单调性法、基本不等式法 •本题的难点是对距离进行变形 整理•的取值范围是3【答案】三2【详解】5r ,t的情况•本题的难点是分界点能否取得的判断f k (x) InX 恰有3个不同的零点,贝U k 的取值集合为13.已知函数y c0s(3X) , Xt 5既有最小值也有最大值,则实数t【解析】由诱导公式可知3y cosSin X ,令 mX ,结合函数图像,讨论最大值为1和1两种情况2,进而求出 t的取值范围•解:y 3cos — 2Sin X 令m X •则由X -I t6可得Sin m, m•要使其既有最小值又有最大值若最大值为 13若最大值为 1,则t 2 ,解得t5•综上所述:-2 2故答案为:【点睛】本题考查了诱导公式 ,考查了三角函数最值问题•本题的易错点是漏解,只考虑了最大值14. 已知函数f 1(x)X 1 , f k 1 (X) f 1(f k (X)) , k 5, k N•若函数【解析】由题意写出fι(x), f2(x), f3(x), f4(x), f5(x)的解析式,根据图像的平移变换分别画出它们的图像,判断哪个函数图像与y In X图像有三个交点,即为所求.【详解】解:由题意知f1(x) X 1 , f2(x) IlX 1 I,f3(x) IIX 111,f4(χ) IIIlX 1 1 1 1,f5(χ) IIIlX 1111 1 •则其函数图像为∖r1*. 'I J. * I I i I . I I I I I 鼻⅛ n d I J i 2 ]■⅜ J < β 1 1 ]e4r/fL由图像可知,当k 3或5时,函数y f k(x) InX恰有3个不同的零点•故答案为:{3,5}.【点睛】本题考查了函数的图像变换考查了函数的零点•若函数f(x) g(x) h(x),则函数f(x)的零点个数就等同于函数g(x), h(x)图像的交点个数•本题的难点是画含绝对值的函数图像•对于y f (x),首先画出y f(x)的图像,然后将X轴下方的图像向上翻折即可;对于y f(x)的图像,首先画出y f (x)的图像,然后将y轴右侧向左翻折、解答题15.在平面直角坐标系XOy中,设向量∖ 3sin x,sin X , cosx,sin X , X 0,(1)若a b ,求X的值;(2)求a b的最大值及取得最大值时X的值•5 3【答案】(1)或;(2)最大值一,X .6 6 2 3r r r r 1【解析】⑴求出∣a∣,∣b∣,由IalIbl可得ISi nx∣ ?,结合X [0,]可求出所求•r r 1⑵a b Sin 2x ,结合X [0,]和正弦函数的图像,即可分析出最值及取得6 2最大值时X的值•【详解】解:(1)因为a ( .3 sin x,sin x), b (cosx,sin x)所以∣a∣ 3sin2x sin2x 2∣si nx∣,∣b∣ . CQS X Si nx2 1r r 1因为∣a ∣ ∣b ∣,所以∣ Sinx∣ .因为X [0,],所以SinX 2(2)ab.3sin xcosxSin X Sin2x1 cos2x 1 Sin 2x 12 2 2 6 2因为X [0,],所以2x11, ,于;曰 1 . Sin 2x1 36 6 6 2 6 2 2所以当π π2x ,即X时,a b取最人值 36 2 3 2【点睛】本题考查了向量的模,考查了向量的数量积,考查了三角恒等变换,考查了三角函数的最值•对于y ASin ωxφ型的函数,在求最值、对称轴、对称中心、单调区间时,一般(2)平面EDB i ⊥平面B I BD .【答案】(1)证明见解析;(2)证明见解析.【解析】⑴取B l D的中点F ,连OF l EF通过证明AC//EF从而证明线面平行.⑵通过AC BD ,B i B AC推出EF BB i, EF BD ,从而证明EF 平面B i BD , 进而可证面面垂直 . 【详解】证明:(1)在正方体ABCD A i B i C i D i中,设AC与BD相交于点0 ,则Q为BD的中点1取B i D 的中点F ,连OF, EF 所以QF∕∕BB i,QF -BB v2在正方体ABCD A i B i C i D i中,AA i∕∕BB i, AA i BB i.又点E是A i A的中点所以AE∕∕0F, AE OF .于是四边形AEFO是平行四边形从而AC//EF .又因为AC 平面EDB i ,EF 平面EDB i,所以AC//平面EDB i .A IB lC lD I中,E是棱A l A的中点.求证:都是采取整体的思想进行计算•⑵在正方体ABCD A1B1C1D1中,B1B 平面ABCD ,而AC 平面ABCD ,所以B I B AC.又在正方体ABCD A I B I C I D I中,四边形ABCD为正方形所以AC BD.由⑴知,EF//AC ,于是EF BB-EF BD .又B1B 平面B l BD , BD 平面B1BD, B j B BD B ,所以EF 平面B1BD .又因为EF 平面EDB1 ,所以平面EDB1 平面B1BD .【点睛】本题考查了线面平行的判定,考查了面面垂直的判定•线面平行或者面面平行的判定,一般都归结为证明线线平行;线面垂直或者面面垂直的判定,一般都归结为证明线线垂直•此类问题如果采用逻辑推理的方法无法证明,有时也可以建立空间直角坐标系,运用空间向量证明平行和垂直•2 217 .如图,在平面直角坐标系XOy中,已知代B两点分别为椭圆笃当1,a b 0a b的右顶点和上顶点,且AB , 7 ,右准线I的方程为X 4.(1)求椭圆的标准方程;(2)过点A的直线交椭圆于另一点P ,交I于点Q若以PQ为直径的圆经过原点,求直线PQ 的方程.2 2 _ _ _ _【答案】⑴仝y1;(2)、.3X y 2 3 0或3x y 2、、3 0.4 3【解析】(1)由右准线I 的方程为X 4以及AB 、、7可列出方程组2—4 Ca 2b 2 C 2解.a 2b 2得即可求出椭圆的方程 ⑵设PQ 的方程为y k(x 2),与椭圆方程联立,求出P 8k 264k 23 12k24k 2 3;联立y k(x 2) UUU 可得Q(4,2k),由OP OQ 可知OP X 4 IujOQ 0 ,从而可求出k,3 ,进而可求直线的方程• 【详解】 解:(1)设椭圆的焦距为 2c(c 0) •由题意得2-4 C2 ,2a b 2 2,解得a 4,b ■, a 2b 2■, 7C 2所以椭圆的标准方程为 (2)由题意得直线 PQ 不垂直于X 轴,设PQ 的方程为y k(x 2) y 联立x 2 4 k(x 2 y 3 2), 2 2 ,消y 得4k 3 X 1, 2 2 16k X 16k 12 0.又直线PQ 过点 A(2,0),则方程必有一根为 2则X P 8k 26 4k 23代入直线y k(x 2),得点 P 8k 26 4k 23 12k 产.联立 y k(xX 42),所以 Q(4,2k).又以PQ 为直径的圆过原点 ,所以OP OQ . IlJU UUir 8k 2 6 则OPOQ 4汁28k 2 24 4k 230 ,解得k 2所以直线PQ 的方程为.3x y 2-、3【点睛】本题考查了椭圆的准线方程,考查了椭圆的性质,考查了直线与椭圆相交问题,考查了向量的数量积•本题第二问的难点在于圆过原点这一条件得运用 •一般若题目中已知圆过某 点,则一般等量关系为:圆心到该点的距离为半径或者圆上两点与已知点的连线垂直 18 •下图是一块平行四边形园地 ABCD ,经测量,EB 2.5m , FC 7.5m 时,EF 最短,其长度为 5. 3 .(3)当0 X 10,由二次函数的性质可求最值 ;当10≤x≤20时,由基本不等式可求最值【详解】1解:⑴当点F 与点C 重合时,由题设知,s BEC - S YABCD .41 1于是一EB h AB h ,其中h 为平行四边形AB 边上的高.2 41得EB -AB ,即点E 是AB 的中点.2⑵因为点E 在线段AB 上,所以0 X 20.当10≤ x≤20时,由(1)知点F 在线段BC 上.因为AB20m, BC 10m, ABC 120 所以 S Y ABCD AB BC SinABC 20 10 —100、3. 2AB 20m,BC 10m, ABC 120o•拟过线段AB 上一点E 设计一条直路EF (点将该园地分为面积之比为 3:1的左,X, EF y (单位:m).(2) 求y 关于X 的函数关系式; (3) 试确定点E,F 的位置,使直路EF 的长度最短.2 X 25x 25【答案】(1) E 是AB 的中点;(2)yχ2 10θ∞ 10010 X10;(3)当201【解析】(I)由S BE C S YABCD 41 1可知-EB h 4AB h,从而证明E 是AB 的中点. ⑵求出平行四边形的面积为 S YABCD100,3,进而可求S EBF 25 3 ,从而用X 可将BF 表示出来,利用余弦定理即可得到y 关于X 的函数关系式.当点F 与点C 重合时,试确定点 E 的位置; (1) F 在四边形ABCD 的边上,不计直路的宽度),1由S EBF X BF sin1202 25 3得,BF .所以EBF中,由余弦定理得X得 CF 10 X .当 BE CF 时,EF .. 102 (2x 10)22 10 (2x 10) cos120当 BE CF 时,EF X 102(10 2x)22 10 (10 2x) cos60本题考查了函数模型的应用 ,考查了余弦定理,考查了基本不等式•本题的易错点是没有 讨论自变量的取值,从而造成了漏解•求最值时,常用的方法有:导数法、函数图像法、函数 单调性法、基本不等式法• 19.已知函数y f (X)的定义域为D ,若满足 X D,x f(x) f(x),则称函数f(χ)为’L 型函数”.(1)判断函数y e x 和y InX 是否为(L 型函数”,并说明理由;(2)设函数 f(x) (X 1)lnx (X 1)lna,a 0 ,记 g(x)为函数 f (x)的导函数• ①若函数 g(x)的最小值为1,求a 的值;②若函数 f(x)为“L 型函数 ”,求a 的取值范围.【答案】 (1) y e x不是,yIn X 是,理由见解析;(2)①a e ;②02a e . 【解析】(1)分别求出两个函数的定义域 ,判断 X D,xf(x) f (x)即可综上: 当E 距点B2.5m , F 距点C7.5m 时,EF 最短,其长度为5、. 3 .2X当且仅当X 2= 10000即X 10时,取等号 【点睛】y EFx 2100 X100.当0 X 10时,点F 在线段CD 上,由S 四边形EBCF-(X CF) 10 Sin60 2 25 3化简均为y EF 2 ∖ X 2 5x25.综上,y⑶当0 曰、【/是当X2 X 25x 2510χ210000100 X 210 X20X 10 时,y2 X 25x 2525 752 时,y min155、3,此时 CF 10 X当 10≤ x ≤20 时,y χ2 10000100 2,.'X 2X 210000100 10、3 X 22x 100 cos12010000所以由零点存在性定理得X 0 (1,a)使g X 00,又g(x)在(1,)上为增函数1⑵①求出g(x) f (x) InX 1 In a, x (O,),再求g (x),通过导数探究当 XX 取何值时,g(χ)取最小值,令最小值为1,即可求出a 的值•②由题意X (0, ),(X 1)f (X) (X 1)[(x 1)lnx (X 1)ln a] 0恒成立,分别讨论当0 a e 2和a e 2时,通过探究f(x)的单调性判断是否使得不等式恒成立,从而求出a 的取值范围.【详解】解:⑴对于函数y e x,定义域为R ,显然0 ee 0不成立,所以y e x 不是’L 型函数 对于函数y Inx ,定义域为(0,).当 0 X Hdlnx 0,所以(X 1)l nx 0,即 xlnx In X ; 当 X 1 时,Inx 0,所以(X 1)l nx 0,即 xl nx ln x . 所以 X (0,),都有xl nx Inx .所以函数y Inx 是型函数”.X 11⑵①因为 g(x) f (x) In XInaInX 1 Ina, x (0,)XX1 1 X 1所以g (x)22.当X (0,1)时,g(χ) 0所以g(x)在(0,1)上为减函数X X X当X (1,)时,g (x) 0,所以g(x)在(1,)上为增函数. 所以 g(x)min g(1) 2 In a .所以 2 In a 1,故 a e . ②因为函数f (x) (X 1)l nx (X 1)l na 为(L 型函数所以 X (0,),(x 1)f (x) (X 1)[(x 1)l nx (X 1)l n a] 0().(i)当 2 In a 0 ,即 0 a e 2时,由①得 g(x) 0,即 f (x) 0.所以f (X)在(0,)上为增函数,又 f (1) 0,当X (0,1)时,f (X) 0所以(X 1)f (X) 0;当 X [1,)时,f (x) 0,所以(X 1)f (X) 0.所以X (0,),适合()式.2 1(ii) 当 2 In a 0,即 a e 2时,g(1) 0,g(a) - 10.第15页共21页所以由零点存在性定理得X0 (1,a)使g X0 0,又g(x)在(1,)上为增函数所以当X 1,X o 时,g(x) 0,所以f (X)在1,X o 上为减函数又f(1) 0,所以当X 1,X o 时,f(x) 0,所以(X 1)f(x) 0,不适合()式. 综上得,实数a 的取值范围为0 a e 2∙ 【点睛】本题考查了不等式的性质,考查了函数的最值,考查了不等式恒成立问题.本题的难点在 于最后一问,学生往往想不起来通过函数的单调性等来判断函数在某一区间的正负问题 20 .已知数列 a n 的首项为1,各项均为正数,其前n 项和为S n ,1设数列 b n 满足 b 1 1 , b n 1b n a n ,求证:- 2.、a n 1 i 1 b【解析】⑴令n 1,n2即可求出a 2 ,a 3的值;1当n 1时,-b 11•从而可证.【详解】【答案】(1)a 22,a 3 3;(2)证明见解析;(3)证明见解析.a n 1 a n ⑵由2 Sn —1 n an 1得2Sm a n a na n an —(n 2)两式相减进行整理可得 an 1 a n 1 a n a n a n 1(n ≥ 2),即可证明 a n 为等差数列. ⑶由⑵可知b n 1b n n , b n b n 1 n1(n 2)两式相减整理得 丄 b n 1 b n 1 (n 2),则b n1 丄丄丄b i b 1 b 2 b 3 1 丄 bib nbl b 2 b n b n 1 ,通过放缩即可证明;解:⑴令n 1得,2S∣a ? a 〔 a 2 a 1,又a 11,解得a 2 2;令n 2得,2S 2a 〔a 2,即 2a 1a 3 a 2a 22a 1a 32 ,从而a3 3.2S na n QnOW n N •(1) 求a 2,a 3的值;(2) 求证:数列 a n 为等差数列;(3)1a ∏ 1a ∏⑵因为2S ∏ a ∏ 1 a∏ ①;所以2S ∏ 1 Jn 2)② a∏ 1 a ∏①-②得,2a ∏ a ∏ 1a∏ a ∏ 1 a∏ a ∏a∏ 1 a ∏ a ∏ .因为数列 a ∏的各项均为正数,所以a ∏ 0.a ∏ 1 a ∏从而2 口 ∏ a ∏ 1 a ∏ a ∏ a ∏ 1去分母得,2 a ∏ 1 a ∏ a ∏ a ∏ a ∏ 1 a ∏ a ∏ 1 a ∏ 1 a∏ 1 a n 化简并整理得,a ∏a ∏1 2a ; a ∏a ∏ 0,即 2a ∏ a ∏ 1 a ∏1(∏ 2),所以 a ∏ 1 a ∏ a ∏ a ∏ι( n ≥ 2).所以数列 a n 为等差数列. (3)由(2)知,b ∏ 1b ∏ ∏ ③.当 ∏ 1 时,b 2b 1 1 ,又 b 1,所以 b 2 1.由③知,b ∏b ∏ 1 ∏ 1(∏ 2) ④.③-④得,b ∏1b ∏ b ∏b ∏ 1 1 (∏ 2)即b ∏b ∏ 1 b∏ 1 1(∏2),依题意,b ∏ 0 ,所以占b ∏ 1 b ∏ b ∏ 1(∏2).b 11 b2 b 3b∏1 b ib 3 b 1 b 4 b 2 b 5 b 3b ∏ b ∏ 2 b ∏ 1 b ∏1 b ibi b 2 b ∏ b ∏ 12.b ∏1b ∏12 a ∏ 1 ,当 ∏ 1时,11 ,原不等式也成立.b 1∏ 1综上得,- i 1 b 2云1 【点睛】 本题考查了由递推公式求项 ,考查了等差数列的定义,考查了放缩法,考查了数列求和.本 题难点在于整理出丄 b ∏ 1 b ∏1(∏ b ∏ 2),从而对所证式子进行化简.涉及到S n 和a ∏的递推公式时,一般代入公式a ∏S nT \进行求解. S n 1, n 2 21•已知 a,b R,若 M= ba3所对应的变换 TM 把直线2x-y=3变换成自身,试3求实数a, b.【答案】户■- J -- 【解析】【详解】 JC R = 十 αυ一 τ, = ⅛x + 3V.L*aμT 2x r-y f= l.∖2(-x+α})- (⅛x + 3y) = 3.即-一一 --_.■此直线即为-'-/ ■ .■- ■二—2 -口二 2.2C 7 — 3 二—1.则.-.22 •在极坐标系中,设P 为曲线C : 2上任意一点,求点P 到直线l : Si n-3的最大距离• 【答案】5【解析】将圆C 和直线l 的极坐标方程化为直角坐标方程, 转化为求圆上的点到直线 I 距 离的最大值,求出圆心到直线 I 距离,即可求出结论. 【详解】 曲线C :2化直角坐标方程为 X 2 y 24表示圆,1 Sin— 3,- Sin 3 OCoS 3 ,322化为直角坐标方程为 ,3x y 6 0,6 圆C 上点P 到直线I 距离的最大值为 .【点睛】想,属于基础题本题考查极坐标方程与直角坐标方程互化、圆上点到直线距离的最值, 考查数形结合思设a b c 6 ,求证:.a bl ',厂2, 3 二.23 .设a, b, C为正实数,【答案】证明见解析2 2 2 2 2 2 2【解析】 根据柯西不等式 Xi% X 2y 2 X 3y 3 % X 2 X 3 y ι y 2 y 3 ,将原式进行配凑并结合已知条件 a b c 6加以计算,即可得证;【详解】证明:因为a, b, C 为正实数,a b c 6,2 2所以,a . b 1 . c 2 .. a 1 ., b 11 . c 2 1a b 1 c 2 1 1 1 27于是λa ..尸 、、厂2, 3.3 ,当且仅当,a 、、L 、、厂2 ,即a 3,b 2,C 1时取等号,所以,a ..尸、、厂2, 3. 3 ,得证; 【点睛】本题考查利用柯西不等式证明不等式,属于中档题 24 •假定某篮球运动员每次投篮命中率均为 P(O P 1).现有3次投篮机会,并规定连续两次投篮均不中即终止投篮 ,已知该运动员不放弃任何一次投篮机会,且恰好用完3次投篮机会的概率是 -25(1)求P 的值;(2)设该运动员投篮命中次数为X ,求X 的概率分布及数学期望E(X).3【答案】(1); (2)分布列见解析,期望为5【解析】 分析:(1)设事件A :恰用完3次投篮机会”则其对立事件 A :前两次投篮均不应概率即可详解:(1)设事件A :恰用完3次投篮机会”则其对立事件 A :前两次投篮均不中解得P 3.5(2)依题意,X 的所有可能值为0,1,2,3,213 125所以,PA 1 P A⑵X 的所有可能值为 250,1,2,3,计算其对依题意,PA 1 P A25,25所以m3 C k c ;k C :k L点睛:利用对立事件计算概率是概率问题中长用的方法,所以出现 关键字眼时要注意利用对立事件的思路解题,往往能够简化计算 25 •设 S 4k a 1 a 2 La 4k ( k N *),其中 ai 0,1( i 1,2,L ,4k ).当S 4k 除以4的余数是b ( b 0,1,2,3)时,数列a 1,a 2丄,a 4k 的个数记为m b .(1) 当k 2时,求m 1的值;(2) 求m3关于k 的表达式,并化简.2k 1【答案】(1) 64; (2)m 3 4【解析】(1) (1)根据定义,确定条件: 8个数的和除以4的余数是1,因此有1个1或5个1,其余为0,从而m C 8 C 564 ;(2)--:个数的和除以4的余数是3,因此有3个1,或7个1,或11个1,∙∙∙,或4k 1 个1 ,其余为0, m 3 C 43k CJ k Cr k L C4k 1,再根据组合数性质即可化简求值• 【详解】(1)当k 2时,数列a 1,a 2,a 3^L ,%中有1个1或5个1,其余为0, 所以 m C 8 C 8564 .(2)依题意,数列a 1, a 2,L ,a 4k 中有3个1,或7个1,或11个1,…, 或4k 1个1 ,其余为0,4k 1C4k第20页共21页X 的概率分布列为 数学期望E X24 ,125兰2竺3空空125 125 125 125至多”至少”等其他同理,得 m 1 C 41k C 45k C49kL C 44k k 3因为 C 4ik C 44k k ii 3,7,11,L ,4k 1 ,所以 m 1 m 31 3 9 4k 3 4k 1 4k 1m 3 C 4kC 4k C 4k L C 4k C 4k 2点睛】 本题考查组合数的性质,组合数的运算,属中档题所以 m 34k 224k 22k 14。
江苏省南通市海安县海安高级中学2024-2025学年高三统一测试(一)物理试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、如图所示,两个完全相同的矩形导线框A、B在靠得很近的竖直平面内,线框的长边均处于水平位置.线框A固定且通有电流I,线框B从足够高处由静止释放,在运动到A下方的过程中()A.穿过线框B的磁通量先变小后变大B.穿过线框B的磁通量先变大后变小C.线框B所受安培力的合力为零D.线框B的机械能一直减小2、如图所示,某同学对着墙壁练习打乒乓球,某次球与墙壁上A点碰撞后水平弹离,恰好垂直落在球拍上的B点,已知球拍与水平方向夹角θ=60°,AB两点高度差h=1m,忽略空气阻力,重力加速度g=10m/s2,则球刚要落到球拍上时速度大小为()A.25m/s B.215m/s C.45m/s D.4153m/s3、一物块由O点下落,到A点时与直立于地面的轻弹簧接触,到B点时速度达到最大,到C点时速度减为零,然后被弹回.物块在运动过程中受到的空气阻力大小不变,弹簧始终在弹性限度内,则物块()A.从A下降到B的过程中,合力先变小后变大B.从A下降到C的过程中,加速度先增大后减小C.从C上升到B的过程中,动能先增大后减小D.从C上升到B的过程中,系统的重力势能与弹性势能之和不断增加4、关于分子间相互作用力与分子间势能,下列说法正确的是()A.在10r0(r0为分子间作用力为零的间距,其值为10-10m)距离范围内,分子间总存在着相互作用的引力B.分子间作用力为零时,分子间的势能一定是零C.当分子间作用力表现为引力时,分子间的距离越大,分子势能越小D.分子间距离越大,分子间的斥力越大5、如图所示,在光滑的水平桌面上有一弹簧振子,弹簧劲度系数为k,开始时,振子被拉到平衡位置O的右侧A处,此时拉力大小为F,然后释放振子从静止开始向左运动,经过时间t后第一次到达平衡位置O处,此时振子的速度为v,在这个过程中振子的平均速度为A.等于B.大于C.小于D.06、如图所示,金属棒MN两端由等长的轻质绝缘细线水平悬挂,处于垂直纸面水平向里的匀强磁场中,棒中通有由M到N的恒定电流I,细线的拉力不为零,两细线竖直.现将匀强磁场磁感应强度B大小保持不变,方向缓慢地转过90°变为竖直向下,在这个过程中()A.细线向纸面内偏转,其中的拉力一直增大B.细线向纸面外偏转,其中的拉力一直增大C.细线向纸面内偏转,其中的拉力先增大后减小D.细线向纸面外偏转,其中的拉力先增大后减小二、多项选择题:本题共4小题,每小题5分,共20分。
江苏省海安中学2025届高三年级学习测试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的1.已知集合{}{}20,1,2,3,log 1A B xx ==≤∣,则A B ⋂=( )A.{}0,1,2B.{}1,2C.{}0,1D.{}12.命题“20,10x x x ∀>-+>”的否定为( )A.20,10x x x ∀>-+≤B.20,10x x x ∀≤-+≤C.20,10x x x ∃>-+≤D.20,10x x x ∃≤-+≤3.已知函数()21,0cos ,0x x f x x x ⎧+>=⎨≤⎩,则下列结论正确的是( )A.()f x 是偶函数B.()f x 是增函数C.()f x 是周期函数D.()f x 的值域为[)1,∞-+4.若a b >,则( )A.ln ln a b >B.0.30.3a b >C.330a b ->D.0a b ->5.已知函数()()1ln 1f x x x=+-,则()y f x =的图象大致是( )A. B.C. D.6.如图,矩形ABCD 的三个顶点A B C 、、分别在函数12,,xy y x y ===的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为()A.11,24⎛⎫⎪⎝⎭ B.11,34⎛⎫ ⎪⎝⎭ C.11,23⎛⎫ ⎪⎝⎭ D.11,33⎛⎫ ⎪⎝⎭7.已知()912160,0,log log log a b a b a b >>==+,则ab=( )C.128.已知()()5,15ln4ln3,16ln5ln4a b c ==-=-,则( )A.a c b <<B.c b a <<C.b a c <<D.a b c<<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求、全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分9.下列函数中,在区间ππ,42⎛⎫⎪⎝⎭上单调递减的函数是( )A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.cos y x x=-C.sin2y x =D.πcos 3y x ⎛⎫=-⎪⎝⎭10.下面的结论中正确的是( )A.若22ac bc >,则a b >B.若0,0a b m >>>,则a m ab m b+>+C.若110,0,a b a b a b>>+=+,则2a b +≥D.若20a b >>,则()44322a b a b +≥-11.已知函数()cos sin2f x x x =,下列结论中正确的是( )A.()y f x =的图像关于()π,0中心对称B.()y f x =的图像关于π2x =对称C.()f xD.()f x 既是奇函数,又是周期函数三、填空题:本题共3小题,每小题5分,共15分.12.已知()(),f x g x 分别是定义在R 上的奇函数和偶函数,且()()321f x g x x x -=+-,则()()11f g +=__________.13.某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为__________.14.若存在实数t ,对任意的(]0,x s ∈,不等式()()ln 210x x t t x -+---≤成立,则整数s 的最大值为__________.(参考数据:ln3 1.099,ln4 1.386≈≈)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题13分)如图1,在等腰直角三角形ABC 中,90,6,A BC D E ∠== 、分别是,AC AB 上的点,CD BE O ==为BC 的中点.将ADE 沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中AO =(1)求证:A O '⊥平面BCDE ;(2)求点B 到平面A CD '的距离.16.(本题15分)设数列{}n a 的各项均为正整数.(1)数列{}n a 满足1121212222n n n n a a a a n --++++= ,求数列{}n a 的通项公式;(2)若{}n a 是等比数列,且n a n ⎧⎫⎨⎬⎩⎭是递减数列,求公比q .17.(本题15分)已知函数()πsin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭在2π0,3⎛⎤ ⎥⎝⎦上单调递增,在2π,π3⎛⎤ ⎥⎝⎦上单调递减,设()0,0x 为曲线()y f x =的对称中心.(1)求0x 的值;(2)记ABC 的角,,A B C 对应的边分别为,,a b c ,若0cos cos ,6A x b c =+=,求BC 边上的高AD 长的最大值.18.(本题17分)已知函数()()e ln xf x x m =-+.(1)当0m =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当2m ≤时,求证()0f x >.19.(本题17分)在平面内,若直线l 将多边形分为两部分,多边形在l 两侧的顶点到直线l 的距离之和相等,则称l 为多边形的一条“等线”,已知O 为坐标原点,双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为12,,F F E 的离心率为2,点P 为E 右支上一动点,直线m 与曲线E 相切于点P ,且与E 的渐近线交于,A B 两点,当2PF x ⊥轴时,直线1y =为12PF F 的等线.(1)求E 的方程;(2)若y =是四边形12AF BF 的等线,求四边形12AF BF 的面积;(3)设13OG OP =,点G 的轨迹为曲线Γ,证明:Γ在点G 处的切线n 为12AF F 的等线江苏省海安中学2025届高三年级学习测试数学试卷答案解析人:福佑崇文阁一、单选题:本大题共8小题,每题5分,共40分在每小题提供的四个选项中,只有一项是符合题目要求的.12345678BCDCBADB二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACACDABD三、填空题:本题共3小题,每小题5分,共15分.12.11-14.2四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.【详解】(1)解:(1)连接,,45,3OD OE B C CD BE CO BO ∠∠====== ,在COD 中,OD ==,同理得OE =,因为6BC =,所以AC AB ==所以AD A D A E AE ='==='因为AO =所以222222,A O OD A D A O OE A E '+=='+''所以,A O OD A O OE'⊥⊥'又因为0,OD OE OD ⋂=⊂平面,BCDE OE ⊂平面BCDE 所以A O '⊥平面BCDE ;(2)取DE 中点H ,则OH OB ⊥以O 为坐标原点,,,OH OB OA '所在直线分别为,,x y z 轴,建立空间直角坐标系则()(()()0,0,0,,0,3,0,1,2,0O A C D --',设平面A CD '的一个法向量为(),,n x y z =,又((),1,1,0CA CD ==' ,所以300n CA y n CD x y ⎧⋅==⎪⎨⋅=+=⎪'⎩,令1x =,则1,y z =-=,则(1,n =-,又()()0,3,0,0,6,0B CB =,所以点B 到平面A CD '16.【详解】(1)因为1121212222n n n na a a a n --++++= ,①所以当2n ≥时,1121211222n n a a a n --+++=- ,②由①-②得,12nn a =,所以2nn a =,经检验,当1n =时,12a =,符合题意,所以2nn a =(2)由题设知0q >.若1q =,则1,n n a a a n n n ⎧⎫=⎨⎬⎩⎭是递减数列,符合题意.若1q <,则当1log q n a >时,11nn a a q =<,不为正整数,不合题意.若1q >,则()()1111n n n qn n a a a n n n n +⎡⎤-+⎣⎦-=++,当1qn n >+,即11n q >-时,11n n a a n n +>+,这与n a n ⎧⎫⎨⎬⎩⎭是递减数列相矛盾,不合题意.故公比1q =.17.【详解】(1)因为()πsin 6f x x ω⎛⎫=+⎪⎝⎭在2π(0,}3上单调递增,在2π,π3⎛⎤⎥⎝⎦上单调递减,所以2π13f ⎛⎫=⎪⎝⎭且4π3T ≥,所以2πππ2π,362k k ω⋅+=+∈Z ,可知13,2k k ω=+∈Z ,又由2π4π3ω≥,可知302ω<≤,所以12ω=,故()1πsin 26f x x ⎛⎫=+ ⎪⎝⎭,由1ππ,26x m m +=∈Z ,可得π2π3x m =-,即0π2π,3x m m =-∈Z .(2)22222201()2362cos cos 2222b c a b c bc a bc a A x bc bc bc+-+----=====,化简得2363a bc =-,因为11sin 22ABC S a AD bc A =⋅=,所以AD =,所以()22223()3()44363bc bc AD a bc ==-,又b c +≥,所以9bc ≤,当且仅当3b c ==时取等号,所以()22223()3327363436343634499()bc AD bc bc bc ==≤=-⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦,所以AD ≤,故AD.18.【详解】(1)当()()10,e ln ,e xxm f x x f x x==--'=,所以()1e 1k f '==-,而()1e f =,切线方程为()()e e 11y x -=--,即所求切线方程为()e 110x y --+=;(2)()f x 得定义域为()()1,,e xm f x x m∞='-+-+,设()()1e xg x f x x m='=-+,则()21e 0()xg x x m '=+>+,故()f x '是增函数,当x m →-时,(),f x x ∞∞→-→+'时,()f x ∞'→+,所以存在()0,x m ∞∈-+,使得001e x x m=+①,且()0,x m x ∈-时,()()0,f x f x '<单调递减,()0,x x ∞∈+时,()()0,f x f x '>单调递增,故()()0min 00()e ln xf x f x x m ==-+②,由①式得()00ln x x m =-+③,将①③两式代入②式,结合2m ≤得:min 000011()20f x x x m m m m x m x m =+=++-≥-=-≥++,当且仅当01x m =-时取等号,结合(2)式可知,此时()00e 0x f x =>,故()0f x >恒成立.19.【详解】(1)由题意知()()212,,,0,,0b P c F c F c a ⎛⎫- ⎪⎝⎭,显然点P 在直线1y =的上方,因为直线1y =为12PF F 的等线,所以222212,2,b ce c a b a a -====+,解得1a b ==,E 的方程为2213y x -=(2)设()00,P x y ,切线()00:m y y k x x -=-,代入2213y x -=得:()()()2222200000032230k xk kx y x k x y kx y -+--+-+=,故()()()22222000000243230k kx y kkx y kx y ⎡⎤-+-+-+=⎣⎦,该式可以看作关于k 的一元二次方程()22200001230x k x y k y --++=,所以000002200031113x y x y x k x y y ===-⎛⎫+- ⎪⎝⎭,即m 方程为()001*3y y x x -=当m 的斜率不存在时,也成立渐近线方程为y =,不妨设A 在B 上方,联立得A B x x ==,故02A B x x x +==,所以P 是线段AB 的中点,因为12,F F 到过O 的直线距离相等,则过O 点的等线必定满足:,A B 到该等线距离相等,且分居两侧,所以该等线必过点P ,即OP的方程为y =,由2213y y x ⎧=⎪⎨-=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩,故P .所以03A A y ====,所以03B B y ====-,所以6A B y y -=,所以1212122ABCD A B A B S F F y y y y =⋅-=-=(3)设(),G x y ,由13OG OP =,所以003,3x x y y ==,故曲线Γ的方程为()229310x y x -=>由(*)知切线为n ,也为0093133x y y x -=,即00133y y x x -=,即00310x x y y --=易知A 与2F 在n 的右侧,1F 在n 的左侧,分别记12,,F F A 到n 的距离为123,,d d d ,由(2)知000011A A x y y y x x ===--,所以3d 由01x ≥得12d d ==因为231d d d +==,所以直线n 为12AF F .等线.。
