苏科版初一下学期月考数学试卷百度文库
- 格式:doc
- 大小:698.50 KB
- 文档页数:18
γβαE DC BA2 1江苏省 七年级下学期第一次月考数学试题考试时间:100分钟 试卷满分:100一、选择题:(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求)1.下列计算正确的是 ( )A .2323a a a += B .326a a a =÷ C .()632a a = D .2223a a a =-2.下列各组数据中,能构成三角形的是 ( )A.1cm 、2cm 、3cmB.2cm 、3cm 、4cmC. 4cm 、9cm 、4cmD.2cm 、1cm 、4cm 3.如图,,则下列结论一定成立的是( ). A 、∥B 、∥C 、D 、4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若135∠=,则2∠是 ( )A.35°B .45°C .55°D .65°5.一个凸 n 边形,其每个内角都是140°,则n 的值为( ) A .6B .7C .8D .96..若23.0-=a ,23--=b ,231-⎪⎭⎫ ⎝⎛-=c ,051⎪⎭⎫ ⎝⎛-=d ,则a 、b 、c 、d 大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b 7..如图,若AB ∥CD ,则αβγ、,之间的关系为( )A.︒=++360γβαB.︒=+-180γβαC.︒=-+180γβαD.︒=++180γβα8..如图,在△ABC 中,已知点D 、E 、F 分别是BC 、AD 、BE 上的中点,且△ABC 的面积为8㎝2, 则△BCF 的面积为( )A .0.5㎝2B .1㎝2C .2㎝2D .4㎝2二、填空题(本大题共10小题,每小题2分,共20分,请将答案直接填在横线上) 9、计算22()3-= .10.已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是 米. 11. 已知等腰三角形的两条边长分别是3和6,则此三角形的周长为 .3223)2()(ab a -⋅)(2)()(52332a a a a -⋅+---A BCDEFGHO12第14题图 23,63==n m 12.一个正多边形的每个外角都等于36°,那么该多边形的边数是 . 13.若凸n 边形的内角和为1260°,则从一个顶点出发引的对角线条数是__ __。
江苏省七年级下学期4月份月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.下列计算正确的是()A.2a+a2=3a3B.a6÷a2=a3C.(a2)3=a6D.3a2﹣2a=a22.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.a x﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.若x是不为0的有理数,已知M=(x2+1)(x2﹣1),N=(x2+1)2,则M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定5.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为()A.1B.3C.7D.96.已知9m =,3n =;则下列结论正确的是()A.2m﹣n=1 B.2m﹣n=3 C.2m+n=3 D.=37.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.408.△ABC中三边长a,b,c满足条件|a﹣2|+b2﹣6b+9=0,则c边不可能为()A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分)9.柴静的纪录片《穹顶之下》揭示了当今雾霾对人们生活的极大危害,同时它也给我们普及了PM 2.5是指大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.10.若(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,则a的取值范围是.11.已知x(x﹣1)﹣(x2﹣y)=﹣2,则﹣xy=.12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是.13.若(2x﹣3)x+3=1,则x=.14.已知a=2﹣100,b=3﹣75,c=5﹣50,将a、b、c用“<”从小到大连接起来:.15.我们规定一种运算:,例如,.按照这种运算规定,当x=时,.16.若3x+4y﹣3=0,则8x﹣2•16y+1=.17.已知x﹣6y=5,那么x2﹣6xy﹣30y的值是.18.已知9a•5•15b=36•55,则b﹣a=.三、解答题(本大题共9小题,共96分)19.计算(1)(﹣)﹣3﹣(3.14﹣π)0+()202X×(﹣2)202X(2)a•a2•(﹣a)3+(﹣2a3)2﹣a8÷a2(3)(2x﹣5y+1)(﹣2x+5y+1)(4)﹣2a2(12ab+b2)﹣5ab(a2﹣ab)20.因式分解(1)a3﹣4ab2(2)3x(a﹣b)﹣6y(b﹣a)(3)(x2+y2)2﹣4x2y2(4)81x4﹣72x2y2+16y4.21.先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.22.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.23.已知4x=m,8y=n.(1)求22x+3y;(2)求26x﹣9y.24.小颖家开了甲、乙两个超市,两个超市在3月份的销售额均为a万元,在4月份和5月份这两个月中,甲超市的销售额平均每月增长x%,而乙超市的销售额平均每月减少x%.