数字图像处理 第4章 图像增强
- 格式:ppt
- 大小:2.10 MB
- 文档页数:65
第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。
(2) 重现性能好。
(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。
4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。
)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。
F(u, v)即为f (x, y)的频谱。
频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。
第四章图像增强1.简述直方图均衡化处理的原理和目的。
拍摄一幅较暗的图像,用直方图均衡化方法处理,分析结果。
原理:直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
也就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
把给定图像的直方图分布改变成“均匀”分布直方图分布目的:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
它通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。
通过直方图均衡化,亮度可以更好地在直方图上分布。
这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
Matlab程序如下:clc;RGB=imread('wxf.jpg'); %输入彩色图像,得到三维数组R=RGB(:,:,1); %分别取三维数组的一维,得到红绿蓝三个分量G=RGB(:,:,2); %为R G B。
B=RGB(:,:,3);figure(1)imshow(RGB); %绘制各分量的图像及其直方图title('原始真彩色图像');figure(2)subplot(3,2,1),imshow(R);title('真彩色图像的红色分量');subplot(3,2,2), imhist(R);title('真彩色图像的红色分量直方图');subplot(3,2,3),imshow(G);title('真彩色图像的绿色分量');subplot(3,2,4), imhist(G);title(' 的绿色分量直方图');subplot(3,2,5),imshow(B);title('真彩色图像的蓝色分量');subplot(3,2,6), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R); %对个分量直方图均衡化,得到个分量均衡化图像g=histeq(G);b=histeq(B);figure(3),subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure(4), %通过均衡化后的图像还原输出原图像newimg = cat(3,r,g,b); %imshow(newimg,[]);title('均衡化后分量图像还原输出原图');程序运行结果:原始真彩色图像均衡化后分量图像还原输出原图图1.1 原始图像与均衡化后还原输出图像对比通过matlab仿真,由图1.1比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
实验报告课程名称数字图像处理导论专业班级_______________姓名_______________学号_______________电气与信息学院和谐勤奋求是创新2.编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的梯度算子对b lurry_moon.tif进行锐化滤波,并比较其效果。
[I,m ap]=im read('trees.tif');I=double(I);subplo t(2,3,1)imshow(I,m ap);title(' Original Im age');[Gx,Gy]=gradie nt(I); % gradie n t calcul ationG=sqrt(Gx.*Gx+Gy.*Gy); % matrixJ1=G; % gradie nt1subplo t(2,3,2)imshow(J1,m ap);title(' Operator1 Im age');J2=I; % gradie nt2 K=find(G>=7);J2(K)=G(K);subplo t(2,3,3)im show(J2,m ap);title(' Operator2 Im age');J3=I; % gradie n t3 K=find(G>=7);J3(K)=255;subplo t(2,3,4)im show(J3,m ap);title(' Operator3 Im age');J4=I; % gradie n t4 K=find(G<=7);J4(K)=255;subplo t(2,3,5)im show(J4,m ap);title(' Operator4 Im age');J5=I; % gradie nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subplo t(2,3,6)im show(J5,m ap);title(' Operator5 Im age');5.自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;附录:可能用到的函数和参考结果**************报告里不能用参考结果中的图像1)采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im read('moon.tif');T=double(I);subplo t(1,2,1),im show(T,[]);title('Origin al Im age');w =[1,1,1;1,-8,1;1,1,1];K=conv2(T,w,'sam e');subplo t(1,2,2)im show(K);title('Laplacian Transf orm ation');图2.9 初始图像与拉普拉斯算子锐化图像2)编写函数w = genlap lacia n(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]functi on w = genlap lacia n(5)%Com put es the Laplac ian operat orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_mo on.tif进行锐化滤波,并利用式完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
数字图像处理教案.(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--本册教案目录常州大学教案第 1 次课 2 学时授课时间教案完成时间第 1 页常州大学教案第 2 次课 2 学时授课时间教案完成时间第 2 页常州大学教案第 3 次课 2 学时授课时间教案完成时间第 3 页常州大学教案第 4 次课 2 学时授课时间教案完成时间第 5 次课 2 学时授课时间教案完成时间第 6 次课 2 学时授课时间教案完成时间第 7 次课 2 学时授课时间教案完成时间第 8 次课 2 学时授课时间教案完成时间第 9 次课 2 学时授课时间教案完成时间第 9 页常州大学教案第 10 次课 2 学时授课时间教案完成时间第 10 页常州大学教案第 11 次课 2 学时授课时间教案完成时间第 11 页常州大学教案第 12 次课 2 学时授课时间教案完成时间第 12 页常州大学教案第 13 次课 2 学时授课时间教案完成时间第 13 页常州大学教案第 14 次课 2 学时授课时间教案完成时间第 14 页常州大学教案第 15 次课 2 学时授课时间教案完成时间第 15 页常州大学教案第 16 次课 2 学时授课时间教案完成时间第 16 页常州大学教案第 17 次课 2 学时授课时间教案完成时间第 17 页常州大学教案第 18 次课 2 学时授课时间教案完成时间第 18 页常州大学教案第 19 次课 2 学时授课时间教案完成时间第 19 页学生反馈。
第一章引言一.填空题1. 数字图像是用一个数字阵列来表示的图像。
数字阵列中的每个数字,表示数字图像的一个最小单位,称为像素2.像增强等;二是从图像到非图像的一种表示,如图像测量等。
5. 数字图像处理包含很多方面的研究内容。
其中,图像重建的目的是根据二维平面图像数据构造出三维物体的图像。
二.简答题1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
①图像数字化:将一幅图像以数字的形式表示。
主要包括采样和量化两个过程。
②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。
③图像的几何变换:改变图像的大小或形状。
④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
如傅利叶变换等。
⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
2. 什么是图像识别与理解?图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。
比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将检测出来的人脸区域进行分析,确定其是否是该犯罪分子。
5. 简述图像几何变换与图像变换的区别。
①图像的几何变换:改变图像的大小或形状。
比如图像的平移、旋转、放大、缩小等,这些方法在图像配准中使用较多。
②图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。
比如傅里叶变换、小波变换等。
第二章图像的基本概念一.填空题1. 量化可以分为均匀量化和非均匀量化两大类。
2. 采样频率是指一秒钟内的采样次数。
3. 图像因其表现方式的不同,可以分为连续图像和离散图像两大类。
3.5. 对应于不同的场景内容,一般数字图像可以分为二值图像、灰度图像和彩色图像三类。
《数字图像处理》习题参考答案第1 章概述连续图像和数字图像如何相互转换答:数字图像将图像看成是许多大小相同、形状一致的像素组成。
这样,数字图像可以用二维矩阵表示。
将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。
图像的数字化包括离散和量化两个主要步骤。
在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。
采用数字图像处理有何优点答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。
(1)处理精度高。
(2)重现性能好。
(3)灵活性高。
2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。
3.数字图像处理技术适用面宽。
4.数字图像处理技术综合性强。
数字图像处理主要包括哪些研究内容答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。
讨论数字图像处理系统的组成。
列举你熟悉的图像处理系统并分析它们的组成和功能。
答:如图,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。
图像处理系统包括图像处理硬件和图像处理软件。
图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。
软件系统包括操作系统、控制软件及应用软件等。
图数字图像处理系统结构图1常见的数字图像处理开发工具有哪些各有什么特点答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。
两种开发工具各有所长且有相互间的软件接口。
Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的 Win 32 程序有着运行速度快、可移植能力强等优点。