考点22 点线面的判断与证明,能正确地判断空间线线、线面、面面的位置关系;理解关于空间中线面平行、面面平行的判定定理和性质定理;并能用图形语言和符号语言表述这些定理 .2、能运用公理及其推论和相关定理证明一些空间位置关系的简单命题江苏高考对立体几何的考查主要有两个方面,一是对体积(或点到平面的距离)、表面积的一类计算问题的考查,二是对直线与平面的位置关系的考查 . 以一大一小两题的形式进行考查,其中直线与直线、直线与平面、平面与平面平行、垂直的位置关系的考查是高考中必考的问题,尤其是直线与平面平行、垂直关系的证明尤为重要 . 在证明的过程中,一定要注意推理的严密性,条件不要遗漏 . 另外,要关注与位置关系有关的一类探究性问题,它体现了新课程中考查学生的探究能力的要求,值得注意。
对于江苏之外地区的高考在大题的考查中,除了考查线面、面面以及线线的位置关系的证明外,第2问设置了空间向量求角与距离的求解题。
,做到弄清搞透;二要重视对典型问题求解基本思想方法的掌握,做到应用自如,特别是化归、转化等思想方法的掌握与应用;三要重视解题过程的规范训练,尽量避免因解题不规范而丢分 . 对于本部分的内容,高考的重点还是线线平行、线面平行、面面平行的判定以及它们的性质的应用。
1、【2020年全国2卷】设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l 平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝2、【2020年浙江卷】已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3、【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面4、【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线5、【2018年高考浙江卷】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6、【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2020年江苏卷】.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.8、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .9、【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .题型一 性质定理与判定定理的综合考查1、(2020届山东省潍坊市高三上期中)m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2、(2020届山东省滨州市三校高三上学期联考)设α,β为两个平面,则αβ∥的充要条件是( ) A .α内有无数条直线与β平行B .α,β平行与同一个平面C .α内有两条相交直线与β内两条相交直线平行D .α,β垂直与同一个平面3、(2020届浙江省嘉兴市3月模拟)已知l ,m 是两条不同的直线,α是平面,且//m α,则( ) A .若//l m ,则//l α B .若//l α,则//l m C .若l m ⊥,则l α⊥D .若l α⊥,则l m ⊥4、(2020·浙江高三)已知α,β是两个相交平面,其中l ⊂α,则( ) A .β内一定能找到与l 平行的直线 B .β内一定能找到与l 垂直的直线C .若β内有一条直线与l 平行,则该直线与α平行D .若β内有无数条直线与l 垂直,则β与α垂直5、(2020届浙江省高中发展共同体高三上期末)如果用,m n 表示不同直线,,,αβγ表示不同平面,下列叙述正确的是( )A .若//m α,//m n ,则//n αB .若//m n ,m α⊂,n β⊂,则//αβC .若αγ⊥,βγ⊥,则//αβD .若m α⊥,n α⊥,则//m n6、(2019苏北模拟) 已知α,β是两个不同的平面,l ,m 是两条不同的直线,l ⊥α,m ⊂β.给出下列命题:①α∥β⇒l ⊥m ; ②α⊥β⇒l ∥m ; ③m ∥α⇒l ⊥β; ④l ⊥β⇒m ∥α.其中正确的命题是________(填写所有正确命题的序号). 7、(2020届山东省泰安市高三上期末)已知,αβ是两个不重合的平面,,m n是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ8、(2020届山东省济宁市高三上期末)己知mn 、为两条不重合的直线,αβ、为两个不重合的平面,则下列说法正确的是( )A .若//,//m n αβ且//,αβ则//m nB .若//,,,m n m n αβ⊥⊥则//αβC .若//,,//,m n n m ααββ⊂⊄,则//m βD .若//,,m n n ααβ⊥⊥,则//m β9、(山东省潍坊市高三上学期统考)如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④∠PDA =45°. 其中正确的有________(把所有正确的序号都填上)题型二 线面平行、垂直的判定与性质1、(江苏省南通市海安高级中学2019-2020学年高三下学期阶段考试)如图,在正方体1111ABCD A B C D -中,E 是棱1A A 的中点.求证:(1)AC//平面1EDB ; (2)平面1EDB ⊥平面1B BD .2、(江苏省南通市海安市2019-2020学年高三下学期3月月考)如图,在正方体1111ABCD A B C D 中,E 是棱1A A 的中点.求证:(1)AC//平面1EDB ; (2)平面1EDB ⊥平面1B BD .3、(2019镇江期末)如图,在四棱锥V ABCD 中,底面ABCD 是矩形,VD ⊥平面ABCD ,过AD 的平面分别与VB ,VC 交于点M ,N.(1) 求证:BC ⊥平面VCD ; (2) 求证:AD ∥MN.4、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B 为矩形,平面AA1B1B ⊥平面ABC ,点E ,F 分别是侧面AA1B1B ,BB1C1C 对角线的交点. (1) 求证:EF ∥平面ABC ;(2) 求证:BB1⊥AC.5、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M,N分别为棱PA,PD的中点.已知侧面PAD⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面PAB.6、(2019苏锡常镇调研(一))如图,三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.7、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1) DE∥平面ABB1A1;(2) BC1⊥平面A1B1C.答案解析三年高考真题1、【2020年全国2卷】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝ 【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α; 若3l 与1l 相交,则交点A 在平面α内, 同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.2、【2020年浙江卷】已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B3、【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .4、【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .5、【2018年高考浙江卷】已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.6、【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.7、【2020年江苏卷】.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【解析】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB . 由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C . (2)由于1B C ⊥平面ABC ,AB平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB平面1ABB ,所以平面1AB C ⊥平面1ABB .8、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【解析】(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC −A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .9、【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .二年模拟试题题型一 性质定理与判定定理的综合考查1.(2020届山东省潍坊市高三上期中)m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】//m α,则存在l α⊂有//m l .而由//m n 可得//n l ,从而有//n α.反之则不一定成立,,m n 可能相交,平行或异面.所以//m n 是//n α的充分不必要条件,故选A2、(2020届山东省滨州市三校高三上学期联考)设α,β为两个平面,则αβ∥的充要条件是( ) A .α内有无数条直线与β平行B .α,β平行与同一个平面C .α内有两条相交直线与β内两条相交直线平行D .α,β垂直与同一个平面【答案】C 【解析】对于A ,α内有无数条直线与β平行,可得α与β相交或α或β平行; 对于B ,α,β平行于同一条直线,可得α与β相交或α或β平行; 对于C ,α内有两条相交直线与β内两条相交直线平行,可得α∥β; 对于D ,α,β垂直与同一个平面,可得α与β相交或α或β平行. 故选:C .3、(2020届浙江省嘉兴市3月模拟)已知l ,m 是两条不同的直线,α是平面,且//m α,则( ) A .若//l m ,则//l α B .若//l α,则//l m C .若l m ⊥,则l α⊥ D .若l α⊥,则l m ⊥【答案】D 【解析】A 选项 有可能线在面内的情形,错误;B 选项中l 与m 还可以相交或异面,错误;C 选项中不满足线面垂直的判定定理,错误,D 选项中由线面垂直的性质定理可知正确.故选:D4、(2020·浙江高三)已知α,β是两个相交平面,其中l ⊂α,则( ) A .β内一定能找到与l 平行的直线 B .β内一定能找到与l 垂直的直线C .若β内有一条直线与l 平行,则该直线与α平行D .若β内有无数条直线与l 垂直,则β与α垂直 【答案】B 【解析】由α,β是两个相交平面,其中l ⊂α,知:在A 中,当l 与α,β的交线相交时,β内不能找到与l 平行的直线,故A 错误; 在B 中,由直线与平面的位置关系知β内一定能找到与l 垂直的直线,故B 正确; 在C 中,β内有一条直线与l 平行,则该直线与α平行或该直线在α内,故C 错误; 在D 中,β内有无数条直线与l 垂直,则β与α不一定垂直,故D 错误. 故选:B .5、(2020届浙江省高中发展共同体高三上期末)如果用,m n 表示不同直线,,,αβγ表示不同平面,下列叙述正确的是( )A .若//m α,//m n ,则//n αB .若//m n ,m α⊂,n β⊂,则//αβC .若αγ⊥,βγ⊥,则//αβD .若m α⊥,n α⊥,则//m n【答案】D 【解析】选项A 中还有直线n 在平面α内的情况,故A 不正确,选项B 中再加上两条直线相交的条件可以得到两个平面平行,故B 不正确, 选项C 中还有,αβ相交,故C 不正确, 故选:D .6、(2019苏北模拟) 已知α,β是两个不同的平面,l ,m 是两条不同的直线,l ⊥α,m ⊂β.给出下列命题:①α∥β⇒l ⊥m ; ②α⊥β⇒l ∥m ; ③m ∥α⇒l ⊥β; ④l ⊥β⇒m ∥α.其中正确的命题是________(填写所有正确命题的序号...........). 答案: ①④【解析】:①由l ⊥α,α∥β,得l ⊥β,又因为m ⊂β,所以l ⊥m ;②由l ⊥α,α⊥β,得l ∥β或l ⊂β,又因为m ⊂β,所以l 与m 或异面或平行或相交;③由l ⊥α,m ∥α,得l ⊥m .因为l 只垂直于β内的一条直线m ,所以不能确定l 是否垂直于β; ④由l ⊥α,l ⊥β,得α∥β.因为m ⊂β,所以m ∥α.7、(2020届山东省泰安市高三上期末)已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .8、(2020届山东省济宁市高三上期末)己知mn 、为两条不重合的直线,αβ、为两个不重合的平面,则下列说法正确的是( )A .若//,//m n αβ且//,αβ则//m nB .若//,,,m n m n αβ⊥⊥则//αβC .若//,,//,m n n m ααββ⊂⊄,则//m βD .若//,,m n n ααβ⊥⊥,则//m β 【答案】BC 【解析】A. 若//,//m n αβ且//,αβ则可以//m n ,,m n 异面,或,m n 相交,故A 错误;B. 若//,,m n m α⊥则n α⊥,又,n β⊥故//αβ,B 正确;C. 若//,,m n n α⊂则m α或m α⊆,又//,m αββ⊄,故//m β,C 正确;D. 若//,,m n n α⊥则m α⊥,αβ⊥,则//m β或m β⊆,D 错误; 故选:BC9、(2020届山东省潍坊市高三上学期统考)如图,已知六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④∠PDA =45°. 其中正确的有________(把所有正确的序号都填上) 【答案】①④ 【解析】对于①,因为PA ⊥平面ABC ,所以PA ⊥AE ,又,EA AB PA AB A ⊥⋂=,所以EA ⊥平面PAB ,从而可得EA PB ⊥,故①正确.对于②,由于PA ⊥平面ABC ,所以平面ABC 与平面PBC 不可能垂直,故②不正确.对于③,由于在正六边形中BC AD ∥,所以BC 与EA 必有公共点,从而BC 与平面PAE 有公共点,所以直线BC 与平面PAE 不平行,故③不正确.对于④,由条件得PAD ∆为直角三角形,且PA ⊥AD ,又2PA AB AD ==,所以∠PDA=45°.故④正确. 综上①④正确. 答案:①④题型二 线面平行、垂直的判定与性质1、(江苏省南通市海安高级中学2019-2020学年高三下学期阶段考试)如图,在正方体1111ABCD A B C D -中,E 是棱1A A 的中点.求证:(1)AC//平面1EDB ; (2)平面1EDB ⊥平面1B BD . 【答案】(1)证明见解析;(2)证明见解析.【解析】证明:(1)在正方体1111ABCD A B C D -中,设AC 与BD 相交于点O ,则O 为BD 的中点 取1B D 的中点F ,连,OF EF .所以1OF//BB ,112OF BB =. 在正方体1111ABCD A B C D -中,1111,//AA BB AA BB =.又点E 是1A A 的中点 所以,//AE OF AE OF =.于是四边形AEFO 是平行四边形,从而//AC EF . 又因为AC ⊄平面1EDB ,EF ⊂平面1EDB ,所以//AC 平面1EDB .(2)在正方体1111ABCD A B C D -中,1B B ⊥平面ABCD ,而AC ⊂平面ABCD , 所以1B B AC ⊥.又在正方体1111ABCD A B C D -中,四边形ABCD 为正方形 所以AC BD ⊥.由(1)知,//EF AC ,于是1EF BB ⊥,EF BD ⊥.又1B B ⊂平面1B BD ,BD ⊂平面1B BD ,1B B BD B ⋂=,所以EF ⊥平面1B BD . 又因为EF ⊂平面1EDB ,所以平面1EDB ⊥平面1B BD .2、(江苏省南通市海安市2019-2020学年高三下学期3月月考)如图,在正方体1111ABCD A B C D -中,E是棱1A A 的中点.求证:(1)AC//平面1EDB ; (2)平面1EDB ⊥平面1B BD . 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)在正方体1111ABCD A B C D -中,设AC 与BD 相交于点O ,则O 为BD 的中点 取1B D 的中点F ,连,OF EF .所以1OF//BB ,112OF BB =. 在正方体1111ABCD A B C D -中,1111,//AA BB AA BB =.又点E 是1A A 的中点 所以,//AE OF AE OF =.于是四边形AEFO 是平行四边形,从而//AC EF . 又因为AC ⊄平面1EDB ,EF ⊂平面1EDB ,所以//AC 平面1EDB .(2)在正方体1111ABCD A B C D -中,1B B ⊥平面ABCD ,而AC ⊂平面ABCD , 所以1B B AC ⊥.又在正方体1111ABCD A B C D -中,四边形ABCD 为正方形 所以AC BD ⊥.由(1)知,//EF AC ,于是1EF BB ⊥,EF BD ⊥.又1B B ⊂平面1B BD ,BD ⊂平面1B BD ,1B B BD B ⋂=,所以EF ⊥平面1B BD . 又因为EF ⊂平面1EDB ,所以平面1EDB ⊥平面1B BD .3、(2019镇江期末)如图,在四棱锥VABCD 中,底面ABCD 是矩形,VD ⊥平面ABCD ,过AD 的平面分别与VB ,VC 交于点M ,N.(1) 求证:BC ⊥平面VCD ;(2) 求证:AD∥MN.规范解答 (1)在四棱锥VABCD中,因为VD⊥平面ABCD,BC⊂平面ABCD,所以VD⊥BC.(3分)因为底面ABCD是矩形,所以BC⊥CD.(4分)又CD⊂平面VCD,VD⊂平面VCD,CD∩VD=D,则BC⊥平面VCD.(7分)(2)因为底面ABCD是矩形,所以AD∥BC.(8分)又AD⊄平面VBC,BC⊂平面VBC,则AD∥平面VBC.(11分)又平面ADNM∩平面VBC=MN,AD⊂平面ADNM,则AD∥MN.(14分)4、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B⊥平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1) 求证:EF∥平面ABC;(2) 求证:BB1⊥AC.规范解答 (1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E,F分别是侧面AA1B1B,BB1C1C对角线的交点,所以E,F分别是AB1,CB1的中点,所以EF∥AC.(4分) 因为EF⊄平面ABC,AC⊂平面ABC,所以EF∥平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1⊥AB.因为平面AA1B1B⊥平面ABC,且平面AA1B1B∩平面ABC=AB,BB1⊂平面AA1B1B,所以BB1⊥平面ABC.(12分)因为AC⊂平面ABC,所以BB1⊥AC.(14分)易错警示在立体几何中,一定要用课本中允许的有关定理进行推理论证,在进行推理论证时一定要将定理的条件写全,不能遗漏,否则,在评分时将给予扣分,高考阅卷对立体几何题证明的规范性要求很高.要适度关注性质定理的使用,因为性质定理的使用往往涉及到添置辅助线或辅助平面,这无疑就增加了试题的难度.5、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M,N分别为棱PA,PD的中点.已知侧面PAD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;MD⊥平面PAB.【证明】(1)在四棱锥P-ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.(2分)又底面ABCD是矩形,所以BC∥AD.所以MN∥BC.(4分)又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面PAD.(8分)又MD⊂侧面PAD,所以AB⊥MD.(10分)因为DA=DP,又M为AP的中点,从而MD⊥PA. (12分)又PA,AB在平面PAB内,PA∩AB=A,所以MD⊥平面PAB.(14分)6、(2019苏锡常镇调研(一))如图,三棱锥DABC中,已知AC⊥BC,AC⊥DC,BC=DC,E,F分别为BD,CD的中点.求证:(1) EF∥平面ABC;(2) BD⊥平面ACE.规范解答 (1)三棱锥DABC中,因为E为DB的中点,F为DC的中点,所以EF∥BC,(3分)因为BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(6分)(2)因为AC⊥BC,AC⊥DC,BC∩DC=C,BC,DC⊂平面BCD所以AC⊥平面BCD,(8分)因为BD⊂平面BCD,所以AC⊥BD,(10分)因为DC=BC,E为BD的中点,所以CE⊥BD,(12分)因为AC∩CE=C,AC,CE⊂平面ACE,所以BD⊥平面ACE.(14分)7、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1) DE∥平面ABB1A1;(2) BC1⊥平面A1B1C.规范解答 (1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.(3分)又AB⊂平面ABB1A1,DE⊄平面ABB1A1,所以DE∥平面ABB1A1.(6分)(2)因为三棱柱ABCA1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.(8分)又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1=B1,所以A1B1⊥平面BCC1B1.(10分) 又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.(12分)又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C=B1,A1B1,B1C⊂平面A1B1C,所以BC1⊥平面A1B1C.(14分)。
2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .23.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 35.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( )A .甲B .乙C .丙D .丁6.已知奇函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=2x +b ,则f(20232)=( ) A .−1−√2B .1−√2C .√2+1D .√2−17.若sin(α+π6)=35,则sin(2α+5π6)=( ) A .−725B .−1625C .725D .16258.已知函数f (x )=x 3+ax 2+bx +c (a ,b ,c ∈R ),若不等式f (x )<0的解集为{x |x <m +1且x ≠m },则函数f (x )的极小值是( ) A .−14B .0C .−427D .−49二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为CC 1,A 1D 1的中点,则( ) A .BM ∥AD 1 B .AM ⊥BDC .B 1M ⊥平面ABND .MN ∥平面A 1BD10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<312.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|= . 14.写出一个同时满足下列两个性质的函数:f (x )= . ①f (x 1+x 2)=f (x 1)•f (x 2);②∀x ∈R ,f ′(x )<0.15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t 分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e −0.08t .研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待 分钟.(结果保留整数)(参考数据:ln 2≈0.7,ln 3≈1.1,ln 11≈2.4)16.在平面四边形ABCD 中,AB =AD =√2,BC =CD =1,BC ⊥CD ,将四边形沿BD 折起,使A ′C =√3,则四面体A ′﹣BCD 的外接球O 的表面积为 ;若点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得的截面中面积最小的圆的半径为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB.(1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长. 19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n﹣14na n a n+1,求数列{b n }的前n 项和S n .20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.21.(12分)如图,AB 是半球O 的直径,AB =4,M ,N 是底面半圆弧AB ̂上的两个三等分点,P 是半球面上一点,且∠PON =60°. (1)证明:PB ⊥平面P AM ;(2)若点P 在底面圆内的射影恰在ON 上,求直线PM 与平面P AB 所成角的正弦值.22.(12分)已知函数f(x)=1+lnx.x(1)讨论f(x)的单调性;(2)设a,b为两个不相等的实数,且ae b﹣be a=e a﹣e b,证明:e a+e b>2.2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}解:A ={x |x 2+x ﹣6=0}={﹣3,2},故A ∩B ={2}. 故选:B .2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .2解:(2+i )(1+ai )=2﹣a +(1+2a )i , 因为a ∈R ,且(2+i )(1+ai )为纯虚数, 所以{2−a =01+2a ≠0,解得a =2.故选:D .3.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =1,则f(x)=2x−12x +1,f(−x)=12x −112x +1=1−2x 1+2x =−2x−12x +1=−f(x),所以f (x )是奇函数; 若函数f(x)=2x−a2x +a在其定义域上为奇函数,可得f(−x)=12x −a 12x +a =1−a⋅2x 1+a⋅2x =−f(x)=−2x −a 2x +a =a−2x2x +a, 解得a =±1,∴a =1是函数f(x)=2x−a2x +a在其定义域上为奇函数的充分不必要条件.故选:A .4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 3解:根据题意,设圆台的上、下底面半径分别为3x ,2x , 因为母线长为10,且母线与底面所成的角为60°, 所以圆台的高为10sin60°=5√3,并且x =10×12=5,所以圆台的上底面半径为3x =15,下底面半径为2x =10,高为5√3. 由此可得圆台的体积为V =13π(152+102+15×10)×5√3=2375√3π3(cm 3). 故选:A .5.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( ) A .甲B .乙C .丙D .丁 解:对于甲,该f (x )图象的相邻两条对称轴之间的距离为T 2=πω=π2,则f (x )的周期T =π;对于乙,将函数y =cos2x −√3sin2x =2cos(2x +π3)的图象向右平移 π4个单位长度,得到y =2cos[2(x −π4)+π3]=2sin(2x +π3) 的图象;对于丙,函数f(x)在区间(−π12,π6)上单调递增;对于丁,函数f(x)满足f(π3+x)+f(π3−x)=0,即f(x)图象关于(π3,0)对称.因为只有乙的条件最具体,所以从乙入手,若乙正确,此时f(x)的单调递增区间为[−5π12+kπ,π12+kπ](k∈Z),与丙的结论矛盾,根据题设“只有一个命题是假命题”,可知这一个假命题只能是乙或丙,若丙是真命题,则甲、丙、丁三个是真命题,由f(x)图象关于(π3,0)对称,且周期为π,可知:在点(π3,0)的左侧且距离最近的f(x)图象的对称轴为x=π12,而π12∈(−π12,π6),说明f(x)在区间(−π12,π6)上不单调,与丙是真命题矛盾.若乙是真命题,则甲、乙、丁三个都是真命题,此时f(x)=2sin(2x+π3),最小正周期T=π,且图象关于(π3,0)对称,甲、乙、丁之间相符合.综上所述,丙不可能是真命题,即唯一的假命题是丙.故选C.6.已知奇函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=2x+b,则f(20232)=()A.−1−√2B.1−√2C.√2+1D.√2−1解:因为f(x)为奇函数,且当x∈[0,1]时,f(x)=2x+b,所以f(0)=1+b=0,解得:b=﹣1,即当x∈[0,1]时,f(x)=2x﹣1,又因为f(x)的图象关于直线x=1对称,所以f(x)=f(2﹣x),且f(x)=﹣f(﹣x)则f(x)=f(2﹣x)=﹣f(x﹣2)=﹣f[2﹣(x﹣2)]=﹣f(4﹣x)=f(x﹣4),即函数f(x)是以4为周期的周期函数,故f(20232)=f(252×4+72)=f(72−4)=f(−12)=−f(12)=1−√2.