(1)5月份甲超市的销售额比乙超市多多少?(2)如果a=150,x=2,那么5月份甲超市的销售额比乙超市多多少万元?25.阅读理解题有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x,y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2y=a(a﹣1)=a2﹣a,∵x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算:1.202X×0.202X×2.4030﹣1.202X3﹣1.202X×0.202X2.26.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A 是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有;①a6;②x2+4x+4y2;③4a2+2ab+b2;④a2﹣ab+b2;⑤x2﹣6x﹣9;⑥a2+a+0.25(2)若4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,求(m ﹣)﹣1的值;(3)多项式9x2+1加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是哪些?(请罗列出所有可能的情况,直接写答案)27.实践操作题如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(3a+b)(2a+2b),在下面虚框③中画出图形,并根据图形回答(3a+b)(2a+2b)=;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你所拼成的长方形可知,多项式a2+5ab+6b2可以分解因式为;(3)若现在有3张A类纸片,6张B类纸片,10张C类纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形,则拼成的正方形边长最长可以是;(4)若取其中的六张B类卡片拼成一个如图④所示的长方形,通过不同方法计算阴影部分的面积,你能得到什么等式?并用乘法法则说明这个等式成立.七年级下学期月考数学试卷(4月份)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.下列计算正确的是()A.2a+a2=3a3B.a6÷a2=a3C.(a2)3=a6D.3a2﹣2a=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,可判断A、D,根据同底数幂的除法,可判断B,根据幂的乘方,可判断C.解答:解:A、不是同类项不能合并,故A错误;B、底数不变指数相减,故B错误;C、底数不变指数相乘,故C正确;D、不是同类项不能合并,故D错误;故选:C.点评:本题考查了幂的运算,根据法则计算是解题关键.2.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a) B.(x+1)(﹣x﹣1) C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)考点:平方差公式.专题:计算题.分析:利用平方差公式的结构特征判断即可.解答:解:能用平方差公式计算的是(﹣m﹣n)(﹣m+n),故选C.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.a x﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.解答:解:A、是多项式乘法,不是因式分解,错误;B 、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选D.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.4.若x是不为0的有理数,已知M=(x2+1)(x2﹣1),N=(x2+1)2,则M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定考点:完全平方公式;非负数的性质:偶次方;平方差公式.分析:利用平方差公式对M进行化简,将N利用完全平方公式展开,即可比较两者的大小.解答:解:∵M=(x2+1)(x2﹣1)=x4﹣1,N=(x2+1)2=x4+2x2+1,x是不为0的有理数,∴N>M,故选:B.点评:本题主要考查了完全平方公式几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.平方差公式两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.5.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为()A.1B.3C.7D.9考点:平方差公式;尾数特征.专题:计算题.分析:原式中2变形为(3﹣1)后,利用平方差公式计算即可得到结果.解答:解:原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32﹣1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34﹣1)(34+1)(38+1)(316+1)(332+1)+1=(38﹣1)(38+1)(316+1)(332+1)+1=(316﹣1)(316+1)(332+1)+1=(332﹣1)(332+1)+1=364﹣1+1=364,则结果的个位数字为1.故选A点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.