故选:B.7.若sin(α+π6)=35,则sin(2α+5π6)=()A.−725B.−1625C.725D.1625解:∵sin(α+π6)=35,∴sin(2α+5π6)=sin(2α+π3+π2)=cos(2α+π3)=1−2sin2(α+π6)=1−2×(35)2=725.故选:C.8.已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若不等式f(x)<0的解集为{x|x<m+1且x≠m},则函数f(x)的极小值是()A.−14B.0C.−427D.−49解:因为不等式f(x)<0的解集为{x|x<m+1且x≠m},所以f(m)=f(m+1)=0,且x=m为f(x)=0的二重根,所以f(x)=(x﹣m)2[x﹣(m+1)],则f′(x)=2(x﹣m)[x﹣(m+1)]+(x﹣m)2=(x﹣m)(3x﹣3m﹣2),则当x>3m+23或x<m时f′(x)>0,当m<x<3m+23时f′(x)<0,所以f(x)在(3m+23,+∞),(﹣∞,m)上单调递增,在(m,3m+23)上单调递减,所以f(x)在x=3m+23处取得极小值,即f(x)极小值=f(3m+23)=(3m+23−m)2[3m+23−(m+1)]=−427.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD﹣A1B1C1D1中,M,N分别为CC1,A1D1的中点,则()A.BM∥AD1B.AM⊥BDC.B1M⊥平面ABN D.MN∥平面A1BD解:对于选项A:连接BC1,则BC1∥AD1,又BC1∩BM=B,所以BM∥AD1不正确,故选项A不正确;对于选项B:在正方体中,BD⊥AA1,BD⊥AC且AA1∩AC=A,AA1⊂平面AA1C1C,AC⊂平面AA1C1C,所以BD⊥平面AA1C1C,又AM⊂平面AA1C1C,所以AM⊥BD,故选项B正确;对于选项C:在正方体中,AB⊥平面B1BCC1,又B1M⊂平面B1BCC1,所以AB⊥B1M,取B1C1的中点Q,连接BQ,在正方形BCC1B1中(如图),△BB1Q≅△B1C1M,∠BQB1=∠B1MC1,又∠B1MC1+∠MB1C1=90°,所以∠B1QB+∠MB1C1=90°,所以B1M⊥BQ,又在正方体中,AN∥BQ,所以B1M⊥AN,又AN∩AB=A,所以B1M⊥平面ABN,故选项C正确;对于选项D:取A1D的中点E,连接EN,EC,则EN∥AA1,且EN=1AA1,2所以EN∥MC,且EN=MC,故四边形NECM为平行四边形,则MN∥EC,又EC与平面A1BD相交于点E,所以MN不可能与平面A1BD平行,故选项D不正确.故选:BC .10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)解:选项A .当c =0时,a |c |>b |c |不成立,故选项A 不正确. 选项B .由b+c 2a+c 2−b a=(b+c 2)a−b(a+c 2)a(a+c 2)=c 2(a−b)a(a+c 2)>0,所以ba≤b+c 2a+c 2,故选项B 正确.选项C .由 a 2−b 2−(1a−1b)=(a −b)(a +b)−b−a ab =(a −b)(a +b +1ab)>0, 所以a 2−b 2>1a−1b,故选项C 不正确.选项D .由[√2(a 2+b 2)]2−(a +b)2=a 2+b 2−2ab =(a −b)2>0,所以a +b <√2(a 2+b 2),故选项D 正确. 故选:BD .11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<3解:依题意,a 4=4,a n a n+1=2n,a n =2na n+1,a n+1=2na n,所以a 3=23a 4=84=2,a 2=22a 3=42=2,a 1=21a 2=22=1,A 选现正确.所以a 3=a 2,所以B 选项错误. 由a n a n+1=2n 得a n+1a n+2=2n+1,两式相除得a n+2a n=2,所以数列{a n }的奇数项是首项为1,公比为2的等比数列;偶数项是首项为2,公比为2的等比数列.a 1+a 2+⋯+a 2023=(a 1+a 3+⋯+a 2023)+(a 2+a 4+⋯+a 2022)=1(1−21012)1−2+2(1−21011)1−2=21012−1+21012−2=21013−3,所以C 选项正确.由上述分析可知,数列{1a n}的奇数项是首项为1,公比为12的等比数列;偶数项是首项为12,公比为12的等比数列. 当n 为偶数时,1a 1+1a 2+⋯+1a n=(1a 1+1a 3+⋯+1a n−1)+(1a 2+1a 4+⋯+1a n),=1(1−12n 2)1−12+12(1−12n 2)1−12=3−32n 2<3;当n 为奇数时,1a 1+1a 2+⋯+1a n =(1a 1+1a 3+⋯+1a n)+(1a 2+1a 4+⋯+1a n−1),=1(1−12n+12)1−12+12(1−12n−12)1−12=3−22n+12−12n−12<3, 综上所述,1a 1+1a 2+⋯+1a n<3,所以D 选项正确.故选:ACD .12.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 解:f (x )=a 2x ﹣x (a >0,a ≠1),f ′(x )=2a 2x lna ﹣1,对于A :因为a 2x >0恒成立,所以当a ∈(0,1)时,f ′(x )<0,此时f (x )单调递减, 所以此时不存在极值点,A 错误;对于B :当a =e 时,f (x )=e 2x ﹣x ,令g (x )=f (x )﹣(lnx +2)=e 2x ﹣x ﹣lnx ﹣2, 下面先证明:e x ≥x +1和lnx ≤x ﹣1,令f 1(x)=e x −x −1,则f 1′(x)=e x −1>0⇒x >0,所以f 1(x )在(﹣∞,0)单调递减,在(0,+∞)单调递增,所以f 1(x )≥f 1(0)=0,所以e x ≥x +1,当且仅当x =0时,取到等号; 令f 2(x )=lnx ﹣x +1,则f 2′(x)=1x −1>0⇒0<x <1, 所以f 2(x )在(0,1)单调递增,在(1,+∞)单调递减,所以f 2(x )≤f 2(1)=0,所以lnx ≤x ﹣1,当且仅当x =1时,取到等号, 由上结论可得:e 2x ≥2x +1,﹣lnx ≥﹣x +1,因为不能同时取等,所以两式相加可得:e 2x ﹣lnx >x +2, 即e 2x ﹣lnx ﹣x ﹣2>0恒成立,即g (x )>0恒成立, 所以y =f (x )恒在曲线y =lnx +2上方,B 正确;对于C :函数f (x )有2个零点等价于方程a 2x ﹣x =0有两个根, 即a 2x =x ⇒lna 2x =lnx ⇒2xlna =lnx ⇒2lna =lnxx有两个根, 令ℎ(x)=lnxx ,则ℎ′(x)=1−lnxx 2<0⇒x >e , 所以h (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,所以ℎ(x)max =ℎ(e)=1e ,当x →0时,h (x )→﹣∞,当x →+∞时,h (x )→0, 所以要使得2lna =lnx x 有两个根,则2lna ∈(0,1e), 所以0<lna <12e⇒1<a <e 12e ,所以C 正确;对于D :设切点坐标为(x 0,a 2x 0−x 0),则k =f ′(x 0)=2a 2x 0lna −1,又因为切线经过点P (0,t ),所以k =a 2x 0−x 0−tx 0, 所以2a2x 0lna −1=a 2x 0−x 0−tx 0,解得t =a 2x 0−a 2x 0lna 2x 0,令m =a 2x 0,则m ∈(0,+∞),所以t =m ﹣mlnm , 因为过点P (0,t )存在2条直线与曲线y =f (x )相切, 所以方程t =m ﹣mlnm 有两个不同的解,令φ(m )=m ﹣mlnm ,则φ′(m )=﹣lnm >0⇒0<m <1, 所以φ(m )在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(m )max =φ(1)=1,当m →0时,φ(m )→0,当m →+∞时,φ(m )→﹣∞, 所以要使得方程t =m ﹣mlnm 有两个根,则t ∈(0,1),D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|=√52. 解:由于a →与b →共线,所以λ×2=1×(−1),λ=−12,a →=(−12,1),a →−b →=(−12,1)−(−1,2)=(12,−1), 所以|a →−b →|=√14+1=√52.故答案为:√52. 14.写出一个同时满足下列两个性质的函数:f (x )= a x (0<a <1)(答案不唯一) . ①f (x 1+x 2)=f (x 1)•f (x 2); ②∀x ∈R ,f ′(x )<0.解:由性质②,f(x)是R上的减函数,且满足性质①f(x1+x2)=f(x1)•f(x2),可以是指数函数,所以函数f(x)=a x(0<a<1)符合题意.故答案为:a x(0<a<1)(答案不唯一).15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e−0.08t.研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待5分钟.(结果保留整数)(参考数据:ln2≈0.7,ln3≈1.1,ln11≈2.4)解:由题意得,65=25+(85﹣25)e﹣0.08t,即e−0.08t=2 3,所以−0.08t=ln 23,解得t=−252×(ln2−ln3)≈252×(0.7−1.1)=5,所以大约需要等待5分钟.故答案为:5.16.在平面四边形ABCD中,AB=AD=√2,BC=CD=1,BC⊥CD,将四边形沿BD折起,使A′C=√3,则四面体A′﹣BCD的外接球O的表面积为3π;若点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的圆的半径为23.解:如图所示:因为AB=AD=√2,BC=CD=1,BC⊥CD,所以BE=CE=DE=√22,AE=√AD2−DE2=√(√2)2−(√22)2=√62,且AC⊥BD,点E为△BCD外接圆的圆心,所以四面体A′﹣BCD的外接球的球心O一定在过点E且垂直面BCD的直线上,如图不妨设GE⊥面BCD,A′F⊥面BCD,四面体A′﹣BCD的外接球的半径OE=ℎ,OB=R=√OE2+EB2=√ℎ2+12,FE=x,则由对称性可知点F也在直线CE上且A′F⊥FC,A′F=2OE=2h,由题意A ′E =AE =√62,FC =FE +EC =x +√22,A ′C =√3, 在Rt △A ′FE 中,有A ′F 2+FE 2=A ′E 2,即x 2+(2ℎ)2=32, 在Rt △A ′FC 中,有A ′F 2+FC 2=A ′C 2,即(x +√22)2+(2ℎ)2=3,联立以上两式解得x =√22,ℎ=12, 所以R =√ℎ2+12=√14+12=√32, 从而四面体A ′﹣BCD 的外接球O 的表面积为S =4πR 2=4π×(√32)2=3π;如图所示:由题意将上述第一空中的点E 用现在的点F 来代替,而现在的点E 为线段BD 的靠近点B 的三等分点, 此时过点E 作球O 的截面,若要所得的截面中面积最小,只需截面圆半径最小, 设球心到截面的距离为d ,截面半径为r ,则r =√R 2−d 2, 所以只需球心到截面的距离为d 最大即可,而当且仅当OE 与截面垂直时,球心到截面的距离为d 最大,即d max =OE , 由以上分析可知此时OO 1=FE =FB −BE =12BD −13BD =√26,OF =12,OE =√14+118=√116,R =√32,所以r =r min =√R 2−OE 2=√34−1136=23. 故答案为:3π;23.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.解:(1)f(x)=(1−2sin 2x)sin2x +12cos4x =cos2x sin2x +12cos4x=12(sin4x +cos4x )=√22sin (4x +π4), 当4x +π4=π2+2k π,k ∈Z ,即x =π16+kπ2,k ∈Z 时,函数取得最大值√22,此时{x |x =π16+kπ2,k ∈Z }; (2)因为g (x )=f (ωx )=√22sin (4ωx +π4),ω>0,若g (x )在区间 (0,π2) 上有且仅有1个极值点,则极值点只能为极大值, 根据五点作图法,令4ωx +π4=π2,则x =π16ω, 令4ωx +π4=3π2,则x =5π16ω,所以{π16ω<π25π16ω≥π2ω>0解得18<ω≤58,故ω的范围为(18,58].18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB . (1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长.解:(1)因为tan A +tan B =−√3cacosB ,所以sinA cosA +sinBcosB =−√3c acosB,由正弦定理得,sinAcosA +sinBcosB =−√3sinCsinAcosB ,因为sinAcosA+sinB cosB=sinAcosB+cosAsinB cosAcosB=sin(A+B)cosAcosB=sinC cosAcosB,所以sinCcosAcosB=−√3sinCsinAcosB,因为0<C <π,所以sin C ≠0, 又cos B ≠0,所以tan A =−√3, 因为0<A <π,所以A =2π3.(2)因为D 是边BC 的中点,所以BD =CD =12BC =72, 因为AD ⊥AB ,所以∠DAC =∠BAC ﹣∠BAD =2π3−π2=π6,在Rt △ABD 中,sin B =AD BD =AD 72=2AD7, 在△ACD 中,由正弦定理知,ADsinC=CD sin∠DAC,所以sin C =ADsin∠DAC CD=AD×1272=AD7, 在△ABC 中,由正弦定理知,bsinB=c sinC=a sin∠BAC=√32=√3,所以b2AD 7=cAD 7=√3,所以b =4AD 3,c =2AD3, 在△ABC 中,由余弦定理得,a 2=b 2+c 2﹣2bc cos A , 所以49=b 2+c 2﹣2bc ×cos 2π3,即b 2+c 2+bc =49, 所以(√3)2+(√3)23×3=49,解得AD =√212.19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n ﹣14na n a n+1,求数列{b n }的前n 项和S n .解:(1)因为a n+1n+1−a n n=1n(n+1)⇒a n+1n+1−a n n=1n−1n+1⇒a n+1+1n+1=a n +1n,所以{a n +1n }是常数列,所以a n +1n =a 1+11=2,所以a n =2n ﹣1. (2)b n =(−1)n−14na n a n+1=(−1)n−14n(2n−1)(2n+1)=(−1)n−1(12n−1+12n+1),当n 为偶数时,S n =(1+13)−(13+15)+⋯+(12n−3+12n−1)−(12n−1+12n+1)=1−12n+1=2n2n+1, 当n 为奇数时,S n =(1+13)−(15+12)+⋯−(12n−3+12n−1)+(12n−1+12n+1)=1+12n+1=2n+22n+1,所以S n =2n+1+(−1)n−12n+1.20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.解:(1)已知f (x )=ax ﹣a ﹣lnx ,函数定义域为(0,+∞),可得f′(x)=a−1x,此时f′(1)=a﹣1,又f(1)=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=(a﹣1)(x﹣1),即(a﹣1)x﹣y﹣a+1=0;(2)证明:当a=1时,f(x)=x﹣1﹣lnx,函数定义域为(0,+∞),可得f′(x)=1−1x=x−1x,当0<x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以当x=1时,函数f(x)取得极小值也是最小值,最小值f(1)=0,故f(x)≥0;(3)由(2)知lnx≤x﹣1,当且仅当x=1时,等号成立,令x=2n−13n+1,此时ln(1+2n−13n)<2n−13n,可得ln(1+13)+ln(1+232)+ln(1+2233)+⋯+ln(1+2n−13n)<13+232+⋯+2n−13n=13(1−2n3n)1−23=1−2n3n<1,即ln[(1+13)(1+232)(1+2233)⋯(1+2n−13n)]<1,所以(1+13)(1+232)(1+2233)⋯(1+2n−13n)<e,当n≥4时,(1+13)(1+232)(1+2233)⋯(1+2n−13n)≥(1+13)(1+232)(1+2233)(1+2334)=12139659049>2,所以对于任意n∈N*,(1+13)(1+232)(1+2233)⋯(1+2n−13n)<m成立时,整数m的最小值为3.21.(12分)如图,AB是半球O的直径,AB=4,M,N是底面半圆弧AB̂上的两个三等分点,P是半球面上一点,且∠PON=60°.(1)证明:PB⊥平面P AM;(2)若点P在底面圆内的射影恰在ON上,求直线PM与平面P AB所成角的正弦值.证明:(1)连接OM ,MN ,BM ,因为M ,N 是底面半圆弧AB ̂上的两个三等分点, 所以有∠MON =∠NOB =60°,又因为OM =ON =OB =2,所以△MON ,△NOB 都为正三角形,所以MN =NB =BO =OM ,即四边形OMNB 是菱形, 记ON 与BM 的交点为Q ,Q 为ON 和BM 的中点, 因为∠PON =60°,OP =ON , 所以三角形OPN 为正三角形, 所以PQ =√3=12BM ,所以PB ⊥PM ,因为P 是半球面上一点,AB 是半球O 的直径,所以PB ⊥P A , 因为PM ∩P A =P ,PM ,P A ⊂平面P AM , 所以PB ⊥平面P AM ;解:(2)因为点P 在底面圆内的射影恰在ON 上,由(1)知Q 为ON 的中点,△OPN 为正三角形,所以PQ ⊥ON , 所以PQ ⊥底面ABM ,因为四边形OMNB 是菱形,所以MB ⊥ON , 即MB 、ON 、PQ 两两互相垂直,以点Q 为坐标原点,QM ,QN ,QP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则O(0,−1,0),M(√3,0,0),B(−√3,0,0),N(0,1,0),A(√3,−2,0),P(0,0,√3), 所以PM →=(√3,0,−√3),OP →=(0,1,√3),OB →=(−√3,1,0),设平面P AB 的一个法向量为m →=(x ,y ,z), 则{m →⋅OP →=0m →⋅OB →=0,所以{y +√3z =0−√3x +y =0, 令x =1,则y =√3,z =﹣1,所以m →=(1,√3,−1), 设直线PM 与平面P AB 的所成角为θ, 所以sinθ=|cos〈PM →,m →〉|=3+36×5=√105,故直线PM 与平面P AB 所成角的正弦值为√105. 22.(12分)已知函数f(x)=1+lnxx. (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的实数,且ae b ﹣be a =e a ﹣e b ,证明:e a +e b >2. 解:(1)由f(x)=1+lnx x 得,f ′(x)=−lnxx2, 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0. 故f (x )的递增区间为(0,1),递减区间为(1,+∞). (2)将ae b ﹣be a =e a ﹣e b 变形为a+1e a=b+1e b .令e a =m ,e b =n ,则上式变为1+lnm m=1+lnnn,即有f (m )=f (n ),于是命题转换为证明:m +n >2.不妨设m <n ,由(1)知0<m <1,n >1. 要证m +n >2,即证n >2﹣m >1,由于f (x )在(1,+∞)上单调递减,故即证f (n )<f (2﹣m ), 由于f (m )=f (n ),故即证f (m )<f (2﹣m ), 即证f (m )﹣f (2﹣m )<0在0<m <1上恒成立. 令g (x )=f (x )﹣f (2﹣x ),x ∈(0,1),则g ′(x)=f ′(x)+f ′(2−x)=−lnx x 2−ln(2−x)(2−x)2=−(2−x)2lnx+x 2ln(2−x)x 2(2−x)2, =−(4−4x+x 2)lnx+x 2ln(2−x)x 2(2−x)2=−(4−4x)lnx+x 2ln[(2−x)x]x 2(2−x)2≥0,所以g (x )在区间(0,1)内单调递增, 所以g (x )<g (1)=0,即m +n >2成立. 所以e a +e b >2.。
2025届高三期初学业质量监测试卷数学注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}22,2,0,1,3A x x x B =>=−,则A B = ( )A. {}2,0,3−B. {}2,3−C. {}0,3D. {}3【答案】B 【解析】【分析】解一元二次不等式求出集合A ,然后由交集运算可得. 【详解】解不等式220x x −>,得()(),02,A ∞∞=−∪+, 所以{}2,3A B ∩=−. 故选:B2 已知命题:0,31x p x ∃>>,则p ¬:( ) A. 0,31x x ∃>≤ B. 0,31x x ∃≤>C. 0,31x x ∀>≤D. 0,31x x ∀>>【答案】C 【解析】【分析】利用存在题词命题的否定是全称量词命题,直接写出结论. 【详解】命题:0,31x p x ∃>>是存在量词命题,其否定是全称量词命题, 所以p ¬:0,31x x ∀>≤. 故选:C.3. 函数e ,e ln ln ,e ln x x xxy x x−−− ≥= < 在区间()0,+∞上( ) A. 单调递增 B. 单调递减C. 先增后减D. 先减后增【答案】D 【解析】【分析】利用指数函数和对数函数的单调性求解即可.【详解】e ,e ln ln ,e ln x x x x y x x−−− ≥= < ,即{}maxe ,ln xy x −=, 设()e ln xf x x −=−,则()f x 单调递减,且()1,10ef −>=()3ln 3e 0,3f −<=−故存在唯一一个()01,3x ∈使()00,f x = 故在()00,x 上,()eln 0xf x x −=−>,此时{}maxe ,ln e xx y x −−=单调递减; 在()0,x +∞上,()eln 0xf x x −=−<,此时{}maxe ,l l n n xyx x −=单调递增;故e ,e ln ln ,e ln x x xx y x x −−− ≥= <在区间()0,+∞上先减后增. 故选:D4. 已知函数()()211f x x =−−,则( ) A. ()()11f x f x −=− B. ()()11f x f x −=+C. ()()11f x f x +=−D. ()()11f x f x +=−− 【答案】C 【解析】【分析】根据解析式代入验证即可. 【详解】因()()()2212111f x x f x x −−−≠−−,而()()2111f x f x x +=+=−,所以ff (1+xx )=ff (1−xx ). 故选:C5. 已知235m n==,则4mn =( )A.B. 6C. 8D. 9为【答案】D 【解析】【分析】根据题意,利用对数的运算法则,求得2log 3mn=,结合指数幂与对数的运算法则,即可求解. 【详解】由235m n ==,可得23log 5,log 5m n ==,则222232log 5log 5log 3log 5log 5log 3m n===, 则222lo g 3g 23lo 4422log 99mn====. 故选:D6. 设,b c ∈R ,函数()f x x c =++,则“关于x 的不等式20x bx c ++>的解集为R ”是“()0f x >恒成立”的( )条件 A. 充分不必要 B. 必要不充分C. 充分必要D. 不充分不必要【答案】A 【解析】【分析】由二次函数的性质确定不等式和函数成立的条件,再由充分必要条件得出结果即可; 【详解】因为关于x 的不等式20x bx c ++>的解集为R ,则240b c =−< , 可得()20f x x c c =+=++>恒成立,故充分性成立;取3,2b c ==,满足()0f x >恒成立, 但2320x x ++>的解集为()(),21,−∞−∪−+∞,故必要性不成立;所以“关于x 的不等式20x bx c ++>的解集为R ”是“()0f x >恒成立”的充分不必要条件. 故选:A.7. 已知直线y ax b =+与曲线1y x x=+相切,则2a b +的最大值为( ) A.12B. 2C.52D. 5【答案】C 【解析】【分析】设切点切点横坐标为()0m m ≠,由题意列出,,a b m 的关系,进而得到2a b +,再由二次函数求最值即可..【详解】设切点横坐标为()0m m ≠,求导:1y x x =+得'211y x=−, 由题意可得2111a m am b m m=−+=+解得:2112a m b m =− = , 所以222211522222a b m m m +=−++=−−+ ,所以2m =时,2a b +的最大值为52. 故选:C8. 若函数()1f x x x a =−−的3个零点由小到大排列成等差数列,则a =( ) A. 2B.C.D.【答案】D 【解析】【分析】将问题转化为y x a =−和()10yx x=>的交点,结合函数图象以及一元二次方程的根可得3x =,12x x . 【详解】令()10f x x x a =−−=可得()10x a x x−=>, 在同一直角坐系中作出yx a =−和()10yx x=>的图象如下:要使()1f x x x a =−−有3个零点,则0a >, 由图可知:1x a x =−有一个零点3x ,1x a x=−+有2个零点12,x x ,且12x x <, 即210x ax −−=有一个零点3x ,210x ax −+=有2个零点12,x x ,且12x x <故3x =,12x x , 由于1322x x x +=2,,平方解得a =±, 由于0a >,故a =, 故选:D【点睛】方法点睛:判断函数yy =ff (xx )零点个数的常用方法:(1) 直接法: 令()0,f x =则方程实根的个数就是函数零点的个数;(2) 零点存在性定理法:判断函数在区间[],a b 上是连续不断的曲线,且()()·0,f a f b <再结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;(3) 数形结合法:转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,在一个区间上单调的函数在该区间内至多只有一个零点,在确定函数零点的唯一性时往往要利用函数的单调性,确定函数零点所在区间主要利用函数零点存在定理,有时可结合函数的图象辅助解题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列曲线平移后可得到曲线2x y =的是( ) A. 32x y += B. 23xy =−C. 32xy =D. 23xy =【答案】ABD 【解析】【分析】根据图像的平移变换可判断ABD ,根据图像的伸缩变换可判断C.详解】对于A ,曲线32x y +=向右平移3个单位可得到曲线2x y =,故A 正确; 对于B ,曲线23x y =−向上平移3个单位可得到曲线2x y =,故B 正确; 对于C ,曲线32x y =横坐标伸长为原来的3倍可得到曲线2x y =,故C 错误;【对于D ,曲线22log 3log 322232x x x y −===,向左平移2log 3个单位可得到曲线2x y =,故D 正确; 故选:ABD10. 一般认为,教室的窗户面积应小于地面面积,但窗户面积与地面面积之比应不小于15%,且这个比值越大,通风效果越好.( )A. 若教室的窗户面积与地面面积之和为2200m ,则窗户面积至少应该为230mB. 若窗户面积和地面面积都增加原来的10%,则教室通风效果不变C. 若窗户面积和地面面积都增加相同的面积,则教室的通风效果变好D. 若窗户面积第一次增加了m %,第二次增加了%n ,地面面积两次都增加了%2m n+,则教室的通风效果变差 【答案】BC 【解析】【分析】设该公寓窗户面积为x ,依题意列出不等式组求解可判断A ;记窗户面积为a 和地板面积为b ,同时根据B ,C ,D 设增加的面积,表示出增加面积前后的比值作差比较即可判断B ,C ,D. 【详解】对于A ,设该公寓窗户面积为x ,则地板面积为200x −,依题意有15%200200xxx x≥− <−100x ≤<, 所以,这所公寓的窗户面积至少为2600m 23,故A 错误; 对于B ,记窗户面积为a 和地板面积为b ,同时窗户增加的面积为10%a ⋅,同时地板增加的面积为10%b ⋅,由题可知增加面积前后窗户面积与地板面积的比分别为()()110%10%,10%110%a a a a a b b b b b++⋅==+⋅+, 所以公寓采光效果不变,故B 正确;对于C ,记窗户面积为a 和地板面积为b ,同时增加的面积为c .由题可知,0,0a b c <<>,增加面积前后窗户面积与地板面积的比分别为,a a c b b c++, 因为()()()()()b ac a b c c b a a c a b c b b b c b b c +−+−+−==+++,且0,0,0a b c b a <<>−>, 所以0a c ab c b+−>+,即a c abc b +>+,所以,同时增加相同的窗户面积和地板面积,公寓的采光效果变好了, 故C 正确;对于D ,记窗户面积为a 和地板面积为b ,则窗户增加后的面积为()()1%1%n m a ++⋅,地板增加后的面积为21%2m n b + +⋅,由题可知增加面积前后窗户面积与地板面积的比分别为()()21%1%,1%2n m aa b m n b ++⋅++⋅, 因为()()()()221%1%1%%%%1%1%%%22n m n m m n m n m n n m +++++=++++++,又因为0,0,2m n m n +>>≥2%%%2m n m n + ≥, 因为()()()()221%1%1%%%%11%1%%%22n m n m m n m n m n n m +++++=≤++++++,所以()()21%1%1%2n m a ab m n b ++⋅≤+ +⋅ , 当m n =时()()21%1%1%2n m a ab m n b ++⋅=++⋅,采光效果不变,所以无法判断公寓的采光效果是否变差了, 故D 错误. 故选:BC.11. 设函数()f x 的定义域关于原点对称,且()f x 不恒为0,下列结论正确的是( ) A. 若()f x 具有奇偶性,则满足()()()f x p x q x =+的奇函数()p x 与偶函数()q x 中恰有一个为常函数,其函数值为0B. 若()f x 不具有奇偶性,则满足()()()f x p x q x =+奇函数()p x 与偶函数()q x 不存在C. 若()f x 为奇函数,则满足()()()f x p x q x =奇函数()p x 与偶函数()q x 存在无数对D. 若()f x 为偶函数,则满足()()()f x q p x =的奇函数()p x 与偶函数()q x 存在无数对 【答案】ACD 【解析】【分析】利用奇偶性的定义即可判断A 选项;通过举例()2f x x x =+,即可判断B 选项;通过构造的()()11p x f x n =+,()1,q x n =+即可判断C 选项;通过构造()121n p x x +=()()21,n q x f x +=即可判断D 选项.【详解】对于A ,()()()f x p x q x =+,则()()()()()f x p x q x p x q x −=−+−=−+,当()f x 为奇函数时,则()()()20f x f x q x +−==,即()0q x =; 当()f x 为偶函数时,则()()()20f x f x p x −−==,即()0p x =, 即满足()()()f x p x q x =+的奇函数()p x 与偶函数()q x 中恰有一个为常函数,其函数值为0,故A 正确;对于B ,当()2f x x x =+,()2,()p x x q x x ==时,()f x 不具有奇偶性, 满足()()()f x p x q x =+的奇函数()p x 与偶函数()q x 存在,故B 错误;对于C ,()f x 为奇函数时,令奇函数()()1,N 1p x f x n n =∈+,偶函数()1,N q x n n =+∈,则()()()p x q x f x =,N n ∈ ,故存在无数对奇函数()p x 与偶函数()q x ,满足()()()f x p x q x =.