已知9m =,3n =;则下列结论正确的是()A.2m﹣n=1 B.2m﹣n=3 C.2m+n=3 D .=3考点:幂的乘方与积的乘方.分析:由9m =,可得32m =,即可得32m=3×3n=3n+1,从而可判断出答案.解答:解:∵9m =,∴32m =,∴32m=3×3n=3n+1,∴2m=n+1,即2m﹣n=1.故选A.点评:本题考查了幂的乘方与积的乘方,解答本题的关键是掌握幂的乘方与积的乘方运算法则.7.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.40考点:整式的混合运算.专题:计算题.分析:根据题意得到S阴影部分=S△BCD+S正方形CEFG﹣S△BGF,利用三角形面积公式和正方形的面积公式得S阴影部分=•a•a+b2﹣•b•(a+b),变形后得到S阴影部分=[(a+b)2﹣3ab],然后把a+b=10,ab=20整体代入计算即可.解答:解:S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab ﹣b2=[(a2+b2)﹣ab]=[(a+b)2﹣3ab],当a+b=10,ab=20时,S阴影部分=[102﹣3×20]=20.故选B.点评:本题考查了整式的混合运算:先进行整式的乘方运算,再进行整式的乘除运算,然后进行整式的加减运算.也考查了整体思想的运用.8.△ABC中三边长a,b,c满足条件|a﹣2|+b2﹣6b+9=0,则c边不可能为()A.1B.2C.3D.4考点:因式分解的应用;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.分析:已知等式左边后三项利用完全平方公式变形,根据非负数之和为0,非负数分别为0求出a与b的值,即可得出第三边c的范围.解答:解:∵|a﹣2|+b2﹣6b+9=|a﹣2|+(b﹣3)2=0,∴a=2,b=3,∵△ABC的三边长分别为a,b,c,b﹣a<c<b+a,∴3﹣2<c<3+2,即1<c<5.故选:A.点评:此题考查了因式分解的应用,三角形的三边关系,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.柴静的纪录片《穹顶之下》揭示了当今雾霾对人们生活的极大危害,同时它也给我们普及了PM 2.5是指大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6,故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,则a的取值范围是a≠2且a≠4且a≠.考点:负整数指数幂;零指数幂.分析:根据零指数幂有意义的条件,负整数指数幂有意义的条件,可得|a﹣3|﹣1≠0且2a﹣1≠0,依此即可求解.解答:解:∵(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,∴|a﹣3|﹣1≠0且2a﹣1≠0,解得a≠2且a≠4且a≠.故答案为:a≠2且a≠4且a≠.点评:考查了负整数指数幂,零指数幂,关键是根据题意得到|a﹣3|﹣1≠0且2a﹣1≠0.11.已知x(x﹣1)﹣(x2﹣y)=﹣2,则﹣xy=2.考点:提公因式法与公式法的综合运用.分析:已知的式子可以化成x﹣y=2的形式,所求的式子可以化成(x﹣y)2代入求解即可.解答:解:x(x﹣1)﹣(x2﹣y)=﹣2,即x2﹣x﹣x2+y=﹣2,则x﹣y=2.故原式=(x﹣y)2=×4=2.故答案是:2.点评:本题考查了代数式的化简求值,正确利用完全平方公式的变形,把所求的式子化成(x﹣y)2的形式是关键.12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是2x﹣5y.考点:因式分解-提公因式法.分析:根据提公因式法分解因式解答即可.解答:解:﹣16x3+40x2y=﹣8x2•2x+(﹣8x2)•(﹣5y)=﹣8x2(2x﹣5y),所以另一个因式为2x﹣5y.故答案为:2x﹣5y.点评:本题考查了提公因式法分解因式,把多项式的各项写成公因式与另一个因式相乘的形式是解题的关键.13.若(2x﹣3)x+3=1,则x=﹣3或2或1.考点:零指数幂.专题:计算题;分类讨论.分析:分别根据x+3=0且2x﹣3≠0,2x﹣3=1,2x﹣3=﹣1且x+3为偶数三种情况讨论.解答:解:(1)当x+3=0且2x﹣3≠0,解得x=﹣3;(2)当2x﹣3=1时,解得x=2;(3)2x﹣3=﹣1且x+3为奇数时无解.(4)当2x﹣3=﹣1,即x=1时,x+3=4,原式成立,故x=﹣3或2或1.点评:本题考查的是非0数的0次幂等于1,解答此题的关键是熟知1的任何次幂等于1;﹣1的偶次幂等于1.14.已知a=2﹣100,b=3﹣75,c=5﹣50,将a、b、c用“<”从小到大连接起来:b<c<a.考点:实数大小比较;负整数指数幂.分析:首先将a,b,c化成分数形式再比较大小.解答:解:∵a=2﹣100==,b=3﹣75==,c=5﹣50==,∴b<c<a,故答案为:b<c<a.点评:本题主要考查了负整数指数幂和实数的大小比较,掌握负整数指数幂:a﹣p=(a≠0,p为正整数),将分母化为指数相同的幂是解答此题的关键.15.我们规定一种运算:,例如,.按照这种运算规定,当x=5时,.考点:整式的混合运算;解一元一次方程.专题:新定义.分析:根据题中的新定义将所求式子化为普通方程,整理后求出x的值即可.解答:解:=(x+1)(x﹣1)﹣(x﹣2)(x+3)=0,整理得:x2﹣1﹣(x2+x﹣6)=﹣x+5=0,解得:x=5.故答案为:5点评:此题考查了整式的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.16.若3x+4y﹣3=0,则8x﹣2•16y+1=2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:首先根据3x+4y﹣3=0,求出3x+4y的值是多少;然后根据8x﹣2•16y+1=23x﹣6•24y+4=23x+4y﹣2,求出8x﹣2•16y+1的值是多少即可.