故C 正确;对于D ,()f x 为偶函数,令奇函数()121,N n p x xn +=∈,偶函数()()21,N n q x f x n +=∈,则()()()121n q p x q x f x +==,N n ∈ ,故存在无数对奇函数()p x 与偶函数()q x ,满足()()()f x q p x =.故D 正确.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12. 设函数()f x 的图象上任意两点处的切线都不相同,则满足题设的一个()f x =______. 【答案】2x (答案不唯一) 【解析】【分析】只需要函数在不同点处的切线斜率不同即可. 【详解】设()2f x x =,则()2f x x ′=.在()2f x x =上任取一点()200,x x ,则函数在该点处的切线方程为:()2002y x x x x −=−即2002y x x x =−.只要0x 不同,切线方程就不同. 故答案为:2x (答案不唯一)13. 已知矩形()ABCD AB AD >的周长为24,将ABC 沿AC 向ADC △折叠,AB 折过去后与DC 交于点P .设AB x =,则DP =______________(用x 表示),当ADP △的面积最大时,x =______________.【答案】 ①. 1272x x−. ②. 【解析】【分析】结合图形,折叠后易得ADP CB P ′≅ ,设DPB P y ′==,利用Rt B PC ′ ,即可求得DP 的表示式;依题意,求出ADP △的面积表示式,利用基本不等式即可求得面积最大值,从而得到此时x 的值.【详解】如图2是图1沿着AC 折叠后的图形,因AB x =,则12AD x =−,因矩形()ABCD AB AD >的周长为24,则612x <<,对折后12AD B C x ′==−,易得ADP CB P ′≅ ,设DPB P y ′==,则CP x y =−,在Rt B PC ′ 中,由勾股定理,222()(12)x y y x −=+−,整理得1272x y x −=,即DP =ADP △的面积为1127272(12)6()1082x S x x x x−=⋅−⋅=−++,因612x <<,则当且仅当72x x=时,72x x +≥此时x =时,max 6108108S =−×+=−.故答案为:1272x x−;14. 已知a 为常数,且0a >.定义在R 上的函数()f x 满足:()()()3f x a f x f x a +≤≤+,且当0x a ≤≤时,()2f x ax x =−,则a =______________. 【答案】1 【解析】【分析】根据题意,先求出()300,()f f a a a ==−,再赋值得到()303a a f a −≤≤,将(3)f a 转化为()3(3)2()f a f a f a a a ≤≤=−,运用不等式传递性,得到330a a a a −≤≤−.式子恒成立.只能30a a −=.解方程即可.【详解】0x a ≤≤时,()2f x ax x =−,则()300,()f f a a a ==−. 0a >.定义在RR 上的函数()f x 满足:()()()3f x a f x f x a +≤≤+.令0x =,得到()()()03f a f f a ≤≤,即()303a a f a −≤≤.由于()()3(3)22()()f a f a a f a f a a f a a a =+≤=+≤=−,则330a a a a −≤≤−.则要使得式子恒成立,则30a a −=,解得0,a =或1,a =或者1a =−. 由于0a >.则1a =. 故答案为:1.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 如图,在三棱柱111ABC A B C −中,1B B ⊥平面1,90,1ABC ABC AB BC BB ∠=°===,E ,F ,G 分别是棱AB ,BC ,1BB 上的动点,且1AEBF B G ==.(1)求证:11A F C G ⊥;(2)若平面1EGC 与平面11AA B B 的夹角的余弦值为13,求BF . 【答案】(1)证明过程见解析 (2)12【解析】【分析】(1)证明线线垂直,建立空间直角坐标系,写出点的坐标,计算出110A F C G ⋅=,得到垂直关系;(2)在(1)的基础上,得到10A F EG ⋅=,故1A F EG ⊥,从而得到线面垂直,故()11,1,A F m =−− 为平面1EGC 的一个法向量,结合平面11AA B B 的法向量,利用向量夹角余弦公式得到方程,求出m ,从而求出BF .【小问1详解】因为1B B ⊥平面ABC ,,AB BC ⊂平面ABC , 所以1B B AB ⊥,1B B BC ,又90ABC ∠=°,故1,,B B AB BC 两两垂直,以B 为坐标原点,1,,BA BB BC 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为11AB BC BB ===,1AE BF B G ==,设1AE BF B G m ===,01m ≤≤, 所以()()()()111,1,0,0,0,,0,1,1,0,1,0A F m C G m −,则()()()()()()110,0,1,1,01,1,,0,1,00,1,10,,1A F m m C G m m =−=−−=−−=−− , 则()()111,1,0,,10A F C G m m m m ⋅=−−⋅−−=−=, 故11A F C G ⊥;【小问2详解】()1,0,0E m −,则()()()0,1,01,0,01,1,0EG m m m m =−−−=−−,则()()11,1,1,1,0110A F EG m m m m m ⋅=−−⋅−−=−+−=,则1A F EG ⊥,又1C G EG G ∩=,1,C G EG ⊂平面1EGC , 所以1A F ⊥平面1EGC ,故()11,1,A F m =−−为平面1EGC 的一个法向量,又平面11AA B B 的法向量为()0,0,1n =, 则平面1EGC 与平面11AA B B 的夹角的余弦值为1cos A F ,又平面1EGC 与平面11AA B B 的夹角的余弦值为13, 13=,解得12m =,故12BF =. 16. 某学习小组研究得到以下两个公式:①22sin()sin()sin sin αβαβαβ+⋅−=−;②22sin()sin()cos cos αβαββα+⋅−=−.(1)请你在①和②中任选一个进行证明;(2)在ABC 中,已知4sin sin()sin sin(),cos ,25C A BB C A A BC −=−==,求ABC 的面积. 【答案】(1)证明见解析 (2)34【解析】【分析】(1)若选①,利用两角和差的正弦公式及同角之间的关系即可证明; 若选②,利用两角和差的正弦公式及同角之间的关系即可证明;(2)利用两角和差的正弦公式及正弦定理可得22cos a bc A =,再利用面积公式求解. 【小问1详解】 若选①,证明如下:()()sin()sin()sin cos cos sin sin cos cos sin αβαβαβαβαβαβ+⋅−=+−()()22222222sin cos cos sinsin 1sin 1sin sin αβαβαβαβ−=−−− 22sin sin αβ−若选②,证明如下:()()sin()sin()sin cos cos sin sin cos cos sin αβαβαβαβαβαβ+⋅−=+−()()22222222sin cos cos sin 1cos cos cos 1cos αβαβαβαβ=−=−−−22cos cos βα−【小问2详解】由已知sin sin()sin sin()C AB BC A −=−可得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A −=− 即()sin sin cos cos sin 2sin sin cos A C B C B B C A +=即()2sin sin 2sin sin cos sin 2sin sin cos A C B B C A A B C A +=⇒= 由正弦定理可得22cos a bc A =又()4cos ,2,0,5ABC a A π===∈,所以53,sin 25bc A ==, 所以ABC 的面积11533sin 22254S bc A ==××=17. 分别过椭圆22:143x y C +=的左、右焦点,F F ₁₁作两条平行直线,与C 在x 轴上方的曲线分别交于点,P Q .(1)当P 为C 的上顶点时,求直线PQ 的斜率; (2)求四边形12PF F Q 的面积的最大值.【答案】(1)(2)3 【解析】【分析】(1)结合图形,易得P ,求得1PF 的斜率,由直线2QF 与椭圆的方程联立,求得点8(5Q ,即得直线PQ 的斜率;(2)结合图形,由对称性可知,四边形PRSQ 是平行四边形,四边形12PF F Q 的面积是PRSQ 面积的一半,设直线PR 的方程,并与椭圆方程联立,写出韦达定理,求出||PR 和点2F 到直线:10l x my −+=的距离d ,得到四边形12PF F Q 的面积函数式,利用换元和对勾函数的单调性即可求得面积的最大值. 【小问1详解】由22:143x y C +=可知12(1,0),(1,0)F F −,椭圆上顶点为,即P ,直线1PF 2QF 的方程为:1)yx =−,将其代入22:143x y C +=整理得,2580x x -=,解得,0x =或85x =,因点Q 在x 轴上方,故得点8(5Q ,于是直线PQ的斜率为:PQ k ==; 【小问2详解】如图,设过点,F F ₁₁的两条平行线分别交椭圆于点,P R 和,Q S , 利用对称性可知,四边形PRSQ 是平行四边形,且四边形12PF F Q 的面积是PRSQ 面积的一半.显然这两条平行线的斜率不可能是0(否则不能构成构成四边形),可设直线PR 的方程为:1,l x my =− 代入22:143x y C +=,整理得:22(34)690m y my +−−=,显然0∆>, 设1122(,),(,)P x y R x y ,则122122634934m y y m y y m+= + =−+,于是,||PR2212(1)34m m +=+, 点2F 到直线:10l x my −+=的距离为d =则四边形12PF F Q的面积为221112(1)||2234m S PR d m +=⋅=×=+令t1t ≥,且221m t =−,代入得,2212121213(1)4313t t St t t t==−+++,因函数1133()3y t t t t=+=+在[1,)+∞上单调递增,故,当1t =时,13yt t =+取得最小值为4,此时max 3S =.18. 已知红方、蓝方发射炮弹攻击对方目标击中的概率均为23,红方、蓝方空中拦截对方炮弹成功的概率分别为11,24.现红方、蓝方进行模拟对抗训练,每次由一方先发射一枚炮弹攻击对方目标,另一方再进行空中拦截,轮流进行,各攻击对方目标一次为1轮对抗.经过数轮对抗后,当一方比另一方多击中对方目标两次时,训练结束.假定红方、蓝方互不影响,各轮结果也互不影响.记在1轮对抗中,红方击中蓝方目标为事件A ,蓝方击中红方目标为事件B .求: (1)概率()(),P A P B ;(2)经过1轮对抗,红方与蓝方击中对方目标次数之差X 的概率分布及数学期望; (3)在4轮对抗后训练结束的条件下,红方比蓝方多击中对方目标两次的概率. 【答案】(1)1()2P A =,1()3P B = (2)分布列见解析,()16E X =(3)31162【解析】【分析】(1)根据概率的乘法公式即可求出()(),P A P B ; (2)求出X 的可能取值范围及对应的概率,求出()E X ; (3)分蓝方击中0、1和2次三种情况讨论. 【小问1详解】22()3314P A =×=,211()323P B =×=;【小问2详解】X 的可能取值为1,0,1−,因为612131)1(P X ×−===,112132321(0)2P X +=×=×=,31211)3(2P X ×===,所以分布列为:X 1− 0 1所以111()0636E X =−++=; 【小问3详解】若蓝方击中0次,则红方比蓝方多击中对方目标两次的概率为422242112()C ()()32227=,若蓝方击中1次,则红方比蓝方多击中对方目标两次的概率为133********C ()()C ()()332281=, 若蓝方击中2次,则红方比蓝方多击中对方目标两次的概率为222441211C ()()()33254=, 所以红方比蓝方多击中对方目标两次的概率为28131278154162++=. 19. (1)函数2x y =与2log y x =的图象有怎样的关系?请证明;(2)是否存在正数c ,对任意的x c >,总有222log xx x >>?若存在,求c 的最小值;若不存在,请说明理由;(3)已知常数1a >,证明:当x 足够大时,总有log x a a a x x >>.【答案】(1)关于直线y x =对称,证明见解析;(2)存在,min 4c =;(3)证明见解析. 【解析】【分析】(1)利用互为反函数的性质判断并证明.(2)由22x y x =−零点,可得min 4c =,再构造函数,利用导数证明4x >时不等式恒成立. (3)根据给定条件,等价变形不等式,构造函数,利用导数,结合零点存在性定理推理即得. 【详解】(1)函数2x y =与2log y x =互为反函数,它们的图象关于直线y x =对称,令(,)a b 为函数2x y =图象上任意一点,即2a b =,则2log a b =,因此点(,)b a 在函数2log y x =的图象上,反之亦然,而点(,)a b 与(,)b a 关于直线y x =对称, 所以函数2x y =与2log y x =的图象关于直线y x =对称.(2)存在正数4c =,对任意的4x >,222log xx x >>恒成立, 令()22xf x x =−,显然()()240f f ==,根据指数函数与幂函数的增长特征,在()2,4x ∈上恒有()0f x <,当4x >时,求导得()2ln 22x f x x ′=−,令()2ln 22,4x F x x x −>,求导得2()2(ln 2)2x F x ′=−,函数()F x ′在(4,)+∞上单调递增,2()(4)(4ln 2)20F x F ′′>=−>, 函数()F x 在(4,)+∞上单调递增,(4)16ln 288(ln 41)0F =−=−>,函数()f x 在(4,)+∞上单调递增,因此(4,)x ∀∈+∞,()(4)0f x f >=; 令22()log ,4x x x x ϕ=−>,求导得1()2ln 2x x x ϕ′=−,函数()x ϕ′在(4,)+∞上单调递增, 1()(4)804ln 2x ϕϕ′′>=−>,因此函数()ϕx 在(4,)+∞上单调递增,()(4)140x ϕϕ>=>, 所以存在正数c ,对任意的x c >,总有222log x x x >>,min 4c =.(3)1a >,不妨令1x >,则不等式ln ln ln ln x ax aa x x a a x x a>⇔>⇔<, 令ln ln (),1x a g x x x a=−>,求导得21ln ()xg x x −′=,当1e x <<时,()0g x ′>;当e x >,()0g x ′< 函数()g x 在(1,e)上单调递增;在(e,)+∞上单调递减,当e a ≥时,(,)x a ∀∈+∞,()()0g x g a <=, 当1e a <<时,由()0g a =,得是函数()g x 的一个零点, 又1ln (e)0e a g a =−>,而x 趋近于正无穷大时,ln ln x ax a−趋近于ln 0a a −<, 因此存在大于e 的正数0x ,使得0()0g x =,当0x x >时,0()()0g x g x <=, 所以对于1a >,存在正数0x ,使得0x x ∀>,恒有x a a x >;1a >,不妨令1x >,log 0a x t =>,不等式ln log ln 0a at a tx x a t a a t>⇔>⇔−<, 令l (n )ln ta a t th −=,则函数()h t 在(0,e)上单调递增;在(e,)+∞上单调递减,max1l ()(en e)a a h t h =−=,令()ln ,1H a a a a =>,求导得()1ln 0H a a ′=+>,函数()H a 在(1,)+∞上单调递增,值域为(0,)+∞,存在01a >,使得01()e H a =,当0a a ≥,即e1ln a a ≥时,(e,)t ∀∈+∞,()0h t <恒成立,当01a a <<,即e 10ln a a <<时,函数l (n )ln ta a t th −=有两个零点1212,(1e )t t t t <<<, 对于2(,)t t ∀∈+∞,()0h t <恒成立,因此对于1a >,存在正数2t ,使得2x t ∀>,log a a x x >恒成立, 取02max{,}M x t =,对于任意的x M >,log x a a a x x >>成立, 所以当x 足够大时,总有log x a a a x x >>.【点睛】思路点睛:函数不等式证明问题,将所证不等式等价转化,构造新函数,再借助函数的单调性、极(最)值问题处理.。
06不等式多选题1.【山东省菏泽一中2019 2020学年高三3月线上模拟】已知1a >,01c b <<<,下列不等式成立的是( ) A .b c a a > B .c c ab b a+>+ C .log log b c a a <D .b cb ac a>++ 【答案】ACD【解析】对于A :由1a >,01c b <<<,可得b c a a >,故A 正确; 对于B :由1a >,01c b <<<,c c a bb a +-+ 可得()()()0a c b cb ca bc ba b b a b b a -+--==<++ ,c c ab b a +<+ ,故B 错误;对于C :由1a >,01c b <<<,1log log b a a b =,1log log ca a c=,则log log 0a a c b <<,则110log log a a b c<<,可得log log b c a a <,故C 正确;对于D :由1a >,01c b <<<,()()()()()0a b c b c bc ba cb cab ac a b a c a b a c a -+---==>++++++可得b cb ac a>++,故D 正确. 故选:ACD .2.【山东省济南外国语2019-2020学年高三寒假综合测试三月份在线考试】下列结论正确的是( )A .x R ∀∈,12x x+≥B .若0a b <<,则3311a b ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .若()20x x -<,则()2log 0,1x ∈D .若0a >,0b >,1a b +≤,则104ab <≤ 【答案】BD【解析】对于A :当0x <时,1x x+为负数,所以A 不正确; 对于B :若0a b <<,则110b a<<,考虑函数3()f x x =在R 上单调递增,所以11()()f f a b >,即3311()()a b>,所以B 正确; 对于C :若()20x x -<,则02x <<,2log (,1)x ∈-∞,所以C 不正确;对于D :若0a >,0b >,1a b +≤21,0()224a b a b ab ++≤<≤=所以D 正确. 故选:BD .3.【百师联盟2019-2020学年高三上学期期中联考】下列命题中不正确...的是( ) A .设m 为直线,,αβ为平面,且m α⊥;则“//m β”是“αβ⊥”的充要条件 B .设随机变量1)0(N ζ,,若()3P p ζ≥=,则()1302P p ζ-<<=- C .若不等式922x m x+≥+(0x >)恒成立,则m 的取值范围是(,2)-∞ D .已知直线2ax by +=经过点(1)3,,则28a b +的取值范围是[4)+∞, 【答案】AC【解析】A 选项,如图所示:αβ⊥,m α⊥,m β⊂,不一定//m β,因此不是充要条件,故A 错误.B 选项,对称轴为0x =,由对称性可知:121(30)22p P p ζ--<<==-.故B 正确. C 选项,由996x x x x+≥=,可得622m ≥+,所以m 的范围为(]2-∞,,故C 不正确. 选项D ,由直线2ax by +=经过点(1,3),可得32a b +=,则328228224a b a b a b ++≥==,当且仅当31a b ==等号成立, 所以取值范围是[4,)+∞, 故D 正确. 故选:AC4.【江苏省海安高级中学2019-2020学年高三上学期12月月考】下列结论正确的是( )A .若22a b >,则11a b< B .若0x >,则44x x+≥ C .若0a b >>,则lg lg a b > D .若0ab >,1a b +=,则114a b+≥ 【答案】BCD【解析】对于A ,若22a b >,则a b >,当2a =,1b =-时,11a b<不成立,故A 错;对于B ,由0x >,则44x x +≥=,当且仅当2x =取等号,故B 正确; 对于C ,由lg y x =为单调递增函数,由0a b >>,则lg lg a b >,故C 正确;对于D ,由0ab >,1a b +=,则()111124b a a b a b a b ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当12a b ==时取等号,故D 正确; 故选:BCD5.【江苏省徐州市2019-2020学年高三上学期期中】给出下面四个推断,其中正确的为( ).A .若,(0,)a b ∈+∞,则2b aa b+;B .若,(0,)x y ∈+∞则lg lg 2lg lg x y x +⋅C .若a ∈R ,0a ≠,则44a a+; D .若,x y ∈R ,0xy <,则2x yy x+≤-. 【答案】AD【解析】对于选项A ,因为,(0,)a b ∈+∞,则22b a b aa b a b+⨯=,当且仅当b a a b =,即a b =时取等号,即选项A 正确;对于选项B ,当,(0,1)x y ∈时,lg ,lg (,0)x y ∈-∞,lg lg 2lg lg x y x +⋅B 错误;对于选项C ,当0a <时,44a a+显然不成立,即选项C 错误;对于选项D ,0xy <,则0,0y x x y ->->,则[()()]2x y x y y x y x +=--+-≤-=-,当且仅当()()xy y x-=-,即x y =-时取等号,即选项D 正确, 即四个推段中正确的为AD , 故选:AD.6.【山东省滨州市三校联考2019-2020学年高三上学期期中】设11a b >>>-,0b ≠,则下列不等式中恒成立的是( ) A .11a b< B .11a b> C .2a b > D .22a b >【答案】CD【解析】当12,2a b ==-,满足条件.但11a b <不成立,故A 错误,当0a b >>时,11a b <,故B错误,11,0b b >>-≠,201b ∴<<,则2a b >,故C 正确,11,0,0a b a b a b >>>-∴+>->,22()()0a b a b a b ∴-=+->,故D 正确.故选:CD .7.【山东省德州市2019-2020学年高三上学期期中】对于实数a 、b 、c ,下列命题中正确的是( )A .若a b >,则ac bc <;B .若0a b <<,则22a ab b >>C .若0c a b >>>,则a b c a c b>-- D .若a b >,11a b >,则0a >,0b <【答案】BCD【解析】若0c >,则由a b >得ac bc >,A 错;若0a b <<,则2a ab >,2ab b > 22a ab b >>,B 正确;若0c a b >>>,则0c b c a ->->,∴110c a c b>>--,∴a b c a c b >--,C 正确; 若a b >,且,a b 同号时,则有11a b <,因此由11,a b a b>>得0,0a b ><,D 正确.故选:BCD .8.【山东省烟台市2019-2020学年高三上学期期中】下列结论正确的是( )A .若0,0a b c d >><<,则一定有b ac d> B .若0x y >>,且1xy=,则()21log 2xyx x y y +>>+C .设{}n a 是等差数列,若210a a >>,则2a >D .若[)0,x ∈+∞,则()21ln 18x x x +≥- 【答案】AC【解析】选项A ,由0c d <<,可得0c d ->->,则110d c->->,又0a b >>,所以a b d c ->-,则b ac d>,故A 正确. 选项B ,取12,2x y ==,则221154,,log ()log 1282x y x x y y +==+=>,不等式不成立,故B 不正确.选项C ,由题意得1322a a a +=且13a a ≠,所以21311=()22a a a +>⨯=C 正确. 选项D ,设21()ln(1)8h x x x x =+-+,则1(3)()1144(1)x x x h x x x -'=-+=++,当03x <<时,()0h x '<,则()h x 单调递减,()(0)0h x h <=,故D 不正确. 故选:AC.9.【山东省枣庄市第三中学2010-2020学年高三上学期10月学情调查】如下的四个命题中真命题的标号为( )A .已知实数a ,b ,c 满足2743b c a a +=-+,254c b a a -=-+,则c b a >>B .若22ππαβ-<<<,则αβ-的取值范围是(),ππ-C .如果ln 33a =,ln 44b =,ln 55c =,那么c b a << D .若0a b <<,则不等式11b b a a +<+一定成立 【答案】ABCD【解析】对A ,由2245(2)10c b a a a -=-++=->,c b ∴>.再由2347b c a a +=-+①,245c b a a -=-+②,-①②得:2222b a =+,即21b a =+.22131()24a a a +-=-+,21b a a ∴=+>,c b a ∴>>,故A 正确;对B ,22ππβ-<<,22ππβ∴-<-<,παβπ∴-<-<,故B 正确;对C ,由ln x y x =,则'21ln x y x-=,当x e >时,1ln 0x -<,∴ln x y x =在(,)e +∞上单调递减,345e <<<,ln 3ln 4ln 5345∴>>,c b a ∴<<,故C 正确; 对D ,要证不等式11b b a a +<+成立,等价于证明(1)(1)a b a b +⋅<⋅+b a ⇔<,0a b <<,||||b a ∴<显然成立,故D 正确.故选ABCD .10.【2019年山东省济南市外国语学校高三9月阶段测试】已知a ,b 为正实数,则下列命题正确的是()A .若221a b -=,则1a b -<B .若111b a-=,则1a b -<C .若1a b e e -=,则1a b -<D .若ln ln 1a b -=,则1a b -<【答案】AC 【解析】对于A :221a b -=时,()()1a b a b -+=⋅.0,0a b >>,0a b a b ∴<-<+,11a b a b∴-=<+,故A 正确; 对于B :111b a-=时,不妨取33,4a b ==满足条件,则914a b -=>,所以B 错误.对于C :由1a b e e -=,可得(1)1a b bb b a b e e e e -+--=-=.0b >,1b e ∴>,11a b e -∴-<,即2a b e -<,ln 2ln 1a b e ∴-<<=,故C 正确.对于D :不妨取2,a e b e ==满足条件,则21a b e e -=->,所以D 错误. 故选:AC .11.【山东省青岛市2020届高三第三次模拟】已知曲线()32213f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103D .92【答案】AC 【解析】由题可知,322()13f x x x ax =-+-,则2()22f x x x a '=-+,可令切点的横坐标为m ,且0m >,可得切线斜率2223k m m a =-+=,由题意,可得关于m 的方程22230m m a -+-=有两个不等的正根,且可知1210m m +=>,则1200m m ∆>⎧⎨>⎩,即48(3)0302a a -->⎧⎪⎨->⎪⎩,解得:732a <<,a ∴的取值可能为196,103.故选:AC. 12.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(二)】已知函数()e 2xf x x =+-的零点为a ,函数()ln 2g x x x =+-的零点为b ,则下列不等式中成立的是( ) A .e ln 2a b +> B .e ln 2a b +< C .223a b +<D .1ab <【答案】CD【解析】由()0f x =,()0g x =得e 2x x =-,ln 2x x =-,函数e x y =与ln y x =互为反函数,在同一坐标系中分别作出函数e x y =,ln y x =,2y x =-的图象,如图所示,则(),eaA a ,(,ln )B b b .由反函数性质知,A B 关于(1,1)对称,则2a b +=,e ln 2ab +=,2()14a b ab +<=,∴A 、B 错误,D 正确.()e 10xf x '=+>,()f x ∴在R 上单调递增,且(0)10f =-<,13e 022f ⎛⎫=-> ⎪⎝⎭,102a ∴<<.又∵点(e ),aA a 在直线2y x =-上,即e 2a a b =-=,22221e e 34a a b a ∴+=+<+<,故C 正确.故选:CD13.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(一)】对于实数a ,b ,m ,下列说法正确的是( ) A .若22am bm >,则a b > B .若a b >,则a ab bC .若0b a >>,0m >,则a m ab m b+>+ D .若0a b >>且ln ln a b =,则()23,a b +∈+∞ 【答案】ABCD【解析】对实数a ,b ,m .2220am bm m ∴>>,a b ∴>,A 正确;a b >,分三种情况,当0a b >>时,0a ab b ;当0a b >>时,22a a ab b b ;当0a b >>时,22a aa b b b ,a a b b ∴>成立,B 正确;0b a >>,0m >,()()()()()0()a m b a b m b a m a m a ab bm ab am b m b b b m b b m b b m +-+-++---===+++∴>+,C 正确; 若0a b >>,且ln ln a b =,1a b ∴=,且1a >.122a b a a∴+=+, 设()()121f a a a a=+>,根据双勾函数的单调性知,()f a 在区间()1,+∞上单调递增, ()(1)3f a f ∴>=,即()23,a b +∈+∞,D 正确.故选:ABCD .14.【山东省2020届普通高等学校招生全国统一考试数学试题模拟卷(一)】已知函数()ln f x x =,若()f x 在1x x =和()212x x x x =≠处切线平行,则( )A12= B .12128x x <C .1232x x +<D .2212512x x +>【答案】AD【解析】由题意知()()10f x x x'=>,因为()f x 在1x x =和()212x x x x =≠处切线平行,所以()()12f x f x ''=1211x x =-12=,A 正确; 由基本不等式及12x x ≠,可得12=>12256x x >,B错误;1232x x +>>,C 错误;2212122512x x x x +>>,D 正确. 故选:AD15.【山东省泰安市2020届高三第五次模拟】已知向量()()()2,1,1,1,2,,a b c m n ==-=--其中,m n 均为正数,且()//a b c -,下列说法正确的是( ) A . a 与b 的夹角为钝角 B .向量a 在bC .24m n +=D .mn 的最大值为2【答案】CD【解析】由题意知,10a b ⋅=>,所以a 与b 的夹角为锐角,故选项A 错误;向量a 在b 方向上的投影为12a b b⋅==,故选项B 错误; ()1,2a b -=,因为()//a b c -,,m n 均为正数,所以c 为非零向量,且24,24n m m n -=-+=,故选项C 正确;由基本不等式知,42m n =+≥,2mn ≤,当且仅当22m n ==时取等号, 故mn 的最大值为2,故选项D 正确. 故选:CD16.【山东省潍坊市2020届高三模拟(二模)】若1a b <<-,0c >则下列不等式中一定成立的是( )A .11a b a b->- B .11b a a b -<- C .ln()0b a -> D .()()c ca b b a>【答案】BD【解析】由函数1y x x=-在(,1)-∞-上为增函数可知,当1a b <<-时,11a b a b -<-,故选项A 错误; 由函数1y x x =+在(,1)-∞-上为增函数可知,当1a b <<-时,11a b a b +<+,即11b aa b -<-,故选项B 正确;由于a b <,则0b a ->,但不确定b a -与1的大小关系,故ln()b a -与0的大小关系不确定,故选项C 错误;由1a b <<-可知,1a b >,01b a <<,而0c >,则10c ca b b a ⎛⎫⎛⎫>>> ⎪ ⎪⎝⎭⎝⎭,故选项D 正确.故选:BD17.【山东省济宁市2020届高三6月高考模拟考试(三模)】已知直线2y x =-+分别与函数xy e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是( )A .122x x +=B .122x x e e e +>C .1221ln ln 0x x x x +<D .122x x >【答案】ABC【解析】函数xy e =与ln y x =互为反函数,则xy e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1, 对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B ,12121222222x x x x x x e e e e e e e +≥=+⋅==, 因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与xy e =联立可得2x x e -+=,即20x e x +-=,设()2xf x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭,故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<,122112211ln ln ln ln x x x x x x x x +=-<()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D ,由12122x x x x +≥,解得121x x ≤,由于12x x ≠,则121x x <,故D 错误; 故选:ABC18.【山东省淄博市部分学校2020届高三6月阶段性诊断考试(二模)】设[]x 表示不小于实数x 的最小整数,则满足关于x 的不等式[][]2120x x +-≤的解可以为( ) A 10 B .3 C .-4.5 D .-5【答案】BC【解析】因为不等式[][]2120x x +-≤,所以[]()[]()340x x -+≤,所以[]43x -≤≤,又因为[]x表示不小于实数x 的最小整数,所以不等式[][]2120x x +-≤的解可以为3,-4.5.故选:BC 19.【山东省德州市2020届高三第二次(6月)模拟】若正实数a ,b 满足1a b +=则下列说法正确的是( )A .ab 有最大值14B C .11a b+有最小值2 D .22a b +有最大值12【答案】AB【解析】对于A :2211224a b ab +⎛⎫⎛⎫≤== ⎪ ⎪⎝⎭⎝⎭,当且仅当12a b ==时取等号.故A 正确;对于B :22a b a b a b =++≤+++=,≤,当且仅当12a b ==时取等号.故B 正确;对于C :()1111224b a a b a b a b a b ⎛⎫+=++=++≥+⎝= ⎪⎭.当且仅当12a b ==时取等号.所以11a b+有最小值4.故C 错误; 对于D :()()2222222121a b a ab b a a bb +=⇒++=≤+++,即2212a b +≥,故22a b +有最小值12.故D 错误; 故选:AB .20.【山东省、海南省新高考2019-2020学年高三4月份】对于实数a ,b ,c ,下列命题是真命题的为( )A .若a >b ,则11a b< B .若a >b ,则ac 2≥bc 2 C .若a >0>b ,则a 2<﹣ab D .若c >a >b >0,则a b c a c b--> 【答案】BD【解析】A .根据a >b ,取a =1,b =﹣1,则11ab<不成立,故A 错误; B .∵a >b ,∴由不等式的基本性质知ac 2≥bc 2成立,故B 正确; C .由a >0>b ,取a =1,b =﹣1,则a 2<﹣ab 不成立,故C 错误;D .∵c >a >b >0,∴(a ﹣b )c >0,∴ac ﹣ab >bc ﹣ab ,即a (c ﹣b )>b (c ﹣a ),∵c ﹣a >0,c ﹣b >0,∴a b c a c b-->,故D 正确. 故选:BD .21.【2020届山东省临沂市蒙阴县实验中学高三上学期期末】下列判断正确的是( )A .若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,则()20.21P ξ≤-=;B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的必要不充分条件;C .若随机变量ξ服从二项分布:14,4B ξ⎛⎫⎪⎝⎭,则()1E ξ=; D .已知直线2ax by +=经过点()1,3,则28a b +的取值范围是[)4,+∞ 【答案】ACD【解析】A 选项,若随机变量ξ服从正态分布()21,N σ,()40.79P ξ≤=,根据正态分布曲线的对称性有()()240.79P P ξξ≥-=≤=,所以()()21210.790.21P P ξξ≤-=-≥-=-=,A 选项正确;B 选项,因为//αβ,直线l ⊥平面α,所以直线l ⊥平面β,又直线//m 平面β,所以l m ⊥,充分性成立;设n αβ=,在α内取平行于n 的直线m n ≠,则l m ⊥且βn//,但是α与β相交,必要性不成立,B 不正确; C 选项,因为14,4B ξ⎛⎫⎪⎝⎭,所以1414E np ξ==⨯=,C 正确;D 选项,由题意知32a b +=,因为20a >,3820b b =>,所以2824a b +≥=,当且仅当11,3a b ==时取等号,故D 正确. 故选:ACD22.【2020届山东省聊城市高三高考模拟(一)】若实数2a ≥,则下列不等式中一定成立的是( )A .21(1)(2)a a a a +++>+B .1log (1)log (2)a a a a ++>+C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【解析】令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减,对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++, 即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确;对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误; 对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥,所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦.因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确;故选:ABD23.【2020届天一大联考海南省高三年级第三次模拟】设a ,b ,c 为实数且a b >,则下列不等式一定成立的是( ) A .11a b> B .20201a b -> C .ln ln a b > D .()()2211a c b c +>+【答案】BD【解析】对于A ,若0a b >>,则11a b<,所以A 错误; 对于B ,因为0a b ->,所以20201a b ->,故B 正确;对于C ,函数ln y x =的定义域为0,,而a ,b 不一定是正数,所以C 错误;对于D ,因为210c +>,所以()()2211a c b c +>+,所以D 正确.故选:BD24.【山东省泰安市2019-2020学年高三上学期期末】已知a b c d ,,,均为实数,则下列命题正确的是( )A .若,a b c d >>,则ac bd >B .若0,0ab bc ad >->,则0c da b-> C .若,,a b c d >>则a d b c ->- D .若,0,a b c d >>>则a b d c> 【答案】BC【解析】若0a b >>,0c d >>,则ac bd <,故A 错; 若0ab >,0bc ad ->,则0bc adab ->,化简得0c d a b->,故B 对; 若c d >,则d c ->-,又a b >,则a d b c ->-,故C 对; 若1a =-,2b =-,2c =,1d =,则1a d =-,1b c =-,1a bd c==-,故D 错; 故选:BC .25.【2020届山东省潍坊市临朐县高三综合模拟考试数学试题(一)】实数x ,y 满足2220x y x ++=,则下列关于1yx -的判断正确的是( )A .1yx -B .1yx -的最小值为C .1y x -的最大值为3D .1y x -的最小值为3- 【答案】CD【解析】由题意可得方程2220x y x ++=为圆心是(1,0)C -,半径为1的圆,由1yx -为圆上的点与定点(1,0)P 的斜率的值.设过(1,0)P 点的直线为(1)y k x =+,即0kx y k -+=,圆心到到直线的距离d r =1=,整理可得231k =解得3k =±,所以[]133y x ∈--,即1y x -的最3-.故选CD .26.【山东省日照市五莲县第一中学2019-2020学年高三3月过程检测】已知2a b >,则( )A .23b b a <-B .3322a b a b ab +>+C .ab a b >+D .12112ab a b+>+ 【答案】BC【解析】2a b >,对于A :A 错误,比如3a =,2b =,43>不成立; 对于B :()3322222()()()()0a b a b aba ab b a b a b a b +-+=---=-+>成立;对于C :由1(1)(1)(1)1011b ab a b a b b b a b a b b ⎡⎤⎛⎫⎛⎫--=--=--=--+> ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦,故C 成立, 对于D :1211(2)(2)022a b ab a b ab--+--=,故D 不成立, 故选:BC .27.【山东省日照市五莲县第一中学2019-2020学年高三3月过程检测】数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线()32222:16C x y x y +=恰好是四叶玫瑰线.给出下列结论正确的是( )A .曲线C 经过5个整点(即横、纵坐标均为整数的点)B .曲线C 上任意一点到坐标原点O 的距离都不超过2 C .曲线C 围成区域的面积大于4πD .方程()3222216(0)x y x y xy +=>表示的曲线C 在第一象限和第三象限【答案】BD【解析】把2x =,2y =代入曲线C ,可知等号两边成立,所以曲线C 在第一象限过点(2,2), 由曲线的对称性可知,该点的位置是图中的点M ,对于A 选项,只需要考虑曲线在第一象限内经过的整点即可,把(1,1),(1,2)和(2,1)代入曲线C 的方程验证可知,等号不成立,所以曲线C 在第一象限内不经过任何整点.再结合曲线的对称性可知,曲线C 只经过整点(0,0),即A 错误;对于B 选项,因为222(0,0)x yxy x y +>>,所以222x y xy +,所以()()()22232222222161644x y xy x y x y ++=⨯=+,所以224x y +,即B 正确;对于C 选项,以O 为圆点,2为半径的圆O 的面积为4π,显然曲线C 围成的区域的面积小于圆O 的面积,即C 错误;对于D 选项,因为0xy >,所以x 与y 同号,仅限与第一和三象限,即D 正确. 故选:BD .28.【2020届山东省潍坊市奎文区第一中学高三下学期3月月考】设正实数a ,b 满足1a b +=,则( )A .11a b+有最小值4 B 12C 有最大值1D .22a b +有最小值12【答案】AD【解析】对于A :正实数a ,b 满足1a b +=,即有a b +≥104ab <≤,即有1114a b ab +=≥,即有a b =时,11a b+取得最小值4,无最大值,故A 正确;对B :由102<≤有最大值12,故B 错误;对于C ==≤=a b =,故C 错误;对于D :由222a b ab +≥可得2222()()1a b a b +≥+=,则2212a b +≥,当12a b ==时,22a b +取得最小值12,故D 正确. 故选:AD .29.【2020届山东省枣庄、滕州市高三上学期期末】如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h 【答案】AC 【解析】A.∵24,u x x +24v x x =+24,22u v u vx x +-+==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确. B.24125x x t +-=126510u v u v+-=+-,整理得15436t u v =++,B 错误; C.由A 、B 得161615363644t u u u u=++≥⋅=,16u u =即4u =时取等号,244x x +=,解得31.52x ==,C 正确; D.4x =时,2585t =+,25710521500441305t ---=-==>,3t >,D 错. 故选:AC.30.【山东省潍坊市2019-2020学年高三上学期期中】若x y ≥,则下列不等式中正确的是( )A .22x y ≥B .2x yxy +≥C .22x y ≥ D .222x y xy +≥【答案】AD【解析】对A ,由指数函数的单调性可知,当x y ≥,有22x y ≥,故A 正确; 对B ,当0,0,x y x y <<>时,2x yxy +≥不成立,故B 错误;对C ,当0x y ≥≥时,22x y ≥不成立,故C 错误; 对D ,2222()0x y xy x y +-=-≥成立,从而有222x y xy +≥成立,故D 正确;故选:AD.。
1 专题0
2 相等关系与不等关系
【知识框图】
【自主热身,归纳总结】
1、(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( )
A .22a b >
B .1b
a < C .()10g a
b -> D .1122a b
⎛⎫⎛⎫
< ⎪ ⎪⎝⎭⎝⎭
【答案】D
【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确; 如果0a =,2b =-,显然B 无意义,不正确;
如果0a =,1
2b =-,显然C ,1
02lg <,不正确; 因为指数函数12x
y ⎛⎫
= ⎪⎝⎭在定义域上单调递减,且a b >,1122a
b
⎛
⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.
故选:D .
2、(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x
⎛⎫
⎪⎭>⎝”是“21x -<<-”的(
) A .充分不必要条件 B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
【答案】B
【解析】 由121x
⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“
0x <”,反之,不能推出;。
考点3.3 立体几何的新定义问题立体几何问题是高考重点考查的内容之一,其命题形式多种多样,其中基于问题情境的立体几何问题在高考中逐步成为热点。
通过具体的问题背景或新的定义,考察立体几何知识等在问题情境中的应用,以此来检验学生的核心价值,学科素养,关键能力,必备知识。
本专题以单选题,多选题,填空题及解答题等形式体现立体几何在新定义问题中的应用。
解决立体几何的新定义问题,常用的解题思路是:审题、建模、研究模型、解决新定义问题。
解题要点:根据题目给出的新定义,建立立体几何模型,研究模型时需注意:根据新定义进行由特殊到一般的规律总结,最后解决问题。
立体几何的新定义问题 (1) 单选题1.(2020·济南市·山东省实验中学高二期中)空间直角坐标系O xyz -中,经过点()000,,P x y z ,且法向量为(),,m A B C =的平面方程为()()()0000A x x B y y C z z -+-+-=,经过点()000,,P x y z 且一个方向向量为()(),,0n μυωμυω=≠的直线l 的方程为x x y y z z μυω---==,阅读上面的材料并解决下面问题:现给出平面α的方程为3570x y z -+-=,经过()0,0,0的直线l 的方程为321xy z ==-,则直线l 与平面a 所成角的正弦值为( )A B C D 【答案】B 【分析】根据题设给出的材料可得平面的法向量和直线的方向向量,利用公式可求直线l 与平面a 所成角的正弦值. 【详解】因为平面α的方程为3570x y z -+-=,故其法向量为()3,5,1n =-, 因为直线l 的方程为321x y z ==-,故其方向向量为()3,2,1m =-,故直线l 与平面a35==,故选:B. 【点睛】关键点点睛:此题为材料题,需从给定的材料中提炼出平面的法向量和直线的方向向量的求法,这是解决此题的关键.2.(2020·全国高三专题练习(文))将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒【答案】D 【分析】首先根据题意理解太阳高度角、该地纬度、太阳直射纬度的概念,然后由太阳高度角()9039542745θδ'''=︒-︒-=︒可得结果.【详解】由题可知,天安门广场的太阳高度角()9039542750533θδδ''''''=︒-︒-=︒+, 由华表的高和影长相等可知45θ=︒,所以45505335533δ''''''=︒-︒=-︒. 所以该天太阳直射纬度为南纬5533'''︒, 故选:D.3.(2020·赣州市赣县第三中学高二月考(理))设1P 、2P 、…、n P 为平面α内的n 个点,在平面α内的所有点中,若点P 到1P 、2P 、…、n P 点的距离之和最小,则称点P 为1P 、2P 、…、n P 点的一个“中位点”,有下列命题:①A 、B 、C 三个点共线,C 在线段AB 上,则C 是A 、B 、C 的中位点;②直角三角形斜边的中点是该直线三角形三个顶点的中位点;③若四个点A 、B 、C 、D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是( ) A .②④ B .①②C .①④D .①③④【答案】C 【分析】根据中位点的定义以及空间中的点与线的位置关系等逐个证明或举反例即可. 【详解】①若三个点,,A B C 共线,C 在线段AB 上,根据两点之间线段最短, 则C 是,,A B C 的中位点,正确;②举一个反例,如边长为3,4,5的直角三角形ABC ,此直角三角形的斜边的中点到三个顶点的距离之和为5 2.57.5+=,而直角顶点到三个顶点的距离之和为7,∴直角三角形斜边的中点不是该直角三角形三个顶点的中位点;故错误;③若四个点,,,A B C D 共线,则它们的中位点是中间两点连线段上的任意一个点,故它们的中位点存在但不唯一;故错误;④如图,在梯形ABCD 中,对角线的交点,O P 是任意一点,则根据三角形两边之和大于第三边得PA PB PC PD AC BD OA OB OC OD +++≥+=+++,∴梯形对角线的交点是该梯形四个顶点的唯一中位点.正确.故①④正确. 故选:C 【点睛】本题主要考查了新定义问题的运用,需要根据题意根据几何性质找到反例或直接证明.属于难题.4.(2020·北京高三专题练习)若点N 为点M 在平面α上的正投影,则记()N f M α=.如图,在棱长为1的正方体1111ABCD A BC D -中,记平面11AB C D 为β,平面ABCD 为γ,点P 是棱1CC 上一动点(与C 、1C 不重合)()1Q f f P γβ⎡⎤=⎣⎦,()2Q f f P βγ⎡⎤=⎣⎦.给出下列三个结论:①线段2PQ 长度的取值范围是1,22⎡⎢⎣⎭;②存在点P 使得1//PQ 平面β;③存在点P 使得12PQ PQ .其中,所有正确结论的序号是( ) A .①②③ B .②③C .①③D .①②【答案】D 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设点P 的坐标为()()0,1,01a a <<,求出点1Q 、2Q 的坐标,然后利用向量法来判断出命题①②③的正误. 【详解】取1C D 的中点2Q ,过点P 在平面11AB C D 内作1PE C D ⊥,再过点E 在平面11CC D D 内作1EQ CD ⊥,垂足为点1Q .在正方体1111ABCD A BC D -中,AD ⊥平面11CC D D ,PE ⊂平面11CC D D ,PE AD ⊥∴, 又1PE C D ⊥,1AD C D D =,PE ∴⊥平面11AB C D ,即PE β⊥,()f P E β∴=,同理可证1EQ γ⊥,CQ β⊥,则()()1f f P f E Q γβγ⎡⎤==⎣⎦,()()2f f P f C Q βγβ⎡⎤==⎣⎦.以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设()01CP a a =<<,则()0,1,P a ,()0,1,0C ,110,,22a a E ++⎛⎫ ⎪⎝⎭,110,,02a Q +⎛⎫ ⎪⎝⎭,2110,,22Q ⎛⎫⎪⎝⎭.对于命题①,2PQ =01a <<,则111222a -<-<,则211024a ⎛⎫≤-< ⎪⎝⎭,所以,212PQ ⎡=⎢⎣⎭,命题①正确; 对于命题②,2CQ β⊥,则平面β的一个法向量为2110,,22CQ ⎛⎫=- ⎪⎝⎭,110,,2a PQ a -⎛⎫=- ⎪⎝⎭,令211130424a a a CQ PQ --⋅=-==,解得()10,13a =∈,所以,存在点P 使得1//PQ 平面β,命题②正确;对于命题③,21120,,22a PQ -⎛⎫=- ⎪⎝⎭,令()12211042a a a PQ PQ --⋅=+=, 整理得24310a a -+=,该方程无解,所以,不存在点P 使得12PQ PQ ,命题③错误.故选:D. 【点睛】本题考查立体几何中线面关系、线线关系的判断,同时也涉及了立体几何中的新定义,利用空间向量法来处理是解题的关键,考查推理能力,属于中等题.5.(2021·山东高三专题练习)如图,水平桌面上放置一个棱长为4的正方体水槽,水面高度恰为正方体棱长的一半,在该正方体侧面11CDD C 上有一个小孔E ,E 点到CD 的距离为3,若该正方体水槽绕CD 倾斜(CD 始终在桌面上),则当水恰好流出时,侧面11CDD C 与桌面所成角的正切值为( )AB .12CD .2【答案】D 【分析】根据题意,当水恰好流出时,即由水的等体积可求出正方体倾斜后,水面N 到底面B 的距离1BN =,再由边长关系可得四边形1NPC H 是平行四边形,从而侧面11CDD C 与桌面所转化成侧面11CDD C 与平面11HC D 所成的角,进而在直角三角形中求出其正切值. 【详解】由题意知,水的体积为44232⨯⨯=,如图所示,设正方体水槽绕CD 倾斜后,水面分别与棱1111,,,,AA BB CC DD 交于,,,,M N P Q 由题意知3PC =,水的体积为32BCPN S CD ⋅=322BN PC BC CD +∴⋅⋅=,即344322BN +⨯⨯=, 1BN ∴=在平面11BCC B 内,过点1C 作1//C HNP 交1BB 于H ,则四边形1NPC H 是平行四边形,且11NH PC ==又侧面11CDD C 与桌面所成的角即侧面11CDD C 与水面MNPQ 所成的角,即侧面11CDD C 与平面11HC D 所成的角,其平面角为111HC C B HC ∠=∠, 在直角三角形11B HC 中,111114tan 22B C B HC B H ===.【点睛】本题考查了利用定义法求二面角,在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条垂线所成的角即为二面角的平面角.(2) 多选题6.(2020·江苏南通市·海安高级中学高一月考)平面中两条直线l 和n 相交于O ,对于平面上任意一点M ,若p ,q 分别是M 到直线l 和n 的距离,则称有序非负实数对(p ,q )是点M 的“距离坐标”.则下列说法正确的( )A .若p =q =0,则“距离坐标”为(0,0)的点有且仅有一个B .若pq =0,且p +q ≠0,则“距离坐标”为(p ,q )的点有且仅有2个C .若pq ≠0,则“距离坐标”为(p ,q )的点有且仅有4个D .若p =q ,则点M 的轨迹是一条过O 点的直线 【答案】ABC 【分析】根据“距离坐标”的定义对选项逐一分析,由此确定正确选项. 【详解】首先点到直线的距离是唯一确定的.对于A 选项,由于0p q ==,所以()0,0表示O 点,有且仅有一个,故A 选项正确. 对于B 选项,由于0pq =,且0p q +≠,当00p q =⎧⎨≠⎩或0p q ≠⎧⎨=⎩时,分别表示点()0,q 或(),0p ,有且仅有两个,故B 选项正确.对于C 选项,由于l 和n 相交与O ,所以直线l 和直线n 确定一个平面α,根据对称性可知,在平面α的上方和下方,各有两个“距离坐标”为(),p q 的点.故“距离坐标”为(),p q 的点有且仅有4个,所以C 选项正确. 对于D 选项,设l 和n 相交与O ,直线l 和直线n 相交所形成的两组对角的角平分线上的点,都满足p q =,所以点M 的轨迹不只是一条过O 点的直线,所以D 选项错误. 由于p q =, 故选:ABC本小题主要考查空间点与直线的位置关系,考查分析、思考与解决问题的能力,属于基础题. 7.(2020·全国高二课时练习)(多选)已知单位向量i ,j ,k 两两的夹角均为0,2πθθπθ⎛⎫<<≠⎪⎝⎭,若空间向量a 满足(,,)a xi y j zk x y z R =++∈,则有序实数组(,,)x y z 称为向量a 在“仿射”坐标系Oxyz (O 为坐标原点)下的“仿射”坐标,记作(,,)a x y z θ=,则下列命题是真命题的有( ). A .已知(1,3,2)a θ=-,(4,0,2)b θ=,则0a b ⋅= B .已知(,,0)3a x y π=,(0,0,)3b z π=,其中,,0x y z >,则当且仅当x y =时,向量a ,b 的夹角取得最小值C .已知()111,,a x y z θ=,()222,,b x y z θ=,则()121212,,a b x x y y z z θ+=+++D .已知(1,0,0)3OA π=,(0,1,0)3OB π=,(0,0,1)3OC π=,则三棱锥O ABC -的表面积S =【答案】BC 【分析】根据“仿射”坐标的定义逐项判断即可. 【详解】(1,3,2)(4,0,2)(32)(42)421268412cos a b i j k i k i k i j j k k i θθθ⋅=-⋅=+-⋅+=+⋅+⋅+⋅-⋅-=因为0θπ<<,且2πθ≠,所以0a b ⋅≠,故A 错误;如图所示,设OB b =,OA a =,则点A 在平面xOy 上,点B 在z 轴上,由图易知当x y =时,AOB ∠取得最小值,即向量a 与b 的夹角取得最小值,故B 正确;根据“仿射”坐标的定义可得,()()()()()()()()111222111222121212121212,,,,,,a b x y z x y z x i y j z k x i y j z k x x i y y j z z k x x y y z z θθθ+=+=+++++=+++++=+++,故C 正确;由已知可得三棱锥O ABC -为正四面体,棱长为1,其表面积214122S =⨯⨯⨯=D 错误. 故选:BC. 【点睛】新定义概念题,考查对新概念的理解能力以及运算求解能力,基础题.8.(2020·江苏高二期中)20世纪50年代,人们发现利用静态超高压和高温技术,通过石墨等碳质原料和某些金属反应可以人工合成金刚石,人工合成金刚石的典型晶态为立方体(六面体)、八面体和立方八面体以及他们的过渡形态. 其中立方八面体(如图所示)有24条棱、12个顶点,14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几何体.已知一个立方八面体的棱长为1,则( )A .它的所有顶点均在同一个球面上,且该球的直径为2B .它的任意两条不共面的棱所在的直线都互相垂直 CD .它的任意两个共棱的面所成的二面角都相等 【答案】ACD 【分析】利用立方八面体与正方体之间的关系计算出正方体的棱长,可判断A 、C 选项的正误;计算出不共面的棱所成角的大小可判断B 选项的正误,计算相邻的两个面所成二面角的大小可判断D 选项的正误. 【详解】如下图所示,由题意可知,立方八面体的顶点为正方体1111ABCD A BC D -各棱的中点,故立方八面体的棱为正方体1111ABCD A BC D -相邻两条棱的中点的连线,=由对称性可知,立方八面体的外接球球心为正方体1111ABCD A BC D -的中心,外接球的直径为正方体1111ABCD A BC D -的面对角线长2,该球的半径为1,A 选项正确; 设MN 、PQ 为立方八面体的两条不共面的棱,如下图所示,则11//MN B D ,在正方体1111ABCD A BC D -中,11//BB DD 且11BB DD =,则四边形11BBD D 为平行四边形, 11//BD B D ∴,//MN BD ∴,由于1//PQ BC ,易知1BC D 为等边三角形,则160C BD ∠=,所以,MN 与PQ 所成角为60,B 选项错误;立方八面体的体积为331183223V ⎛⎫=-⨯⨯⨯= ⎪ ⎪⎝⎭C 选项正确; 设正方体1111ABCD A BC D -底面的中心为点O ,连接OC 交立方八面体的棱PF 于点E ,连接EQ ,则E 为PF 的中点,且PFQ △为等边三角形,所以,EQ PF ⊥,CD BC =,O 为BD 的中点,OC BD ∴⊥,P 、F 分别为BC 、CD 的中点,则//PF BD ,OC PF ∴⊥,所以,OEQ ∠为立方八面体的底面与由平面PFQ 所成二面角的平面角,立方八面体的棱长为1,12OE EC ∴==,112CQ CC ==,3sin 602EQ PQ == 1CC ⊥平面ABCD ,CE ⊂平面ABCD ,1CC CE ∴⊥,在Rt CEQ 中,cos CE CEQ EQ ∠==所以,()cos cos 180cos OEQ CEQ CEQ ︒∠=-∠=-∠=同理可知,立方八面体的相邻两个面所成二面角的余弦值为-D 选项正确. 故选:ACD.【点睛】作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.9.(2020·夏津县教育和体育局高二月考)我国古代数学名著《九章算术》中记载的“刍甍”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍甍,其中四边形ABCD 为矩形,其中8AB =,AD =ADE 与BCF △都是等边三角形,且二面角E AD B --与F BC A --相等且大于3π,则EF 长度可能为( )A .1B .5C .9D .13【答案】CD 【分析】取两个极限情况:二面角E AD B --与F BC A --相等,且为平角时,14EF =,二面角为3π时,5EF =,即可得出结果. 【详解】等边三角形ADE 603︒=,同理等边三角形BCF 边上的高为3.二面角E AD B --与F BC A --相等,且为平角时,6814EF =+=,因此14EF <, 二面角E AD B --与F BC A --相等,且为3π时,EF 最小, 如图所示,此时取BC ,AD 的中点,O Q ,连接OQ ,FO , 由图形的对称性可得F 点在底面的投影必在OQ 上,由于OF BC ⊥,OH BC ⊥,所以FOH ∠即为二面角F BC A --的平面角, 即3FOH π∠=,故32OH =,此时38252EF =-⨯= 由于二面角大于3π,因此5EF >, 即可得EF 长度可能为9,13, 故选:CD.【点睛】本题主要考查了空间角、运动思想方法、空间位置关系,考查了空间想象能力、推理能力,属于中档题.(3) 填空题10.(2020·枣庄市第三中学高二月考)在空间直角坐标系中,定义:平面α的一般方程为()2220,,,,0Ax By Cz D A B C D R A B C +++=∈++≠,点()000,,P x y z 到平面α的距离d =,则在底面边长与高都为2的正四棱锥中,底面中心O 到侧面的距离等于________.【分析】以底面中心O 为原点建立空间直角坐标系O xyz -,求出点,,,O A B P 的坐标,求出侧面的方程,最后利用所给公式计算即可. 【详解】如图,以底面中心O 为原点建立空间直角坐标系O xyz -, 则()0,0,0O,(1A ,1,0),(1B -,1,0),(0P ,0,2),设平面PAB 的方程为0Ax By Cz D +++=,将,,A B P 坐标代入计算得0020A B D A B D C D ++=⎧⎪-++=⎨⎪+=⎩解得0A =,B D =-,12C D =-,102Dy Dz D ∴--+=,即220y z +-=,d ∴==【点睛】本题主要考查点、线、面间的距离计算、空间直角坐标系的应用、空间直角坐标系中点到平面的距离等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.11.