解答:解:∵3x+4y﹣3=0,∴3x+4y=3,∴8x﹣2•16y+1=23x﹣6•24y+4=23x+4y﹣2=23﹣2=2,∴8x﹣2•16y+1的值是2.故答案为:2.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.17.已知x﹣6y=5,那么x2﹣6xy﹣30y的值是25.考点:因式分解-提公因式法.分析:原式后两项提取公因式,把已知等式变形后代入计算即可求出值.解答:解:∵x﹣6y=5,即6y=x﹣5,∴原式=x2﹣6y(x+5)=x2﹣(x+5)(x﹣5)=x2﹣x2+25=25.故答案为:25.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.已知9a•5•15b=36•55,则b﹣a=.考点:幂的乘方与积的乘方;同底数幂的乘法;负整数指数幂.分析:先根据幂的乘方与积的乘方法则得到9a•5•15b=32a•5•(3b•5b)=32a+b•51+b,由9a•5•15b=36•55,得出32a+b•51+b =36•55,那么2a+b=6,1+b=5,求出a与b的值,再代入b﹣a,计算即可求解.解答:解:∵9a•5•15b=32a•5•(3b•5b)=32a+b•51+b,9a•5•15b=36•55,∴32a+b•51+b=36•55,∴2a+b=6,1+b=5,∴b=4,a=1,∴b﹣a=4﹣1=.故答案为.点评:本题考查了幂的乘方和积的乘方,同底数幂的乘法,负整数指数幂,掌握运算法则是解答本题的关键.三、解答题(本大题共9小题,共96分)19.计算(1)(﹣)﹣3﹣(3.14﹣π)0+()202X×(﹣2)202X(2)a•a2•(﹣a)3+(﹣2a3)2﹣a8÷a2(3)(2x﹣5y+1)(﹣2x+5y+1)(4)﹣2a2(12ab+b2)﹣5ab(a2﹣ab)考点:整式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用积的乘方运算法则变形,计算即可得到结果;(2)原式利用同底数幂的乘除法则,以及幂的乘方与积的乘方运算法则计算即可得到结果;(3)原式利用平方差公式变形,再利用完全平方公式展开即可得到结果;(4)原式利用单项式乘以多项式法则计算,去括号合并即可得到结果.解答:解:(1)原式=﹣8﹣1+(﹣×)202X×(﹣)=﹣;(2)原式=﹣a6+4a6﹣a6=2a6;(3)原式=1﹣(2x﹣5y)2=1﹣4x2+20xy﹣25y2;(4)原式=﹣24a3b﹣2a2b2﹣5a3b+5a2b2=﹣29a3b+3a2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.因式分解(1)a3﹣4ab2(2)3x(a﹣b)﹣6y(b﹣a)(3)(x2+y2)2﹣4x2y2(4)81x4﹣72x2y2+16y4.考点:提公因式法与公式法的综合运用.分析:(1)先提取公因式a,再对余下的多项式利用平方差公式继续分解;(2)先提取公因式3(a﹣b),然后整理即可得解;(3)先利用平方差公式分解因式,再利用完全平方公式继续分解因式即可;(4)先利用完全平方公式分解因式,再利用平方差公式继续分解因式即可.解答:解:(1)a3﹣4ab2,=a(a2﹣4b2),=a(a+2b)(a﹣2b);(2)3x(a﹣b)﹣6y(b﹣a),=3x(a﹣b)+6y(a﹣b),=3(a﹣b)(x+2y);(3)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2;(4)81x4﹣72x2y2+16y4,=(9x2﹣4y2)2,=(3x+2y)2(3x﹣2y2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.考点:整式的混合运算—化简求值.分析:(1)先算乘法,合并同类项,即可得出关于a、b的方程,求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.解答:解:(1)(ax﹣3)(2x+4)﹣x2﹣b=2ax2+4ax﹣6x﹣12﹣x2﹣b=(2a﹣1)x2+(4a﹣6)x+(﹣12﹣b),∵代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.,∴2a﹣1=0,﹣12﹣b=0,∴a=,b=﹣12;(2)∵a=,b=﹣12,∴(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)=a2﹣b2+a2+2ab+b2﹣2a2﹣ab=ab=×(﹣12)=﹣6.点评:本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,难度适中.22.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.解答:解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.点评:本题考查的是幂的乘方与同底数幂的乘法法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.23.已知4x=m,8y=n.(1)求22x+3y;(2)求26x﹣9y.考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.分析:分别将4x,8y化为底数为2的形式,然后分别代入(1)(2)求解即可.解答:解:(1)∵4x=m,8y=n,∴22x=m,23y=n,(1)22x+3y=22x•23y=mn;②26x﹣9y=26x÷29y=(22x)3÷(23y)3=.