(2020·梅河口市第五中学高三月考(文))瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V ,棱数E 及面数F 满足等式2V E F -+=,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮,简洁的公式之一.如图是一个面数为26的多面体(其表面仅由正方形和正三角形围成),根据欧拉多面体公式可求得其棱数E =_______.【答案】48 【分析】根据图形可知顶点数,代入欧拉多面体公式可求得结果. 【详解】该多面体面数26F =,由图知,顶点数24V =,根据欧拉多面体公式2V E F -+=得:棱数22426248E V F =+-=+-=. 故答案为:48. 【点睛】本题考查立体几何中的新定义运算的求解问题,关键是能够充分理解已知所给公式,属于基础题.(4) 解答题12.(2021·全国高三八省联考)北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数2=,证明:这类多面体的总曲率是常数. 【答案】(1)4π;(2)证明见解析. 【分析】(1)四棱锥的总曲率等于四棱锥各顶点的曲率之和,写出多边形表面的所有内角即可.(2)设顶点数、棱数、面数分别为n 、l 、m ,设第i 个面的棱数为i x ,所以122m x x x l +++=,按照公式计算总曲率即可. 【详解】(1)由题可知:四棱锥的总曲率等于四棱锥各顶点的曲率之和.可以从整个多面体的角度考虑,所有顶点相关的面角就是多面体的所有多边形表面的内角的集合.由图可知:四棱锥共有5个顶点,5个面,其中4个为三角形,1个为四边形. 所以四棱锥的表面内角和由4个为三角形,1个为四边形组成, 则其总曲率为:()25424ππππ⨯-+=.(2)设顶点数、棱数、面数分别为n 、l 、m ,所以有2n l m -+= 设第i 个面的棱数为i x ,所以122m x x x l +++=所以总曲率为:()()()122222m n x x x ππ--+-++-⎡⎤⎣⎦()222n l m ππ=--()24n l m ππ=-+=所以这类多面体的总曲率是常数. 【点睛】本题考查立体几何的新定义问题,能够正确读懂“曲率”的概率是解决问题的关键.13.(2020·北京101中学高二期中)已知集合(){}()12,,,|,1,2,,1n n i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ①若()1,2A ,()4,6B ,则(),7d A B =;②在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ③在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+; (3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83. 【答案】(1)①;(2)证明见解析;(3)125n =,证明见解析. 【分析】(1)①根据新定义直接计算.②根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;③由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,①若()1,2A ,()4,6B ,则(),41627d A B =-+-=,①正确;②在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y , 所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,②错误;③在ABC 中,若()(),,d A B d A C =,在②中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,③错误. 空格处填①(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥., (3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,∴04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,∴,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=, 现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立.14.(2016·上海市实验学校高二期末)(1)如图,对于任一给定的四面体1234A A A A ,找出依次排列的四个相互平行的平面1α,2α,3α,4α,使得()1,2,3,4i i A i α∈=,且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面1α,2α,3α,4α,其中每相邻两个平面间的距离为1,若一个正四面体1234A A A A 的四个顶点满足:()1,2,3,4i i A i α∈=,求该正四面体1234A A A A 的体积.【答案】(1)见解析; (2 【分析】(1)根据题意要作出相互平行且相邻距离相等的平面,所以先作直线平行,且取等分点,例如可取41A A 的三等分点2P ,3P ,13A A 的中点M ,24A A 的中点N ,则有223//A P NP ,332//A P MP ,从而可得面面平行; (2)先将正四面体补形为正方体,结合条件确定正方体的棱长,即可求正四面体1234A A A A 的体积. 【详解】(1)取41A A 的三等分点2P ,3P ,13A A 的中点M ,24A A 的中点N , 过三点2A ,2P ,M 作平面2α,过三点3A ,3P ,N 作平面3α, 因为223//A P NP ,332//AP MP ,所以平面2//α平面3α, 再过点1A ,4A 分别作平面1α,4α与平面2α平行,那么四个平面,2α,3α,4α依次相互平行, 由线段41A A 被平行平面1α,2α,3α,4α截得的线段相等知,每相邻两个平面间的距离相等,故1α,2α,3α,4α为所求平面.(2)如图,将此正四面体补形为正方体1111ABCD A BC D -(如图), 分别取AB 、CD 、11A B 、11C D 的中点E 、F 、1E 、1F ,平面11DEE D 与11BFF B 是分别过点2A 、3A 的两平行平面,若其距离为1,则正四面体1234A A A A 满足条件,右图为正方体的下底面,设正方体的棱长为a ,若1AM MN ==,因为12AE a =,DE =,在直角三角形ADE 中,AM DE ⊥,所以1122a a a =⋅,所以a ==,所以此正四面体的体积为3311432V a a =-⋅⋅=.【点睛】本题考查面面平行判定以及补形法求体积,考查空间想象能力以及基本分析论证与求解能力,属较难题.。
(南通密卷)高三数学综合测试卷三 人教版一、选择题:每小题5分,共12小题,共60分.在每小题的四个选项中,只有一项是符合要求的.1. 已知集合},032|{},,0{2Z x x x x N a M ∈<--==,若∅≠N M ,则a 的值为( ) A .1 B .2 C .1或2 D .不为零的任意实数 2. 下列函数中周期是2的函数是( )A .1cos 22-=x y π B .x x y ππ2cos 2sin += C .)32tan(ππ+=x y D .sin cos y x x ππ= 3. 下列命题中正确的是( )A .若直线l ∥平面M ,则直线l 的垂线必平行于平面M ;B .若直线l 与平面M 相交,则有且只有一个平面经过l 且与平面M 垂直;C .若直线⊂b a ,平面M ,b a ,相交,且直线l ⊥a ,l ⊥b ,则l ⊥M ;D .若直线a ∥平面M ,直线b ⊥a ,则b ⊥M .4. 已知8)(xax -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和为( )A .82B .83C .1或83D .1或825. 若函数c bx x x f ++=2)(的图象的顶点在第四象限,则函数)(/x f 的图象是( )A B C D 6. 已知实数a 满足21<<a .命题P :函数)2(log ax y a -=在区间[0,1]上是减函数. 命题Q :1||<x 是a x <的充分不必要条件.则( )A .“P 或Q ”为真命题;B .“P 且Q ”为假命题;C .“┐P 且Q ”为真命题;D .“┐P 或┐Q ”为真命题 7. 已知两个点M (--5,0)和N (5,0),若直线上存在点P ,使|PM|--|PN|=6,则称该直线为“B 型直线”.给出下列直线①1+=x y ;②2=y ;③x y 34=;④12+=x y .其中为“B 型直线”的是( )A .①③B .①②C .③④D .①④8. 在数列{n a }中,21=a ,2)1(1++=+n n a n na (*N n ∈),则10a 为( )A .34B .36C .38D .400 0 0 y yyy9. 已知点B )0,2(,点O 为坐标原点,点A 在圆1)2()2(22=-+-y x 上,则向量OB OA 与的夹角θ的最大值与最小值分别为( )A .0,4πB .4,125ππ C .12,125ππ D .125,2ππ 10.设函数)(x f 为定义域在R 上的以3为周期的奇函数,若132)2(,1)1(+-=>a a f f ,则( ) A .32<a B .132-≠<a a 且 C .132-<>a a 或 D .321<<-a11.某商场宣传在“五一黄金周”期间对顾客购物实行一定的优惠,商场规定:①如一次性购物不超过200元,不予以折扣;②如一次性购物超过200元但不超过500元的,按标价给予九折优惠;③如一次性购物超过500元的,其中500元给予9折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( )A .608元B .574.1元C .582.6元D .456.8元 12.已知直线1=+by ax (b a ,不全为0)与圆5022=+y x 的公共点,且公共点的横、纵坐标均为整数,那么这样的直线共有( )A .66条B .72条C .74条D .78条二、填空题:每小题4分,共4小题,共计16分.将答案填在题中的横线上.13.已知函数)(x f 是R 上的减函数,A (0,--3),B (--2,3)是其图象上的两点,那么不等式3|)2(|≥-x f 的解集是______________.14.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是______.15.双曲线)1(122>=-n y nx 的两个焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=22+n ,则⊿PF 1F 2的面积为____________.16.有一个正四棱锥,它的底面边长和侧棱长均为a ,现在要用一张正方形的包装纸将它完全包住.(不能裁剪纸,但可以折叠)那么包装纸的最小边长应为__________________. 三、解答题:共6大题,共计74分,解答应写出文字说明、证明过程或演算步骤. 17.本题满分12分)已知在⊿ABC 中,角A 、B 、C 的对边为,,,c b a ,向量))sin(,2cos2(B A Cm +-=, ))sin(2,2(cos B A Cn +=,m ⊥n .(1)求角C . (2)若22221c b a +=,试求)sin(B A -的值.18.(本题满分12分)粒子A 位于数轴0=x 处,粒子B 位于2=x 处,这两粒子每隔1秒向左或向右移动一个单位,设向右移动的概率为32,向左移的概率为31. (1)求第三秒时,粒子A 在点1=x 处的概率.(2)求第2秒时,粒子A 、B 同在点2=x 处的概率.19.(本题满分12分)已知正四棱柱ABCD-A 1B 1C 1D 1中,底面边长AB=2, 侧棱BB 1=4,过点B 作B 1C 的垂线交侧棱CC 1于点E , 交B 1C 于点F ,(1)求证:A 1C ⊥平面BED ;(2)求A 1B 与平面BDE 所成角的正弦值. 20.(本题满分12分)已知函数x xax f 22)(-=. (1)将函数)(x f y =的图象向右平移两个单位,得到函数)(x g y =,求)(x g y =的解析式.(2)函数)(x h y =与函数)(x g y =的图象关于直线1=y 对称,求)(x h y =的解析式; (3)设)()(1)(x h x f ax F +=,)(x F 的最小值是m ,且72+>m .求实数a 的取值范围.ABCDA 1B 1C 1D 1E F21.(本题满分12分)自点A (0,-1)向抛物线C :2x y =作切线AB ,切点为B ,且B 在第一象限,再过线段AB 的中点M 作直线l 与抛物线C 交于不同的两点E 、F .直线AF 、AE 分别交抛物线C 于P 、Q 两点. (1)求切线AB 的方程及切点B 的坐标. (2)证明)(R AB PQ ∈=λλ.22.(本题满分14分)由原点O 向三次曲线 )0(323≠-=a ax x y引切线,切点为P 1),(11y x (O ,P 1两点不重合),再由P 1引此 曲线的切线,切于点P 2),(22y x (P 1,P 2不重合),如此继续下 去,得到点列:)},({n n n y x P . (1)求1x ;(2)求n x 与1+n x 满足的关系式;(3)若0>a ,试判断n x 与a 的大小关系,并说明理由.xyPABMFQ E[参考答案]一、选择题(每小题5分,共12小题,共60分)题号123456789101112答案 D C C C A A B C C D C B二、填空题(每小题4分,共4小题,共计16分)13.),2[]0,(+∞-∞ 14.0.8 15.1 16.a 226+ 三、解答题:(共6大题,共计74分) 14.(本题满分12分)解:(1)由0=⋅nm 得0)(sin 22cos 222=+-B A C0)cos 1(2cos 12=--+C C01cos cos 22=-+C C 即21cos ,1cos =-=C C 因为π<<C0,所以060=C .(2)因为bca cb R b ac b c a R a A B B A B A 2222cos sin cos sin )sin(222222-+⋅--+⋅=-=-43sin 21444)(2222====-=C R c cR c cR b a .(因为22221c b a=-) 15.(本题满分12分)解:(1)依题意有粒子A 有以下三种走法:右右左,右右左、左右右,其概率为9431)32(2231=⋅=C P .(2)粒子A 只能为:右右走法,其概率为94)32()(2==A P ,粒子B 有两种走法:右左、左右,其概率为943132)(12=⨯⨯=C B P ,则粒子A 、B 同在2=x 处的概率是8116)()(2==B P A P P .16.(本题满分12分)解法一(1)证明:连AC 交DB 于点O ,由正四棱柱性质可知AA 1⊥底面ABCD ,AC ⊥BD ,∴A 1C ⊥BD ,又∵A 1B 1⊥侧面BC 1且BC 1⊥BE ∴A 1C ⊥BE , 又∵BD ∩BE=B ,∴A 1C ⊥平面BDE .(2)设A 1C 交平面BDE 于点K ,连结BK ,则∠A 1BK 为A 1B 与平面BDE 所成的角在侧面BC 1中,BE ⊥B 1C ∴⊿BCE ∽⊿B 1BC ∴1BB BCBC CE = 又BC=2,BB 1=4,∴CE=1.连OE ,则OE 为平面ACC 1A 1与平面BDE 的交线,∴OE ∩A 1C=K 在Rt ⊿ECO 中,22221===AB AC CO,∴322=+=EC CO OE 又CO EC CK OE ⋅=⋅ ∵36=CK又621=C A ,∴36536621=-=K A在Rt ⊿A 1BK 中,630sin 111==B A K A BK A ,即为A 1B 与平面BDE 所成的角的正弦值.解法二:(1)以D 为原点,DA 、DC 、DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系xyz D -.D (0,0,0), A (2,0,0),B (2,2,0),C (0,2,0) A 1(2,0,4),B 1(2,2,4),C 1(0,2,4),D 1(0,0,4), 设点E (0,2,t ) ∵BE ⊥B 1C ,∴04041=-+=⋅t C B BE 1=t ,∴E (0,2,1)又)1,0,2(-=BE ,)4,2,2(1--=C A ,)0,2,2(=BD∴0044040411=++-=⋅=-+=⋅DB C A BE C A 且∴A 1C ⊥DB ,且A 1C ⊥BE ,∴A 1C ⊥平面BDE . (2)设A 1C ∩平面BDE=K则),22,2()1,2,0()0,2,2(n n m m n m DE n DB m DK+=+=+=∴)2,22,2(n n m m K +∴)4,22,22(1-+-=n n m m K A由K A 1⊥ DB 得0)22(2)22(21=++-=•n m m DB K A∴012=-+n m ,…………① 同理有K A 1DE 得04)22(21=-++=⋅n n m DE K A…②454=-+n m由①②联立,解得32,61==n m ∴)310,35,35(1--=K A∴365||1=K A ,又易知52||1=B A∴630||sin111==B A K A BK A ,即所求角的正弦值为630.20.(本题满分12分)解:(1)易得2222)(---=x x a x g .(2)设P ),(y x 为)(x h y =的图像上任一点,点P 关于直线1=y 的对称点为)2,(y x Q -∵点)2,(y x Q -在)(x g y =的图像上,∴2222)(2---==-x x a x g y ,即得22222)(--+-=x x ax h . (3)22222)22(1)()(1)(--+-+-=+=x x x x a aa x h x f a x F2214244+-+⋅-=xx a a a 下面求)(x F 的最小值.①当⎪⎩⎪⎨⎧>->-014044a a a,即441<<a 时2)14)(4(24)14)(4(2)(+--=+--≥aa a a a a x F由722)14)(4()]([min+>+--=a a a x F ,得0)2)(12(<--a a ,所以221<<a .②当⎪⎩⎪⎨⎧≤-≥-014044a a a即410≤<a 时)(x F 在R 上是增函数,无最小值,与m x F =min )]([不符.③当⎪⎩⎪⎨⎧≥-≤-014044a a a即4≥a 时,)(x F 在R 上是减函数,无最小值,与m x F =min )]([不符.④当⎪⎩⎪⎨⎧<-<-014044a a a即0<a 时,2)(<x F ,与最小值72+>m 不符.综上所述,所求a 的取值范围是221<<a . 21.(本题满分12分)解:(1)设切线AB 的方程为1-=kx y ,代入2x y =得012=+-kx x ,由042=-=∆k 得2=k ,AB 的方程为12-=x y ,易得切点B (1,1). (2)线段AB 的中点M )0,21(,设过点M 的直线l 的方程为)21(-=x k y ,与2x y =交于),(),,(222211x x F x x E由021)21(22=+-⎪⎩⎪⎨⎧=-=k kx x x y x k y 得,有k x x k x x 21,2121==+.再设P ),(233x x ,Q ),(244x x ,要证)(R AB PQ ∈=λλ,只要PQ ∥AB ,证2==AB PQ k k 即可. 由43342324x x x x x x k PQ+=--=. ∵A 、P 、F 三点共线,有AF APk k =,∴22232311x x x x +=+ 32232232x x x x x x +=+,∴0)1)((3232=--x x x x ,又32x x ≠∴132=x x同理由A 、E 、Q 三点共线得141=x x∴2211121211243==+=+=+=k kx x x x x x x x k PQ所以PQ ∥AB ,有)(R AB PQ ∈=λλ.22.(本题满分14分)解:(1)由)0(323≠-=a ax x y 得ax x y 632/-=过曲线上的点P 1),(11y x 的切线L 1的方程为))(63()3(11212131x x ax x ax x y --=--又∵切线L 1过原点O ,有))(63()3(11212131x ax x ax x --=--化得231ax =.(2)过曲线上的点),(111+++n n n y x P 处的切线1+n L 方程为))(63()3(11212131+++++--=--n n n n n x x ax x ax x y1+n L 过点),(n n n y x P 得))(63(331121213123+++++--=+--n n n n n n n n x x ax x ax x ax x由于1+≠n n x x ,分解因式并约简,得1211211263)(3+++++-=+-++n n n n n n n n ax x x x a x x x x∴0)(3212112=---++++n n n n n nx x a x x x x0)(3)2)((111=--+-+++n n n n n n x x a x x x x∴a x x n n321=++.(3)由(2)得:23211a x x n n +-=+,∴)(211a x a x n n --=-+ 故有数列}{a x n -是首项为21a a x =-,公比为21-的等比数列.∴1)21(2--=-n n a a x ,∴a x nn ])21(1[--=∵0>a,∴当n 为偶数时,a x n <;当n 为奇数时a x n >.。
1.4 充分、必要条件(精练)【题组一 充分、必要条件的判断】1.(2021·浙江)命题:|1|2p x +>,命题1:1q x<,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】A【解析】由题知,命题:|1|21p x x +>⇔>或3x <-;命题1:11q x x<⇔>或0x <, 故p 是q 的充分不必要条件故选:A 2.(2021·天津)设x ∈R ,则“12x <<”是“22x -<<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要 【答案】A【解析】因为集合{|12}x x <<是集合{|22}x x -<<的真子集,所以“12x <<”是“22x -<<”的充分不必要条件.故选:A3.(2021·全国高三月考)设a R ∈,则“23a <<”是“2560a a --<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】由2560a a --<可得()()610a a -+<,即16a -<<,则23a <<是16a -<<的充分不必要条件,故选:A.4.(2021·天津)已知x ∈R ,则“2x <”是“21x >”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】当1x =-时,“x <2”成立,但20x < ,故“21x<”,故“x <2”不是“21x >”的充分条件, “21x >”等价于2002x x x -<⇔<<,即21x>能推出2x <,∴“x <2”是“21x >”的必要条件,故“x <2”是“21x >”的必要不充分条件,故选:B.5.(2021·天津)设x ∈R ,则“1x >”是“2x x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由1x >,解得1x <-或1x >,由2x x >,解得0x <或1x >, 故由1x >能够推出2x x >,由2x x >不能够推出1x >, 故“1x >”是“2x x >”的充分不必要条件,故选:A .6.(2021·天津高三二模)设x ∈R ,则“210x -<”是“31x >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由210x -<得1x >或1x <-,由31x >得1x >,因为1x >或1x <-推不出1x >,但1x >能推出1x >或1x <-成立,所以“210x -<”是“31x >”的必要不充分条件,故选:B7.(2021·江西高三二模(文))已知a ∈R ,则“0a <”是“2a a >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】当“0a <”成立时,2(1)0a a a a -=->,∴“2a a >”成立,即“0a <”⇒“2a a >”为真命题.而当“2a a >”成立时,2(1)0a a a a -=->,即1a >或0a <,0a ∴<不一定成立,即“0a <”是“2a a >”的充分不必要条件.故选:A8.(2021·天津)“201x x -≥+”是“213x -≥”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】解不等式201x x -≥+可得1x <-或2x ≥, 解不等式213x -≥得213x -≤-或213x -≥,解得1x ≤-或2x ≥, 因为{1x x <-或}2x ≥ {1x x ≤-或}2x ≥,因此,“201x x -≥+”是“213x -≥”的充分而不必要条件. 故选:A. 9.(2021·浙江高一期末)设x ∈R ,则31x <是1123x x +≤-的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .不充分也不必要条件 【答案】A【解析】由31x <可得1x <, 由1123x x +≤-可得()()4230230x x x ⎧--≤⎨-≠⎩解得32x <或4x ≥, 据此可知“31x <”是“1123x x +≤-”的充分不必要条件. 故选:A. 10.(2021·全国高一单元测试)命题:2p x y +=,命题1:3x q y =-⎧⎨=⎩;则p 是q 的( ) A .充要条件 B .必要条件 C .充分条件 D .既不充分也不必要条件【解析】因为当2x y +=时,y 可取任意实数,不一定有13x y =-⎧⎨=⎩,所以p 不是q 的充分条件; 因为13x y =-⎧⎨=⎩,所以2x y +=, 所以p 是q 的必要条件.故选:B.11.(2021·广东清远市)清远市是广东省地级市,据此可知“学生甲在广东省”是“学生甲在清远市”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 【答案】C【解析】先考虑充分性:学生甲在广东省,则学生甲不一定在清远市,所以“学生甲在广东省”是“学生甲在清远市”的非充分条件;再考虑必要性:学生甲在清远市,则学生甲一定在广东省,所以“学生甲在广东省”是“学生甲在清远市”的必要条件. 所以“学生甲在广东省”是“学生甲在清远市”的必要非充分条件.故选:C12.(2021·全国高一课时练习)下列各题中,哪些p 是q 的充要条件?(1)p :三角形为等腰三角形,q :三角形存在两角相等;(2):p O 内两条弦相等,:q O 内两条弦所对的圆周角相等;(3):p A B ⋂为空集,:q A 与B 之一为空集.【答案】(1)p 是q 的充要条件;(2)p 不是g 的充要条件;(3)p 不是q 的充要条件【解析】在(1)中,三角形中等边对等角,等角对等边,所以p q ⇔,所以p 是q 的充要条件; 在(2)中,O 内两条弦相等,它们所对的圆周角相等或互补,因此,p q ⇒/,所以p 不是q 的充要条件; 在(3)中,取{1,2}A =,{3}=B ,显然,A B =∅,但A 与B 均不为空集,因此,p q ⇒/,所以p 不是q 的充要条件. 13.(2021·全国高一课时练习)已知a ,b ,c 是实数,判断下列命题的真假:(1)“a b >”是“22a b >”的充分条件;(2)“a b >”是“22a b >”的必要条件;(3)“a b >”是“22ac bc >”的充分条件;(4)“a b >”是“22ac bc >”的必要条件.【答案】(1)假命题(2)假命题(3)假命题(4)真命题【解析】(1)假命题,因为a b >a b >⇔22a b >;(2)假命题,因为22a b >a b⇔>a b >;(3)假命题,因为a b >22ac bc >,依据为2c 可能为0; (4)真命题,因为()2220ac bc a b c >⇒>≠.【题组二 充分、必要条件的选择】1.(2020·全国高一课时练习)函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是( )A .m =-2B .m =1C .m =-1D .m =0 【答案】A【解析】当m =-2时,f (x )=x 2-2x +1,其图象关于直线x =1对称,反之,若函数f (x )=x 2+mx +1的图象关于直线x =1对称,则12m -=,即2m =-.所以f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是m =-2. 故选:A. 2.(2020·全国高一课时练习)“x y>1”的一个充分不必要条件是( ) A .x >yB .x >y >0C .x <yD .y <x <0【答案】B 【解析】如果p 是q 的充分不必要条件,那么p q ⇒,而q p ⇒/. 当x >y >0时,必有x y>1, 而x y >1⇔-x y y>0⇔x >y >0或x <y <0.所以x >y >0是x y>1的充分不必要条件. 故选:B. 3.(2020·江苏南通市·海安高级中学高一期中)(多选)一元二次方程240x x n ++=有正数根的充分不必要条件是( )A .4n =B .5n =-C .1n =-D .0n <【答案】BC【解析】设()24f x x x n =++,则函数的图象是开口向上的抛物线,且对称轴为2x =-, 要使得一元二次方程240x x n ++=有正数根,则满足()00f <,即0n <,所以一元二次方程240x x n ++=有正数根的充分不必要条件可以为B 、C ,故选:BC.4.(2021·江苏盐城市)(多选)“不等式20x x m -+>在R 上恒成立”的一个充分不必要条件是( )A .14m >B .01m <<C .2m >D .1m【答案】CD【解析】因为“不等式20x x m -+>在R 上恒成立”,所以等价于二次方程的20x x m -+=判别式140m ∆=-<,即14m >. 所以A 选项是充要条件,A 不正确;B 选项中,14m >不可推导出01m <<,B 不正确; C 选项中,2m >可推导14m >,且14m >不可推导2m >,故2m >是14m >的充分不必要条件,故C 正确;D 选项中,1m 可推导1>4m ,且1>4m 不可推导1m ,故>1m 是14m >的充分不必要条件,故D 正确. 故选:CD. 5.(2021·全国高一单元测试)(多选)下列“若p ,则q ”形式的命题中,p 是q 的必要条件的是( )A .若22x y >,则x y >B .若5x >,则10x >C .若ac bc =,则a b =D .若2121x y +=+,则x y = 【答案】BCD【解析】对于A 选项,取1x =,1y =-,则x y >,但22x y =,即“22x y >”不是“x y >”的必要条件;对于B 选项,若10x >,则5x >,即“5x >”是“10x >”的必要条件;对于C 选项,若a b =,则ac bc =,即“ac bc =”是“a b =”的必要条件;对于D 选项,若x y =,则2121x y +=+,即“2121x y +=+”是“x y =”的必要条件.故选:BCD.6.(2020·全国高一课时练习)(多选)下列条件中是“0a b +>”的充分条件的是( )A .0,0>>a bB .0,0a b <<C .3,2a b ==-D .0,0><a b 且a b >【答案】ACD【解析】对于A 选项,因为0,0a b >>,故0a b +>,所以A 选项正确;对于B 选项,因为0,0a b <<,故0a b +>不成立,故B 选项错误;对于C 选项,因为3,2a b ==-,故10a b +=>,故C 选项正确;对于D 选项,因为0,0a b ><且a b >,故a b >-,即:0a b +>,故D 选项正确.所以A ,C ,D 中的条件均是“0a b +>”的充分条件,B 中的条件不是“0a b +>”的充分条件.故选:ACD7.(2021·合肥市第十中学高一期末)(多选)“02x x ≤-”的充分条件有( ) A .02x <<B .12x -<<C .02x ≤<D .02x ≤≤ 【答案】AC 【解析】解:02x x ≤-,即(){2020x x x -≠-≤,解得:02x ≤<,即[)0,2x ∈, 要找“02x x ≤-”的充分条件,即找[)0,2的子集;对A ,02x <<,即()0,2x ∈,易知()0,2 [)0,2,故A 正确;对B ,12x -<<,即()1,2x ∈-,易知()1,2-不是[)0,2的子集,故B 错误;对C ,02x ≤<,即[)0,2x ∈,易知[)[)0,20,2⊆,故C 正确;对D ,02x ≤≤,即[]0,2x ∈,易知[]0,2不是[)0,2的子集,故D 错误.故选:AC.【题组三 文字中的充分、必要条件】1.