点评:本题考查了同底数幂的乘法、同底数幂的除法以及幂的乘方,掌握运算法则是解答本题的关键.24.小颖家开了甲、乙两个超市,两个超市在3月份的销售额均为a万元,在4月份和5月份这两个月中,甲超市的销售额平均每月增长x%,而乙超市的销售额平均每月减少x%.(1)5月份甲超市的销售额比乙超市多多少?(2)如果a=150,x=2,那么5月份甲超市的销售额比乙超市多多少万元?考点:整式的混合运算.专题:应用题.分析:先列出两超市3~5月的销售额的表格.(1)用5月份甲超市的销售额﹣乙超市的销售额;(2)将a=150,x=2代入计算即可.解答:解:两超市3~5月的销售额可列表格如下:3月份4月份5月份甲超市销售额 a a(1+x%)a(1+x%)(1+x%)=a(1+x%)2乙超市销售额 a a(1﹣x%)a(1﹣x%)(1﹣x%)=a(1﹣x%)2(1)5月份甲超市与乙超市的差额为a(1+x%)2﹣a(1﹣x%)2=4ax%(万元);…(2)当a=150,x=2时,代入(1)中的化简式得4ax%=12(万元).…点评:本题考查了整式的混合运算,解题的关键是分别得到甲、乙两个超市各月的销售额.25.阅读理解题有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x,y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2y=a(a﹣1)=a2﹣a,∵x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算:1.202X×0.202X×2.4030﹣1.202X3﹣1.202X×0.202X2.考点:整式的混合运算.专题:阅读型.分析:设0.202X=a,则1.202X=1+a,2.4030=2a,原式变形后计算即可得到结果.解答:解:设0.202X=a,则1.202X=1+a,2.4030=2a,原式=(1+a)a×2a﹣(1+a)3﹣a2(1+a)=2a2+2a3﹣a2﹣a3﹣1﹣a﹣2a﹣2a2﹣a2﹣a3=﹣2a2﹣3a﹣1=﹣2×0.202X2﹣3×(0.202X)﹣1=﹣1.6857045.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.26.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有①②⑥;①a6;②x2+4x+4y2;③4a2+2ab+b2;④a2﹣ab+b2;⑤x2﹣6x﹣9;⑥a2+a+0.25(2)若4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,求(m﹣)﹣1的值;(3)多项式9x2+1加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是哪些?(请罗列出所有可能的情况,直接写答案)考点:完全平方式.专题:计算题.分析:(1)利用完全平方公式的结构特征判断即可;(2)利用完全平方公式的结构特征求出m与n的值,即可确定出原式的值;(3)利用完全平方公式的结构特征判断即可.解答:解:(1)①a6=(a2)3;②x2+4x+4y2,不是完全平方式;③4a2+2ab+b2=(2a+b)2;④a2﹣ab+b2,不是完全平方式;⑤x2﹣6x﹣9,不是完全平方式;⑥a2+a+0.25=(a+)2,各式中完全平方式的编号有①②⑥;(2)∵4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,∴m=,n=±1,当n=1时,原式=;当n=﹣1时,原式=;(3)单项式可以为﹣1,﹣9x2,6x,﹣6x.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.27.实践操作题如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(3a+b)(2a+2b),在下面虚框③中画出图形,并根据图形回答(3a+b)(2a+2b)=6a2+8ab+2b2;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你所拼成的长方形可知,多项式a2+5ab+6b2可以分解因式为(a+2b)(a+3b);(3)若现在有3张A类纸片,6张B类纸片,10张C类纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形,则拼成的正方形边长最长可以是a+3b;(4)若取其中的六张B类卡片拼成一个如图④所示的长方形,通过不同方法计算阴影部分的面积,你能得到什么等式?并用乘法法则说明这个等式成立.考点:因式分解的应用;完全平方公式的几何背景.专题:应用题.分析:(1)画出图形,结合图形和面积公式得出即可;(2)根据图形和面积公式得出即可;(3)由完全平方公式可得三种纸片拼出一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,由此即可确定拼出的正方形的边长最长是多少;(4)用两种方法求出阴影部分的面积,即整个矩形面积减去6个B类卡片和阴影部分矩形的面积列式即可.解答:解:(1)如图:(3a+b)(2a+2b)=6a2+8ab+2b2;(2)a2+5ab+6b2=(a+2b)(a+3b);(3)∵有3张A类纸片,6张B类纸片,10张C类纸片,∴由完全平方公式可得每种纸片至少取一张,把取出的这些纸片拼成一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,所以拼出的正方形的边长最长可以为a+3b;(4)整个矩形面积为:(a+2b)(a+b),6个B类卡片的面积为:6ab,阴影部分矩形的面积为:(2b﹣a)(b﹣a),(a+2b)(a+b)﹣6ab=a2+2b2﹣3ab,(2b﹣a)(b﹣a)=a2+2b2﹣3ab,∴(a+2b)(a+b)﹣6ab=(2b﹣a)(b﹣a),故答案为:6a2+8ab+2b2;(a+2b)(a+3b);a+3b.点评:本题考查了分解因式的应用,长方形的面积,完全平方公式的应用,主要考查学生的观察图形的能力和化简能力.。
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2B. 0C. 1.5D. -0.52. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形3. 若a=3,b=-2,则a+b的值为()A. 1B. -1C. 5D. -54. 下列方程中,正确的是()A. 2x+1=5B. 3x-2=0C. 4x=8D. 5x+3=05. 一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的面积是()A. 12cm²B. 16cm²C. 24cm²D. 32cm²6. 下列函数中,自变量x的取值范围是全体实数的是()A. y=x²B. y=x³C. y=x+1D. y=√x7. 下列分数中,最小的是()A. 1/2B. 2/3C. 3/4D. 4/58. 一个长方形的长是6cm,宽是4cm,那么它的对角线长是()A. 5cmB. 8cmC. 10cmD. 12cm9. 若a、b是方程2x²-5x+3=0的两个实数根,则a+b的值为()A. 1B. 2C. 3D. 510. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 平行四边形的对边相等C. 直角三角形的两条直角边相等D. 等边三角形的三个角都是直角二、填空题(每题3分,共30分)11. 0.3的倒数是__________。
12. 2/5与1/3的和是__________。
13. 若a=5,b=2,则a²+b²的值为__________。
14. 一个圆的半径是r,则其周长是__________。
15. 若x=2,则x²-3x+2的值为__________。
16. 一个等腰直角三角形的斜边长为10cm,则其直角边长是__________。
17. 下列函数中,函数y=kx+b(k≠0)的图像是一条直线的是__________。
七年级(下)第一次月考数学试卷七年级(下)第一次月考数学试卷数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。
下面是店铺为大家搜索整理的七年级(下)第一次月考数学试卷,仅供大家学习参考。
七年级(下)第一次月考数学试卷篇1一、选择题(每题3分,共30分)1.已知方程①2x+y=0;② x+y=2;③x2﹣x+1=0;④2x+y﹣3z=7是二元一次方程的是( )A.①②B.①②③C.①②④D.①2.以为解的二元一次方程组是( )A. B. C. D.4.已知是方程kx﹣y=3的一个解,那么k的值是( )A.2B.﹣2C.1D.﹣15.方程组的解是( )A. B. C. D.6.“六一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装的x套,B型童装y套,依题意列方程组正确的是( )A. B.C. D.7.若方程mx+ny=6的两个解是,,则m,n的值为( )A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣48.已知,则a+b等于( )A.3B.C.2D.19.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是( )A. B.10.某市准备对一段长120m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队单独工作8天,则余下的任务由乙工程队单独完成需要3天;设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为( )A.20B.15C.10D.5二、填空题(每题4分,共32分)11.如果x=﹣1,y=2是关于x、y的二元一次方程mx﹣y=4的一个解,则m= .12.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票x张,乙种票y张,由此可列出方程组:.13.孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是.14.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的 .两根铁棒长度之和为55cm,此时木桶中水的深度是cm.15.方程组的解是.16.设实数x、y满足方程组,则x+y= .17.4xa+2b﹣5﹣2y3a﹣b﹣3=8是二元一次方程,那么a﹣b= .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组.三、解答题19.解方程组:(1) ;20.已知方程组和有相同的解,求a、b的值.21.关于x,y方程组满足x、y和等于2,求m2﹣2m+1的值.22.浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?23.在一次数学测验中,甲、乙两校各有100名同学参加测试,测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率= ×100%,全校优分率= ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.24.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.七年级(下)第一次月考数学试卷篇2一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A.B.C.D的四个答案,其中只有一个是正确的,请将正确答案的代号填人答题卷中对应的表格内.1.