(2021·湖南长沙市)1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年,仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】从逻辑学角度,命题“没有共产党就没有新中国”的逆否命题是“有了新中国就有了共产党”,因此“有共产党”是“有新中国”的必要条件,故选:B .2.(2021·新余市第一中学)“黄沙百战穿金甲,不破楼兰终不还”是我国唐代著名诗人王昌龄的《从军行》中的两句诗,描写了当时战事的艰苦以及戍边将士的豪情壮志,从逻辑学的角度看,最后一句中,“破楼兰”是“终还”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】“破楼兰”不一定“终还”,但“终还”一定是“破楼兰”,由充分条件和必要条件的定义判断可得“攻破楼兰”是“返回家乡”必要不充分条件,故选:B .3.(2021·江苏宿迁市·高二期末)2021年是中国共产党建党100周年.某校为了纪念党的生日,计划举办大型文艺汇演,某班选择合唱《没有共产党就没有新中国》这首歌.仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】命题:“没有共产党就没有新中国”,即是“如果没有共产党,那么就没有新中国”;其逆否命题为“如果有新中国,那么就有共产党”;即根据“有新中国”能推出“有共产党”,所以“有共产党”是“有新中国”的必要条件.故选:B.4.(2021·安徽)王安石在《游褒禅山记》中写道:“世之奇伟、瑰怪,非常之观,常在险远,而人之所罕至焉,故非有志者不能至也.”请问“有志”是能到达“奇伟、瑰怪,非常之观”的______条件.(填“充分”“必要”“充要”中的一个)【答案】必要【解析】因为“非有志者不能至”所以“能至是有志者”,因此“有志”是能到达“奇伟、瑰怪,非常之观”的必要条件.故答案为:必要【题组四 根据充分、必要条件求参数】1.(2021·浙江高一期末)(多选)已知{}28200P x x x =--≤,集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要条件,则实数m 的取值可以是( )A .1-B .1C .3D .5 【答案】ABC【解析】由28200x x --≤,解得210x -≤≤,∴[]2,10P =-, 非空集合{}11S x m x m =-≤≤+,又x P ∈是x S ∈的必要条件,所以S P ⊆,当S =∅,即0m <时,满足题意;当S ≠∅,即0m ≥时,∴21 110m m -≤-⎧⎨+≤⎩,解得03m ≤≤, ∴m 的取值范围是(],3-∞,实数m 的取值可以是1,1,3-,故选:ABC.2.(2021·全国高三专题练习)(多选)设:(3)0,:()(2)0p x x q x a x a -<--+≤.若p 是q 的必要不充分条件,则实数a 可以是( )A .32B .52C .72D .73【答案】BD【解析】解()30x x -<得,03x <<,记{}|03A x x =<<,解()(2)0x a x a --+得,2a x a -,记{}|2B x a x a =-≤≤, p 是q 的必要不充分条件,所以B A ∴203a a ->⎧⎨<⎩,解得23a <<, a ∴的取值范围是(2,3).故选:BD .3.(2021·黑龙江哈尔滨市)已知命题2:430p x x -+≤,命题2:40q x x m -+≥.若p 是q 的充分条件,则m 的取值范围是( )A .[)4,+∞B .[)3,+∞C .(],4-∞D .(],3-∞【答案】A【解析】命题p 为真,则2430x x -+≤,所以13x ≤≤,因为p 是q 的充分条件,所以[1,3]x ∈时,240x x m -+≥恒成立,注意到2x =[1,3]∈,所以1640m ∆=-≤,解得4m ≥.故选:A .4.(2021·浙江丽水市)已知命题2:320p x x -+≤,命题22:440q x x m -+-≤.若p 是q 的充分不必要条件,则m 的取值范围是( )A .(,0]-∞B .[1,)+∞C .{0}D .(,1][1,)-∞-+∞【答案】D【解析】2:320p x x -+≤,12x ≤≤,22:440q x x m -+-≤,22m x m -≤≤+, p 是q 的充分不必要条件,则2122m m ⎧-≤⎪⎨+≥⎪⎩,1m ≥,∴1m ≤-或m 1≥.故选:D . 5.(2021·全国高二单元测试)若p :x (x -3)<0是q :2x -3<m 的充分不必要条件,则实数m 的取值范围是________.【答案】m ≥3【解析】p :x (x -3)<0,则0<x <3;q :2x -3<m ,则32m x +<, 因为p :x (x -3)<0是q :2x -3<m 的充分不必要条件,所以332m +≥,解得m ≥3.故答案为:m ≥3 6.(2021·盐城市伍佑中学)已知p :2340x x --≤,q :3x m -≤,若p 是q 的充分不必要条件,则实数m 的取值范围是___________.【答案】[)4,+∞【解析】∵由2340x x --≤,得14x -≤≤,由p 是q 的充分不必要条件知:3x m -≤有解,故0m ≥,即原不等式可化为:3m x m -≤-≤,解得:33m x m -≤≤+, 设{}14A x x =-≤≤,{}33B x m x m =-≤≤+, p 是q 的充分不必要条件,A B ∴⊆,则03134m m m ≥⎧⎪-≤-⎨⎪+≥⎩,即041m m m ≥⎧⎪≥⎨⎪≥⎩,解得:4m ≥,故m 的取值范围是[)4,+∞.故答案为:[)4,+∞.7.(2021·陕西宝鸡市)已知条件:2(0)p m x m m ≤≤>,条件:14q x ≤≤,且p 是q 的充分不必要条件,则实数m 的取值范围是_________.【答案】[]1,2 【解析】p 是q 的充分不必要条件,[],2m m ∴ []1,4,需满足124m m ≥⎧⎨≤⎩,解得12m ≤≤, 综上,m 的取值范围是[]1,2.故答案为:[]1,2.8.(2021·湖南岳阳市·高一期末)已知集合{}1A x a x a =-≤≤,{}2430B x x x =-+≤.若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围 .【答案】[]2,3. 【解析】由题意知,{}1A x a x a =-≤≤不为空集,{}2|430{|13}B x x x x x =-+≤=≤≤, 因为“x A ∈”是“x B ∈”的充分不必要条件,所以A 真包含于B ,则113a a -≥⎧⎨≤⎩,解得23a ≤≤. 所以实数a 的取值范围是[]2,3.9.(2021·云南大理白族自治州)已知集合22{|11}{|4}A x m x m B x x =-<<+=<,. (1)当2m =时,求A B A B ⋃⋂,;(2)若''''x A ∈是''''x B ∈成立的充分不必要条件,求实数m 的取值范围.【答案】(1)()()2,51,2-,;(2)11m -<≤ 【解析】(1)当2m =时,{|15}{|22}A x x B x x =<<=-<<,,()()2,51,2A B A B ⋃=-⋂=,;(2)若''''x A ∈是''''x B ∈成立的充分不必要条件,则A 是B 的真子集,211m m -≥+或22111212m m m m ⎧-<+⎪-≥-⎨⎪+≤⎩解得:11m -≤≤,因为m =-1时为充要条件,不合题意,所以11m -<≤10.(2021·寿县第一中学高一开学考试)已知全集为R ,集合{}26A x x =≤≤,{}3782B x x x =-≥-.(1)求A B ;(2)若{}44C x a x a =-≤≤+,且“x C ∈”是“x AB ∈”的必要不充分条件,求a 的取值范围. 【答案】(1)[]3,6;(2)[]2,7. 【解析】1){|3782}{|3}B x x x x x =--=,又{}26A x x =≤≤{|36}A B x x ∴=, (2)因为“x C ∈”是“x A B ∈”的必要不充分条件,所以()A B C ,因为{}44C x a x a =-≤≤+所以4643a a +≥⎧⎨-≤⎩解得27a ≤≤,即[]2,7a ∈ 11.(2021·东莞市光明中学)设:24p x ≤<,:q 实数x 满足22230(0)x ax a a --<>(1)若1a =,且,p q 都为真命题,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.【答案】(1){}23x x ≤<;(2)4,3⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)当1a =时,可得22230x ax a --<,可化为2230x x --<,解得13x, 又由命题p 为真命题,则24x ≤<.所以p ,q 都为真命题时,则x 的取值范围是{}23x x ≤<.(2)由22230,(0)x ax a a --<>,解得3a x a -<<,因为:24p x ≤<,且p 是q 的充分不必要条件, 即集合 {}24x x ≤<是{}3x a x a -<<的真子集,则满足 2340a a a -<⎧⎪≥⎨⎪>⎩,解得43a ≥, 所以实数a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭.12.(2021·湖北十堰市)已知集合{}22320A xx ax a =-+≤∣,集合{}220B x x x =--≤∣,:p x A ∈,:q x B ∈.(1)当1a =时,p 是q 的什么条件?(2)若q 是p 的必要条件,求实数a 的取值范围.【答案】(1)p 是q 的充分不必要条件;(2)1,12⎡⎤-⎢⎥⎣⎦. 【解析】(1)当1a =时,集合{}2320{12}A xx x x x =-+≤=≤≤∣∣, {}{}22012B x x x x x =--≤=-≤≤∣∣,所以A B ,所以p 是q 的充分不必要条件.(2)因为q 是p 的必要条件,所以A B ⊆,而{}22320{()(2)0}A x x ax a x x a x a =-+≤=--≤∣∣. 当0a >时,{2}A xa x a =≤≤∣, 所以1222a a a a ≥-⎧⎪≤⎨⎪<⎩,所以01a <≤;当0a =时,{0}A =,成立;当0a <时,{2}A xa x a =≤≤∣, 所以2122a a a a ≥-⎧⎪≤⎨⎪<⎩,所以102a -≤<. 综上所述,112a -≤≤,即实数a 的取值范围为1,12⎡⎤-⎢⎥⎣⎦. 【题组五 充分、必要条件的证明】1.(2021·全国高一课时练习)求证:关于x 的方程210x mx ++=有两个负实根的充要条件是2m ≥.【答案】详见解析【解析】充分性:2m≥,∴240m∆=-≥,方程210x mx++=有实根,设210x mx++=的两根为1x,2x,由韦达定理知:1210x x=>,∴1x、2x同号,又122x x m+=-≤-,∴1x,2x同为负根;必要性:210x mx++=的两个实根1x,2x均为负,且121=x x,∴121112()22m x x xx-=-+-=-⎛⎫⎪⎝⎭+-()2211111211xx xx x+++=-=-≥,∴2m≥.所以命题得证.2.(2021·全国高一单元测试)设,x y R∈,求证||||||x y x y+=+成立的充要条件是0xy≥.【答案】见解析【解析】①充分性:若0xy≥,则有0xy=和0xy>两种情况,当0xy=时,不妨设0x=,则||||x y y+=,||||||x y y+=,∴等式成立.当0xy>时,0x>,0y>或0x<,0y<,当0x>,0y>时,||x y x y+=+,||||x y x y+=+,∴等式成立,当0x<,0y<时,||()x y x y+=-+,||||x y x y x y+=--=+,∴等式成立.综上,当0xy≥时,||||||x y x y+=+成立.②必要性:若||||||x y x y+=+且,x y R∈,则22||(||||)x y x y+=+,即222222||||x xy y x y x y++=++⋅,∴||xy xy=,∴0xy≥.综上可知,0xy ≥是等式||||||x y x y +=+成立的充要条件.。
专题01 集合及其运算【母题来源一】【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则AB =__▲___.【答案】{}0,2【解析】根据集合的交集即可计算.∵{}1,0,1,2A =-,{}0,2,3B =∴{}0,2A B =,故答案为:{}0,2.【名师点睛】本题考查了交集及其运算,是基础题型.【母题来源二】【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则 A B = ▲ .【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B =.【名师点睛】本题主要考查交集的运算,属于基础题.【母题来源三】【2018年高考江苏】已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B = ▲ .【答案】{1,8}【解析】由题设和交集的定义可知:{}1,8A B =.【名师点睛】本题考查交集及其运算,考查基础知识,难度较小.(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.【命题意图】(1)了解集合的含义.(2)理解两个集合的交集的含义,会求两个简单集合的交集.(3)能够正确处理含有字母的讨论问题,掌握集合的交集运算和性质.【命题规律】 这类试题在考查题型上主要以填空题的形式出现,主要考查集合的基本运算,其中集合以描述法呈现.试题难度不大,多为低档题,从近几年江苏的高考试题来看,主要的命题角度有:(1)离散型或连续型数集间的交集运算;(2)已知集合的交集运算结果求参数.【答题模板】解答此类题目,一般考虑如下三步:第一步:看元素构成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键,即辨清是数集、点集还是图形集等;第二步:对集合化简,有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决;第三步:应用数形结合进行交、并、补等运算,常用的数形结合形式有数轴、坐标系和韦恩图(Venn).【方法总结】(一)集合的基本运算及其表示:(1)交集:由属于集合A 且属于集合B 的所有元素组成的集合,即{|}A B x x A x B =∈∈且.(2)并集:由所有属于集合A 或属于集合B 的元素组成的集合,即|}{A B x x A x B =∈∈或.(3)补集:由全集U 中不属于集合A 的所有元素组成的集合,即{|}U A x x U x A =∈∉且.(二)与集合元素有关问题的解题方略:(1)确定集合的代表元素;(2)看代表元素满足的条件;(3)根据条件列式求参数的值或确定集合元素的个数.但要注意检验集合中的元素是否满足互异性.(三)集合间的基本关系问题的解题方略:(1)判断集合间基本关系的方法有三种:①列举观察;②集合中元素特征法,首先确定集合中的元素是什么,弄清楚集合中元素的特征,再判断集合间的关系;③数形结合法,利用数轴或韦恩图求解.(2)求集合的子集:若集合A 中含有n 个元素,则其子集个数为2n 个,真子集个数为21n -个,非空真子集个数为22n -个.(3)根据两集合关系求参数:已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(四)求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.(1)离散型数集或抽象集合间的运算,常借助Venn 图或交、并、补的定义求解;(2)点集的运算常利用数形结合的思想或联立方程组进行求解;(3)连续型数集的运算,常借助数轴求解;(4)已知集合的运算结果求集合,常借助数轴或Venn 图求解;(5)根据集合运算结果求参数,先把符号语言转化成文字语言,然后适时应用数形结合求解.1.(2020届江苏省苏州市吴江区高三下学期五月统考数学试题)已知集合{}1,2,3,4A =,集合{}4,5B =,则AB =______.【答案】{}4【解析】因为集合{}1,2,3,4A =,集合{}4,5B =,所以{}4A B ⋂=.故答案为:{}4.【点睛】本题主要考查集合的交集运算,熟记概念即可,属于基础题型.2.(江苏省无锡市、常州市2019-2020学年高三下学期5月联考数学试题)已知集合{}012M =,,,集合{}0,2,4N =,则M N ⋃=__________.【答案】{}0,1,2,4 【解析】集合{}012M =,,,集合{}0,2,4N =, ∴{}0,1,2,4M N ⋃=.故答案为:{}0,1,2,4.【点睛】本题考查并集及其运算,属于基础题.3.(江苏省盐城中学2020届高三下学期第一次模拟数学试题)已知集合{}13A x =-<<,{}|2=≤B x x ,则A B =_________ .【答案】(-1,2]【解析】由题意{|12}A B x x =-<≤故答案为:(1,2]-.【点睛】本题考查集合的交集运算,掌握交集概念是解题关键.4.(2020届江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)高三下学期第二次调研考试数学试题)已知集合{}1,4A =,{}5,7B a =-.若{}4A B ⋂=,则实数a 的值是______.【答案】9 【解析】集合{}1,4A =,{}5,7B a =-,{}4A B ⋂=,∴54a -=,则a 的值是9.故答案为:9【点睛】本题考查集合的交集,是基础题.5.(江苏省南京市金陵中学、南通市海安高级中学、南京市外国语学校2020届高三下学期第四次模拟数学试题)已知集合{}{}02,1,0,1,2M x x N =≤<=-,则MN =__________.【答案】{}0,1 【解析】因为{}{}02,1,0,1,2M x x N =≤<=-,所以{}0,1M N ⋂=. 6.(2020届江苏省高三高考全真模拟(六)数学试题)已知集合{1,0,2}A =-,{}0,1,2,3B =,则A B =______.【答案】{1,0,1,2,3}-【解析】由题意1,0,1{,2,}3A B =-.故答案为:{1,0,1,2,3}-.【点睛】本题考查集合的并集运算,属于简单题.7.(江苏省泰州市姜堰区、南通市如东县2020届高三下学期适应性考试数学试题)已知集合{1,3,}A a =,{4,5}B =.若{4}A B ⋂=,则实数a 的值为______.【答案】4【解析】{}4A B ⋂=4A ∴∈且4B ∈4a ∴=【点睛】本题考查了交集的定义,意在考查学生对交集定义的理解,属于基础题.8.(江苏省扬州中学2020届高三下学期6月模拟考试数学试题)集合{}0,3x A =,{}2,0,1B =-,若A B B ⋃=,则x =_________________.【答案】0【解析】∵A B B ⋃=,∴A B ⊆,又{}0,3x A =,{}2,0,1B =-,∴31x =,∴0x =,故答案为:0.【点睛】本题主要考查集合的并集运算的应用,属于基础题.9.(江苏省泰州中学2019-2020学年高三下学期4月质量检测数学试题)已知集合{|02}A x x =<<,{|1}B x x =>,则A B =______【答案】{|12}x x <<【解析】因为集合{|02}A x x =<<,{|1}B x x =>,所以{|12}A B x x =<<.故答案为:{|12}x x <<【点睛】本题主要考查集合的交集运算,属基础题.10.(江苏省扬州市2020届高三下学期6月最后一卷数学试题)已知集合2{1,0,}A a =-,{1,1}B =-,则A B B =,则实数a 的值是_______.【答案】±1【解析】因为AB B =,所以B A ⊆,又2{1,0,}A a =-,{1,1}B =-,所以21a =,解得1a =±.故答案为:±1【点睛】本题主要考查集合间的基本关系,属于基础题.11.(2020届江苏省苏州市三校高三下学期5月联考数学试题)设集合{2,0,1,2}=-A ,{}|10B x x =-<,则A B =___________.【答案】{}2,0-【解析】由已知,{}|1B x x =<,所以AB ={}2,0-. 故答案为:{}2,0-【点睛】本题考查集合的交集运算,考查学生的基本计算能力,是一道基础题.12.(江苏省盐城市2020届高三下学期第四次模拟数学试题)若集合{}A x x m =≤,{}1B x x =≥-,且{}A B m =,则实数m 的值为_______.【答案】1- 【解析】∵{}A x x m =≤,{}1B x x =≥-,且{}AB m =,∴1m =-,故答案为:1-.【点睛】本题主要考查集合的交集运算,属于基础题.13.(江苏省苏州市2019-2020学年高三上学期期中数学试题)已知集合{2,1,0,1,2}A =--,{|0}B x x =>,则A B =__________.【答案】{1,2} 【解析】集合{2,1,0,1,2}A =--,{|0}B x x =>,{1,2}A B ∴=,故答案为:{1,2}.【点睛】本题考查集合交集的运算,是基础题.14.(江苏省淮安市清浦中学2019-2020学年高三下学期5月阶段性检测数学试题)已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.15.(江苏省盐城市第一中学2020届高三下学期第一次调研考试数学试题)设全集{}0,1,2U =,集合{}0,1A =,则U C A =________.【答案】{}2【解析】{}{}0,1,2,0,1U A =={}2U C A ∴=故答案为:{}2【点睛】本题考查了补集的运算,属于基础题.16.(2020届江苏省苏州市常熟市高三阶段性抽测三数学试题)已知集合{}2A x x =≤,(){}40B x x x =-≤,则()A B =R ________.【答案】(]2,4 【解析】集合(){}{}4004B x x x x x =-≤=≤≤ 因为集合{}2A x x =≤ 所以{}2R A x x => 所以(){}(]242,4R A B x x ⋂=<≤=.故答案为:(]2,4.【点睛】本题考查解一元二次不等式,集合的补集、交集运算,属于简单题.17.(2020届江苏省南通市高三下学期5月模拟考试数学试题)已知集合{}1,2,3,4A =,{}2|log (1)2B x x =-<,则A B =____.【答案】{}2,3,4【解析】由题意可得:{}{}|014|15B x x x x =<-<=<< ,则{}2,3,4A B⋂=.如何学好数学做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解(主要有排除法、特殊值代入法、特例求解法、选项一一带入验证法、数形结合法、逻辑推理验证法等等),一般可以综合运用各种方法,达到快速做出选择的效果。
2020高三年级阶段测试(二)生物一、单项选择题1.研究表明,溶液浓度升高,冰点降低。
“霜打”后的青菜格外“甜”。
下列分析错误的是A. 结合水增多,增强抗寒能力B. 多糖水解成单糖,细胞液浓度升高,冰点降低C. 霜打后的青菜细胞中还有自由水D. 该现象是青菜对低温环境的一种不适应的表现【答案】D【解析】低温来临,自由水转化为结合水,增强其抗寒能力,A正确;细胞质、细胞液中的多糖降解为单糖以提高浓度,冰点降低,提高抗寒抗冻能力,B正确;只要细胞还是活的,则一定还有自由水,C正确;该现象是青菜对低温环境的一种适应,D错误。
2.有一条直链多肽链,分子式为C69H121O21N25S,将它彻底水解后,只得到下列四种氨基酸,则该多肽的肽键数为A. 19B. 20C. 24D. 23【答案】A【解析】【分析】脱水缩合是指一个氨基酸分子的羧基和另一个氨基酸分子的氨基相连接,同时脱出一分子水,所以脱去的水分子中的氢原子来自氨基和羧基。
脱水缩合过程中的相关计算:蛋白质分子中氧原子数目=肽键数目+肽链数×2+R基中的氧原子数。
【详解】从氨基酸的结构式可看出,这几种氨基酸都是只含有一个羧基,多肽链分子式中有21个O,由于该肽链有一个羧基,根据O守恒:O=—CO-NH—+—COOH+R基中的O;21=—CO-NH—+2个0,故肽键数=19,综上分析,BCD错误,A正确。
故选A。
3.下列关于细胞结构与功能的叙述,错误的是A. 液泡中贮存的营养物质有利于维持细胞内的渗透压B. 细胞骨架与细胞分裂、分化及信息传递密切相关C. 溶酶体能吞噬并杀死入侵细胞的多种病毒或病菌D. 高尔基体是蛋白质合成、修饰加工、包装的场所【答案】D【解析】【分析】液泡是单层膜形成的泡状结构;内含细胞液(有机酸、糖类、无机盐、色素和蛋白质等),可调节植物细胞内的环境,充盈的液泡使植物细胞保持坚挺。
高尔基体可对来自内质网的蛋白质进行加工、分类和包装的“车间”及“发送站”(动物细胞高尔基体与分泌有关;植物细胞中高尔基体则参与细胞壁形成)。
四省八校2020届高三第三次教学质量检测考试数学理试题含解析“四省八校”2020届高三第三次教学质量检测考试数学(理科)注意事项:1。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1。
已知某校有高一学生1000人,高二学生800人,高三学生600人,该校学生会希望调查有关本学期学生活动计划的意见,现从全体高中学生中抽取10%作为样本.若利用分层抽样,则应在高二学生中抽取( )A. 100人B. 80人C。
600人D。
240人【答案】B【解析】【分析】由题意结合分层抽样的定义求解需要抽取的高二学生人数即可。
【详解】由分层抽样的定义可知,应在高二学生中抽取人数为:()800100080060010%801000800600++⨯⨯=++。
故选:B 。
【点睛】进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.2.已知复数21iz i-+=+,则z 在复平面内对应点的坐标为( ) A. 13,22⎛⎫-- ⎪⎝⎭B. 13,22⎛⎫- ⎪⎝⎭C. 31,22⎛⎫- ⎪⎝⎭D 。
31,22⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】首先化简所给的复数,然后结合化简结果即可确定其所在的象限。
【详解】()()()()2121313111222i i i i z i i i i -+--+-+====-+++-, 则z 在复平面内对应的点坐标为13,22⎛⎫- ⎪⎝⎭, 故选:B .【点睛】本题主要考查复数的运算法则,复数所对应的点的坐标的确定等知识,意在考查学生的转化能力和计算求解能力。
2020届江苏省南通市海安高级中学高三阶段测试三数学试题一、填空题1.设全集{1,2,3,4,5}U =,若{1,2,4}UA =,则集合A =_________.【答案】{3,5}. 【解析】直接求根据{1,2,4}UA =求出集合A 即可.【详解】解:因为全集{1,2,3,4,5}U =若{1,2,4}UA =,则集合A ={3,5}. 故答案为:{3,5}. 【点睛】本题考查补集的运算,是基础题.2.已经复数z 满足(2)1z i i -=+(i 是虚数单位),则复数z 的模是________.【解析】【详解】(2)1z i i -=+,11323,i iz i i i++∴=+==-z =.3.已知一组数据123,,a a a ,…,n a 的平均数为a ,极差为d ,方差为2S ,则数据121,a +221,a +321a +,…,21n a +的方差为___________.【答案】24S【解析】根据在一组数据的所有数字上都乘以同一个数字,得到的新数据的方差是原来数据的平方倍,得到结果. 【详解】解: ∵数据123,,a a a ,…,n a 的方差为2S ,∴数据121,a +221,a +321a +,…,21n a +的方差是22224S S ⨯=,故答案为:24S . 【点睛】此题主要考查了方差,关键是掌握方差与数据的变化之间的关系. 4.如图是一个算法的伪代码,其输出的结果为_______.【答案】1011【解析】由题设提供的算法流程图可知:1111101122310111111S =++⋅⋅⋅+=-=⨯⨯⨯,应填答案1011. 5.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为______。
【答案】18【解析】试题分析:分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种; 2排在百位,从1、3、5中选两个数字排在个位与十位,共有23A =6种;故共有323A =18种,故答案为18.【考点】计数原理点评:本题考查计数原理的运用,考查分类讨论的数学思想,正确分类是关键6.在平面直角坐标系xOy 中,若双曲线()2222:10,0x y C a b a b-=>>10,则双曲线C 的渐近线方程为_______. 【答案】3y x =±【解析】10,可以得到10ca=222a b c +=求出,a b的关系,从而得出渐近线的方程. 【详解】解:因为双曲线()2222:10,0x y C a b a b-=>>,所以ca= 故2210c a=, 又因为222a b c +=,所以22210a b a +=,即229b a=,即3=b a , 所以双曲线的渐近线3y x =±. 【点睛】本题考查了双曲线渐近线的问题,解题的关键是由题意解析出,a b 的关系,从而解决问题.7.将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 为 . 【答案】4【解析】试题分析:将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的(π23x -()π4f =4sin 42π=.故答案为:4.【考点】三角函数的图象平移.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且()23(2)0f x x f -+>,则实数x 的取值范围是_________【答案】(1,2)【解析】根据题意,由函数的奇偶性和单调性分析可得函数()f x 在R 上为减函数,则()23(2)0f x x f -+>可以转化为232x x -<-,解可得x 的取值范围,即可得答案.【详解】解:根据题意,()f x 是在R 上的奇函数,且在区间[0,)+∞上是单调减函数, 则其在区间(,0)-∞上递减, 则函数()f x 在R 上为减函数,()()22223(2)03(2)(3)(2)32f x x f f x x f f x x f x x -+>⇒->-⇒->-⇒-<-,解得:12x <<;即实数x 的取值范围是(1,2); 故答案为:(1,2). 【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是分析函数在整个定义域上的单调性.9.在锐角三角形ABC 中3sin 5A =,1tan()3A B -=-,则3tan C 的值为_________.【答案】79【解析】由题意可得tan A ,进而可得tan B ,而tan tan()C A B =-+,由两角和与差的正切公式可得. 【详解】解:∵在锐角三角形ABC 中3sin 5A =,4cos 5A ∴==, sin 3tan cos 4A A A ∴==, 31tan tan()1343tan tan[()]311tan tan()9143A A B B A A B A A B +--∴=--===+--⨯, 313tan tan 7949tan tan()3131tan tan 3149A B C A B A B ++∴=-+=-=-=--⨯,3tan 79C ∴=故答案为:79. 【点睛】本题考查两角和与差的正切公式,属中档题.10.已知n S 为数列{}n a 的前n 项和3(1)(*)n n S na n n n N =--∈且211a =.则1a 的值________ 【答案】5【解析】由3(1)(*)n n S na n n n N =--∈,且211a =.取2n =即可得出. 【详解】解:∵3(1)(*)n n S na n n n N =--∈,且211a =.12226a a a ∴+=-,即1265a a =-=.故答案为:5. 【点睛】本题考查了递推式的简单应用,是基础题. 11.设正实数x ,y 满足x yxyx y,则实数x的最小值为______. 1.【解析】由正实数x ,y 满足x y xyx y,化为()2210xy x y x +-+=,可得()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,计算即可. 【详解】解:由正实数x ,y 满足xy xyx y, 化为()2210xy x y x +-+=,∴()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,化为426101x x x ⎧-+≥⎨>⎩, 解得1x ≥.因此实数x 1.故答案为:21+. 【点睛】本题考查了一元二次方程的实数根与判别式、根与系数的关系、一元二次不等式的解法,考查了推理能力和计算能力,属于中档题.12.如图正四棱柱1111ABCD A BC D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点)且//EF BC ,则四棱锥1A AEFD -的体积为___________.【答案】9【解析】由11113A AED E A AD A AD V V S AB --∆==⋅,由此能求出四棱锥1A AEFD -的体积. 【详解】 解:连接DE ,∵正四棱柱1111ABCD A BC D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点),且//EF BC ,11A AED A FED V V --∴=,1111111111193662A AED E A AD A AD A ADD ABCD A C D V V S AB S AB V --∆-∴==⋅=⋅==,∴四棱锥1A AEFD -的体积19AAEFD V -=. 故答案为:9. 【点睛】本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,是中档题.13.已知向量,,a b c 满足0a b c ++=且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,||2b =,则a c ⋅的值为___________. 【答案】45【解析】可设,,AB a BC b CA c ===,由题意可得11tan ,tan 23B C ==,由两角和的正切公式,可得tan A ,再由同角的基本关系式可得sin ,sin B C ,再由正弦定理可得AB ,AC ,由数量积的定义即可得到所求值. 【详解】解:可设,,AB a BC b CA c ===, 由题意可得11tan ,tan 23B C ==, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A ︒=,又,B C 为锐角,22sin 1sin cos 1,cos 2B B B B +==,可得sin 5B =,同理可得sin C =,由正弦定理可得2sin135︒==,即有21025,55c a ==,则4||||cos 4525a c c a ︒⋅=⋅⋅==. 故答案为:45. 【点睛】本题考查向量的数量积的定义,考查正弦定理和三角函数的化简和求值,以及运算求解能力,属于中档题.14.已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0<g x ;②(,4),()()0x f x g x ∃∈-∞-<.则m 的取值范围是________________. 【答案】()4,2m ∈--【解析】根据()220x g x =-<可解得x<1,由于题目中第一个条件的限制,导致f(x)在1x ≥是必须是()0f x <,当m=0时,()0f x =不能做到f(x)在1x ≥时()0f x <,所以舍掉,因此,f(x)作为二次函数开口只能向下,故m<0,且此时2个根为122,3x m x m ==--,为保证条件成立,只需1221{31x m x m =<=--<1{24m m <⇒>-,和大前提m<0取交集结果为40m -<<;又由于条件2的限制,可分析得出在(,4),()x f x ∃∈-∞-恒负,因此就需要在这个范围内g(x)有得正数的可能,即-4应该比12x x 两个根中较小的来的大,当(1,0)m ∈-时,34m --<-,解得交集为空,舍.当m=-1时,两个根同为24->-,舍.当(4,1)m ∈--时,24m <-,解得2m <-,综上所述,(4,2)m ∈--.【考点定位】本题考查学生函数的综合能力,涉及到二次函数的图像开口,根大小,涉及到指数函数的单调性,还涉及到简易逻辑中的“或”,还考查了分类讨论思想.二、解答题15.已知ABC ∆的面积为()18AC AB CB ⋅-=,向量(tan tan ,sin 2)m A B C =+和向量(1,cos cos )n A B =是共线向量.(1)求角C ;(2)求ABC ∆的边长c . 【答案】(1) 3C π=(2) 【解析】(1)利用向量共线的条件,建立等式,再利用和角的正弦公式化简等式,即可求得角C ;(2)由()18AC AB CB ⋅-=得:2()18AC AB BC AC ⋅+==,进而利用ABC ∆的面积为,及余弦定理可求ABC ∆的边长c . 【详解】(1)因为向量(tan tan ,sin 2)m A B C =+和(1,cos cos )n A B =是共线向量, 所以cos cos (tan tan )sin 20A B A B C +-=, 即sin cos cos sin 2sin cos 0A B A B C C +-=, 化简sin 2sin cos 0C C C -=, 即sin (12cos )0C C -=.因为0C π<<,所以sin 0C >, 从而1cos ,2C =3C π=.(2)()18AC AB CB ⋅-=,18()AC AB CB ∴=⋅-2||AC AC AC =⋅=则||18AC =AC =因为ABC 的面积为,所以1sin 2CA CB C ⋅=即1sin 23π⨯=解得CB =在ABC 中,由余弦定理得2222cos AB CA CB CA CB C =+-⋅22122=+-⨯54=,所以AB ==【点睛】本题重点考查正弦、余弦定理的运用,考查向量知识的运用,解题的关键是正确运用正弦、余弦定理求出三角形的边.16.如图,四棱锥P -ABCD 的底面为矩形,且AB BC =1,E ,F 分别为AB ,PC 中点.(1)求证:EF∥平面PAD;(2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.【答案】证明:(1)方法一:取线段PD的中点M,连结FM,AM.因为F为PC的中点,所以FM∥CD,且FM=12 CD.因为四边形ABCD为矩形,E为AB的中点,所以EA∥CD,且EA=12 CD.所以FM∥EA,且FM=EA.所以四边形AEFM为平行四边形.所以EF∥AM.……………………… 5分又AM⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.………7分方法二:连结CE并延长交DA的延长线于N,连结PN.因为四边形ABCD为矩形,所以AD∥BC,所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB,所以△CEB≌△NEA.所以CE=NE.又F为PC的中点,所以EF∥NP.………… 5分又NP⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD. (7)分方法三:取CD的中点Q,连结FQ,EQ.在矩形ABCD中,E为AB的中点,所以AE=DQ,且AE∥DQ.所以四边形AEQD为平行四边形,所以EQ∥AD.又AD⊂平面PAD,EQ⊄平面PAD,所以EQ∥平面PAD. (2)分因为Q,F分别为CD,CP的中点,所以FQ∥PD.又PD⊂平面PAD,FQ⊄平面PAD,所以FQ∥平面PAD.又FQ,EQ⊂平面EQF,FQ∩EQ=Q,所以平面EQF∥平面PAD. (5)分因为EF⊂平面EQF,所以EF∥平面PAD.……………………………… 7分(2)设AC,DE相交于G.在矩形ABCD中,因为AB=2BC,E为AB的中点.所以DAAE=CDDA=2.又∠DAE=∠CDA,所以△DAE∽△CDA,所以∠ADE=∠DCA.又∠ADE+∠CDE=∠ADC=90°,所以∠DCA+∠CDE=90°.由△DGC的内角和为180°,得∠DGC=90°.即DE⊥AC. (10)分因为平面PAC⊥平面ABCD 因为DE⊂平面ABCD,所以DE⊥平面PAC,又DE⊂平面PDE,所以平面PAC⊥平面PDE.………………………… 14分【解析】略17.如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q.(1)求水上旅游线AB的长;(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h时的半径为(a为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.【答案】(1)(2)【解析】试题分析:(1)由条件建立直角坐标系较为方便表示:,直线的方程为.由Q到海岸线ON的距离为km,得,解得,再由两直线交点得,利用两点间距离公式得(2)由题意是一个不等式恒成立问题:设小时时,游轮在线段上的点处,而不等式恒成立问题往往利用变量分离将其转化为对应函数最值问题:试题解析:(1)以点为坐标原点,直线为轴,建立直角坐标系如图所示.则由题设得:,直线的方程为.由,及得,∴.∴直线的方程为,即,由得即,∴,即水上旅游线的长为.(2)设试验产生的强水波圆,由题意可得P(3,9),生成小时时,游轮在线段上的点处,则,∴.强水波不会波及游轮的航行即,当时,当.,,当且仅当时等号成立,所以,在时恒成立,亦即强水波不会波及游轮的航行.【考点】函数实际应用,不等式恒成立18.在平面直角坐标系xOy 中已知椭圆222:1(0)3x y E a b a +=>>过点6⎛ ⎝⎭,其左、右焦点分别为12F F 、,离心率为22. (1)求椭圆E 的方程;(2)若A ,B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P .(i )求证:OP OM ⋅为定值;(ii )设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由.【答案】(1) 22142x y += (2) (i )证明见解析,定值为4 (ii )直线MQ 过定点(0,0)O . 【解析】(1)由题意得离心率公式和点满足的方程,结合椭圆的,,a b c 的关系,可得,a b ,进而得到椭圆方程;(2)(i )设()02,,M y ()11,P x y ,求得直线MA 的方程,代入椭圆方程,解得点P 的坐标,再由向量的数量积的坐标表示,计算即可得证;(ii )直线MQ 过定点O (0,0).先求得PB 的斜率,再由圆的性质可得MQ ⊥PB ,求出MQ 的斜率,再求直线MQ 的方程,即可得到定点. 【详解】解:(1)易得2231212a b c a⎧⎪+=⎪⎨⎪=⎪⎩,且222c a b =-, 解得2242a b ⎧=⎨=⎩,, 所以椭圆E 的方程为22142x y +=(2)设()02,,M y ()11,P x y ,①易得直线MA 的方程为:0042y y y x =+, 代入椭圆22142x y +=得,2222000140822y y y x x ⎛⎫+++-= ⎪⎝⎭, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, 所以示()()20002200288,2,88y y OP OM y y y ⎛⎫-- ⎪⋅=⋅ ⎪++⎝⎭()22002200488488y y y y --=+=++, ②直线MQ 过定点(0,0)O ,理由如下:依题意,()2020020882288PBy y k y y y +==---+, 由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02yy x =,所以直线MQ 过定点(0,0)O . 【点睛】本题考查椭圆的方程和性质,主要考查椭圆的离心率公式和方程的运用,注意联立直线方程和椭圆方程,运用韦达定理,同时考查向量的数量积的坐标表示和直线和圆的位置关系,属于中档题.19.已知数列{}n a 满足:123a a a k ===(常数0k >),111n n n n K a a a a -+-+=()*3,n n N ≥∈.数列{}n b 满足:21n n n n a a b a +++=()*n N ∈. (1)求1,b 2,b 3,b 4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.【答案】(1) 132b b ==,2421k b b k +==;(2) 41122nn k b k k+-=+(); (3) k 为1,2时数列{}n a 是整数列.【解析】(1)经过计算可知:45621,2,4a k a k a k k=+=+=++,由数列{}n b 满足:21n n n n a a b a +++=(n =1,2,3,4…),从而可求1,b 2,b 3,b 4b ;(2)由条件可知121n n n n a a k a a +--=+.得211n n n n a a k a a +-+=+,两式相减整理得2n n b b -=,从而可求数列{}n b 的通项公式;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n na a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩,由1a k Z =∈,624Z a k k =++∈,可求得1,2k =.证明1,2k =时,满足题意,说明1,2k =时,数列{}n a 是整数列. 【详解】(1)由已知可知:45621,2,4a k a k a k k=+=+=++, 把数列{}n a 的项代入21n n n n b a a a =+++求得132b b ==,2421k b b k+==; (2)由121n n n n k a a a a --++=3,n n N ≥∈*()可知:121n n n n a a k a a +--=+① 则:211n n n n a a k a a +-+=+②①−②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -=2123n n b b --∴==…13122a a b a +===,222n n b b -== (242321)a a kb a k++===, 41122nn k b k k+-∴=+(); (3)假设存在正数k 使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n n a a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩③,由1a k Z =∈,624Z a k k=++∈,可知1k =,2. 当1k =时,213k k+=为整数,利用123,,a a a Z ∈结合③式可知{}n a 的每一项均为整数;当2k =时,③变为2122122222512n n n n n n a a a a a a +-+=-⎧⎪⎨=+-⎪⎩④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立.故数列{}n a 是整数列.综上所述k 为1,2时数列{}n a 是整数列. 【点睛】本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,注意分类讨论思想和转化思想的运用,属于难题. 20.设函数()()ln ,f x x a x x a =--+a R ∈. (1)若0a =求函数()f x 的单调区间;(2)若0a <试判断函数()f x 在区间()22,e e -内的极值点的个数,并说明理由;(3)求证:对任意的正数a 都存在实数t 满足:对任意的(,)x t t a ∈+,()1f x a <-. 【答案】(1) 单调递减区间为(0,1)单调递增区间为(1,)+∞. (2) 见解析 (3)证明见解析 【解析】(1)求解()ln f x x '=,利用()0,()0f x f x ''><,解不等式求解单调递增区间,单调递减区间;(2)'()ln af x x x=-,其中0x >, 再次构造函数令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+,令1()0,g x x e'==,列表分析得出()g x 单调性,求其最小值, 分类讨论求解①若1a e≤-,②若212a e e -<<-,③若220,()a f x e -≤<的单调性,()f x 最大值,最小值,确定有无零点问题;(3)先猜想(1,1),()1x a f x a ∈+<-恒成立.再运用导数判断证明.令'1()ln 1,1,()10G x x x x G x x=-+≥=-≤,求解最大值,得出()(1)0G x G <=即可. 【详解】(1)当0a =时,()ln f x x x x =-,()ln f x x '=, 令()0f x '=,1x =,列表分析故()f x 的单调递减区间为(0,1)单调递增区间为(1,)+∞.(2)()()ln f x x a x x a =--+,()ln f x x ax '=-,其中0x >, 令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+ 令()0g x '=,1x =,列表分析min 11()()g x g a e e ==--,而11()1n 1f ae ae e e'=-=--,222()2(2)f e ae ae -'=--=-+22221()2(2)a f e e a e e'=-=-,①若1a e ≤-则()ln 0af x x x'=-≥, 故()f x 在22(,)e e -内没有极值点; ②若212a e e -<<-,则11()1n 0f ae e e '=-<,22()(2)0f e ae -'=-+> 2221()(2)0f e e a e'=->因此()f x '在22(,)e e -有两个零点,()f x 在22(,)e e -内有两个极值点; ③若220a e -≤<则11()10f n ae e e '=-<,22()(2)0f e ae -'=-+≤,2221()(2)0f e e a e'=->,因此()f x '在22(,)e e -有一个零点,()f x 在22(,)e e -内有一个极值点; 综上所述当1(,]a e∈-∞-时,()f x 在22(,)e e -内没有极值点; 当212,a e e ⎛⎫∈--⎪⎝⎭时,()f x 在22(,)e e -内有两个极值点; 当22,0a e ⎡⎫∈-⎪⎢⎣⎭时,()f x 在22(,)e e -内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(,)e+∞上单调递增,且(1)0g a =-<,(1)(1)ln(1)g a a a a +=++-.因为当1x >时,1ln 1(*)x x >-, 所以1(1)(1)(1)01g a a a a +>+--=+ 故()g x 在(1,1)a +上存在唯一的零点,设为0x .由知(1,1)x a ∈+,()max{(1),(1)}f x f f a <+.又(1)ln(1)1f a a +=+-,而1x >时,ln 1(**)x x <-, 所以(1)(1)111(1)f a a a f +<+--=-=. 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =, 使对任意的(,)x t t ∈+∞, 使()1f x a <-. 补充证明(*): 令1()1n 1F x x x =+-,1x ≥.22111()0x F x x x x-'=-=≥, 所以()F x 在[1,)+∞上单调递增.所以1x >时,()(1)0F x F >=,即1ln 1x x>-. 补充证明(**)令()ln 1G x x x =-+,1x ≥.1()10G x x'=-≤, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()(1)0G x G <=,即ln 1x x <-. 【点睛】本题主要考查导数与函数单调性的关系,会熟练运用导数解决函数的极值与最值问题.求函数的单调区间,应该先求出函数的导函数,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间,考查了不等式与导数的结合,难度较大. 21.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得 同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单22.在极坐标系中,已知1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积.【答案】l 的极坐标方程及cos 53πρθ⎛⎫-= ⎪⎝⎭,ABC ∆的面积. 【解析】将1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭转化为直角坐标系下的坐标形式,然后求出线段AB 的中点与直线AB 的斜率,进而求出直线l 在直角坐标系下的方程,再转化为极坐标方程;在直角坐标系下,求出点C 到直线AB 的距离、线段AB 的长度,从而得出ABC ∆的面积. 【详解】解:以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系xoy 在平面直角坐标系xoy 中,1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ 的坐标为19((22A B线段AB 的中点为5(2A ,AB k =故线段AB 中垂线的斜率为1AB k k -==,所以AB 的中垂线方程为:5)2y x =-化简得:100x -=,所以极坐标方程为cos sin 100ρθθ-=, 即cos()53πρθ-=,令0y =,则10x =,故在平面直角坐标系xoy 中,C (10,0)点C 到直线AB :y =的距离为d == 线段8AB =,故ABC ∆的面积为182S =⨯=. 【点睛】 本题考查了直线的极坐标方程问题,解题时可以将极坐标系下的问题转化为平面直角坐标系下的问题,从而转化为熟悉的问题.23.已知实数,a b 满足2a b +≤,求证:22224(2)a a b b a +-+≤+.【答案】证明见解析【解析】对2222a a b b +-+进行转化,转化为含有2a b +≤形式,然后通过不等关系得证.【详解】 解:因为2a b +≤, 所以2222a a b b +-+2222a b a b =-++()()()2a b a b a b =-+++2a b a b =+-+()22a b a a b =+-++22a b a a b ≤++++()22222244242a a a a ≤++=+=+≤+,得证.【点睛】本题考查了绝对值不等式问题,解决问题的关键是要将要证的形式转化为已知的条件,考查了学生转化与化归的能力.24.如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=(R λ∈),且向量PC 与BD .(1)求λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.【答案】(1)2λ=;(210【解析】试题分析:(1)以A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系A xyz -,写出,PC ,BD 的坐标,根据空间向量夹角余弦公式列出关于λ的方程可求;(2)设岀平面PCD 的法向量为(),,n x y z =,根据n PC n DC⎧⊥⎪⎨⊥⎪⎩,进而得到00⎧⋅=⎪⎨⋅=⎪⎩n PC n DC ,从而求出n ,向量PB 的坐标可以求出,从而可根据向量夹角余弦的公式求出cos ,n PB <>,从而得PB 和平面PCD 所成角的正弦值.试题解析:(1)依题意,以A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系A xyz -(1,0,0),(0,2,0),(0,0,2)B D P ,因为DC AB λ=,所以(,2,0)C λ,从而(,2,2)PC λ=-,则由15cos ,PC BD =,解得10λ=(舍去)或2λ=. (2)易得(2,2,2)PC =-,(0,2,2)PD =-,设平面PCD 的法向量(,,)n x y z =,则0⋅=n PC ,0⋅=n PD ,即0x y z +-=,且0y z -=,所以0x =,不妨取1y z ==,则平面PCD 的一个法向量(0,1,1)n =,又易得(1,0,2)PB =-,故10cos ,=⋅=PB n PB n ,所以直线PB 与平面PCD 10考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.25.已知数列{}n a 的通项公式为15155n n n a ⎡⎤+-⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,n N ∈,记1212n n n S C a C a =++…n n n C a +.(1)求1,S 2S 的值;(2)求所有正整数n ,使得n S 能被8整除.【答案】(1) 11S =;23S =; (2) {}*|3,n n k k N =∈ 【解析】(1)运用二项式定理,化简整理,再代入计算即可得到所求值;(2)通过化简得到213n n n S S S ++=-,再由不完全归纳找规律得到结论,即可得到所求结论.【详解】解:(1)1212nn n n n n S C a C a C a =++⋯+21215155n n C C ⎡⎛++⎢ =⋅+⎢⎝⎭⎝⎣…212151515222n n n n n C C C ⎫⎛⎛⎛⎪ +⋅-⋅+⋅+ ⎪ ⎝⎭⎝⎭⎭⎝…15n n n C ⎤⎫-⎥⎪+⋅⎥⎪⎝⎭⎭⎦ 1515115n n ⎡⎤⎛⎛+-⎥=+-+ ⎥⎝⎭⎝⎭⎦ 3535225n n ⎡⎤⎛⎛⎥=- ⎥⎝⎭⎝⎭⎦,即有1S1==;2S33==;(2)3322nnS n⎡⎤⎛⎛⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,2332222nS n n+⎡⎤⎛⎛+-=+-+⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦n n n n ⎡⎤⎡⎤⎥⎢⎥-⋅--⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎦⎣⎦13n nS S+=-,即213n n nS S S++=-,*n N∈,因此2nS+除以8的余数,完全由1,n nS S+除以8的余数确定,因为11,a=21a=,所以11111S C a==,12221223S C a C a=+=,3213918S S S=-=-=,432324321,S S S=-=-=543363855S S S=-=-=,654316521144,S S S=-=-=7535643255377S S=-=-=,87631131144987,S S S=-=-=987329613772584S S S=-=-=由以上计算及213n n nS S S++=-可知,数列{}n S各项除以8的余数依次是:1,3,0,5,7,0,1,3,0,5,7,0,…,它是一个以6为周期的数列,从而nS除以8的余数等价于n除以3的余数,所以3,n k=*k N∈,即所求集合为:{}*|3,n n k k N=∈.【点睛】本题考查数列通项的运用,解决问题的关键是运用二项式定理,本题属于难题.小课堂:如何培养自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。
江苏省南通市海安县海安高级中学2025届高三期中联考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量0,2a ,()23,b x =,且a 与b 的夹角为3π,则x =( )A .-2B .2C .1D .-12.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( )A .B .C .D .3.设集合{|0}A x x =>,{}2|log (31)2B x x =-<,则( ). A .50,3AB ⎛⎫= ⎪⎝⎭B .10,3AB ⎛⎤= ⎥⎝⎦C .1,3A B ⎛⎫⋃=+∞ ⎪⎝⎭D .(0,)A B =+∞4.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e xf x x =+,则32(2)a f =-,2(log 9)b f =,5)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.已知平面向量a b ,满足21a b a =,=,与b 的夹角为2 3π,且)2(()a b a b λ⊥+-,则实数λ的值为( )A .7-B .3-C .2D .36.已知()4sin 5πα+=,且sin 20α<,则tan 4πα⎛⎫- ⎪⎝⎭的值为( )A .7B .7-C .17D .17-7.已知集合A ={x ∈N |x 2<8x },B ={2,3,6},C ={2,3,7},则()AB C ⋃=( )A .{2,3,4,5}B .{2,3,4,5,6}C .{1,2,3,4,5,6}D .{1,3,4,5,6,7}8.已知函数2()ln f x ax x x =-+有两个不同的极值点1x ,2x ,若不等式()()()12122f x f x x x t +>++有解,则t 的取值范围是( ) A .(,2ln 2)-∞- B .(],2ln 2-∞- C .(,112ln 2)-∞-+ D .(],112ln 2-∞-+9.若直线不平行于平面,且,则( )A .内所有直线与异面B .内只存在有限条直线与共面C .内存在唯一的直线与平行D .内存在无数条直线与相交 10.已知函数f (x )=sin 2x +sin 2(x 3π+),则f (x )的最小值为( ) A .12B .14C .34D .2211.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y=+( )A .有最大值,无最小值B .有最大值,有最小值C .无最大值,有最小值D .无最大值,无最小值12.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( ) A .36πB .64πC .144πD .256π二、填空题:本题共4小题,每小题5分,共20分。
2022-2023学年高三上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某设备使用年限x (年)与所支出的维修费用y (万元)的统计数据(),x y 分别为()2,1.5,()3,4.5,()4,5.5,()5,6.5,由最小二乘法得到回归直线方程为ˆˆ1.6yx a +=,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( ) A .8年B .9年C .10年D .11年2.在ABC ∆中,AB AC AB AC +=-,4AB =,3AC =,则BC 在CA 方向上的投影是( ) A .4B .3C .-4D .-33.3481(3)(2)x x x+-展开式中x 2的系数为( ) A .-1280B .4864C .-4864D .12804.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( ) A .12-B .15-C .16-D .18-5.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( ) A .15B .25C .35D .1106.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>7.已知i 是虚数单位,则复数24(1)i =-( )A .2iB .2i -C .2D .2-8.执行如图所示的程序框图,则输出的S 的值是( )A .8B .32C .64D .1289.如图是函数sin()R,A 0,0,02y A x x πωφωφ⎛⎫=+∈>><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象,为了得到这个函数的图象,只需将sin (R)y x x =∈的图象上的所有的点( )A .向左平移3π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 B .向左平移3π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移6π个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变 D .向左平移6π个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 10.函数ln ||()xx x f x e=的大致图象为( )A .B .C .D .11.如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.则下列结论中表述不正确...的是( )A .从2000年至2016年,该地区环境基础设施投资额逐年增加;B .2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C .2012年该地区基础设施的投资额比2004年的投资额翻了两番 ;D .为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立了投资额y 与时间变量t 的线性回归模型ˆ9917.5yt =+,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.12.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( )A .8B .4C .22D .6二、填空题:本题共4小题,每小题5分,共20分。