(4分)在下列实例中,属于平移过程的个数有()①时针运行过程;②电梯上升过程;③火车直线行驶过程;④地球自转过程;⑤生产过程中传送带上的电视机的移动过程.A.1个B.2个C.3个D.4个【解答】解:①时针运行是旋转,故此选项错误;②电梯上升,是平移现象;③火车直线行驶,是平移现象;④地球自转,是旋转现象;⑤电视机在传送带上运动,是平移现象.故属于平移变换的个数有3个.故选:C.2.(4分)如图,由AB∥CD可以得到()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠3=∠4【解答】解:A、∠1与∠2不是两平行线AB、CD形成的角,故A 错误;B、∠3与∠2不是两平行线AB、CD形成的内错角,故B错误;C、∠1与∠4是两平行线AB、CD形成的内错角,故C正确;D、∠3与∠4不是两平行线AB、CD形成的角,无法判断两角的数量关系,故D错误.故选:C.3.(4分)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个【解答】解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选:B.4.(4分)已知点P到x轴的距离为3,到y轴的距离为2,且在第二象限,则点P的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,2)【解答】解:∵点P到x轴的距离为3,到y轴的距离为2,且在第二象限,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:B.5.(4分)某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次左拐30°,第二次右拐30°B.第一次右拐50°,第二次左拐130°C.第一次右拐50°,第二次右拐130°D.第一次向左拐50°,第二次向左拐120°【解答】解:如图所示(实线为行驶路线)A符合“同位角相等,两直线平行”的判定,其余均不符合平行线的判定.故选:A.6.(4分)三条直线两两相交于同一点时,对顶角有m对;交于不同三点时,对顶角有n对,则m与n的关系是()A.m=n B.m>n C.m<n D.m+n=10【解答】解:因为三条直线两两相交与是否交于同一点无关,所以m=n,故选A.7.(4分)下列实数:﹣、、、﹣3.14、0、,其中无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:、是无理数.故选:B.8.(4分)下列语句中,正确的是()A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数本身的数共有三个【解答】解:A、一个非负数的平方根有一个或两个,其中0的平方根是0,故选项A错误;B、负数有立方根,故选项B错误,C、一个数的立方根不是正数可能是负数,还可能是0,故选项C 错误,D、立方根是这个数本身的数共有三个,0,1,﹣1,故D正确.故选:D.9.(4分)下列运算中,错误的是()①=1,②=±4,③=﹣④=+=.A.1个B.2个C.3个D.4个【解答】解:①==,原来的计算错误;②=4,原来的计算错误;③=﹣=﹣1,原来的计算正确;④==,原来的计算错误.故选:C.10.(4分)请你观察、思考下列计算过程:因为11 2 =121,所以=11;因为111 2 =12321,所以=111;…,由此猜想=()【解答】解:∵=11,=111…,…,∴═111 111 111.故选:D.11.(4分)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γ B.α+β+γ=180° C.α+β﹣γ=90° D.β+γ﹣α=180°【解答】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:C.12.(4分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)=(180°﹣∠ACB)=(180°﹣∠ABC)=90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠A DC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选:C.二、填空题(每题4分,共24分)请将答案直接写到对应的横线上.13.(4分)比较大小:﹣3<﹣2,>(填“>”或“<”或“=”)【解答】解:∵﹣<﹣,∴﹣3<﹣2.∵:∵2<<3,∴1<﹣1<2,∴<<1.故答案是:<;>.14.(4分)若点P(a+5,a﹣2)在x轴上,则a=2,点M(﹣6,9)到y轴的距离是6.【解答】解:根据题意得a﹣2=0,则a=2,点M(﹣6,9)到y轴的距离是|﹣6|=6,故答案为:2、6.15.(4分)大于﹣,小于的`整数有5个.【解答】解:∵1<2,3<4,∴﹣2<﹣<﹣1,∴大于﹣,小于的整数有﹣1,0,1,2,3,共5个,故答案为:5.16.(4分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为72度,108度.【解答】解:设其中一个角是x,则另一个角是180﹣x,根据题意,得x=(180﹣x)解得x=72,∴180﹣x=108;故答案为:72、108.17.(4分)如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF 折叠图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数是120°.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°﹣2∠EFG=140°,在图(3)中∠CFE=∠GFC﹣∠EFG=120°,故答案为:120°.18.(4分)一个自然数的立方,可以分裂成若干个连续奇数的和.例如:2 3,3 3和4 3分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即2 3 =3+5;3 3 =7+9+11;4 3 =13+15+17+19;…;若6 3也按照此规律来进行“分裂”,则6 3 “分裂”出的奇数中,最大的奇数是41.【解答】解:由2 3 =3+5,分裂中的第一个数是:3=2×1+1,3 3 =7+9+11,分裂中的第一个数是:7=3×2+1,4 3 =13+15+17+19,分裂中的第一个数是:13=4×3+1,5 3 =21+23+25+27+29,分裂中的第一个数是:21=5×4+1,6 3 =31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以6 3 “分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.三、计算(总共22分)请将每小题答案做到答题卡对应的区域.19.(16分)计算:(1)利用平方根解下列方程.①(3x+1)2﹣1=0;②27(x﹣3)3=﹣64(2)先化简,再求值:3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy],其中x=3,y=﹣.【解答】解:(1)①(3x+1)2﹣1=0∴(3x+1)2=1∴3x+1=1或3x+1=﹣1解得x=0或x=﹣;②27(x﹣3)3=﹣64∴(x﹣3)3=﹣[来源:学|科|网]∴x﹣3=﹣∴x=;(2)3x 2 y﹣[2xy﹣2(xy﹣x 2 y)+xy]=3x 2 y﹣(2xy﹣2xy+3x 2 y+xy)=3x 2 y﹣2xy+2xy﹣3x 2 y﹣xy=﹣xy当x=3,y=﹣时,原式=﹣3×(﹣)=1.20.(6分)已知5+的小数部分是a,5﹣的小数部分是b,求:(1)a+b的值;(2)a﹣b的值.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴a=5+﹣8=﹣3,b=5﹣﹣1=4﹣,∴a+b=(﹣3)+(4﹣)=1;a﹣b=(﹣3)﹣(4﹣)=2﹣7.四、解答题(56分)请将每小题的答案做到答题卡中对应的区域内.21.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.[来源:Z*xx*]22.(8分)若x、y都是实数,且y=++8,求x+3y的立方根.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.23.(8分)如果A=是a+3b的算术平方根,B=的1﹣a 2的立方根.试求:A﹣B的平方根.【解答】解:依题意有,解得,A==3,B==﹣2A﹣B=3+2=5,故A﹣B的平方根是±.24.(8分)已知:如图,AB∥CD,∠1=∠2.求证:∠E=∠F.【解答】证明:分别过E、F点作CD的平行线EM、FN,如图∵AB∥CD,∴CD∥FN∥EM∥AB,∴∠3=∠2,∠4=∠5,∠1=∠6,而∠1=∠2,∴∠3+∠4=∠5+∠6,即∠E=∠F.25.(12分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米,(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN和PQ).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?【解答】解:(1)若设图中最大正方形B的边长是x米,最小的正方形的边长是1米.F的边长为(x﹣1)米,C的边长为,E的边长为(x﹣1﹣1);(2)∵MQ=PN,∴x﹣1+x﹣2=x+,x=7,x的值为7;(3)设余下的工程由乙队单独施工,还要x天完成.(+)×2+x=1,x=10(天).答:余下的工程由乙队单独施工,还要10天完成.26.(12分)如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,试探索∠EPF与∠EQF之间的关系.(3)如图3,已知∠BEQ=∠BEP,∠DFQ=∠DFP,则∠P与∠Q有什么关系,说明理由.(4)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为∠P+n∠Q=360°.(直接写结论)【解答】(1)证明:如图1,过点P作PG∥AB,,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=(∠BEP+∠DFP)==,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠C FP)]=×(360°﹣∠P),∴∠P+3∠Q=360°.(4)由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=∠BEP,∠DFQ=∠DFP,∴∠Q=∠BEQ+∠DFQ=(∠BEP+∠DFP)=[360°﹣(∠AEP+∠CFP)]=×(360°﹣∠P),∴∠P+n∠Q=360°.故答案为:∠P+n∠Q=360°.七年级(下)第一次月考数学试卷篇3一、填空题的倒数是____;的相反数是____;-0.3的绝对值是______。
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √-16C. πD. √22. 下列各数中,无理数是()A. √9B. √-9C. 0.1010010001...D. √43. 若a、b是实数,且a+b=0,则a、b互为()A. 同号B. 异号C. 相等D. 无关4. 在直角坐标系中,点P(-2,3)关于原点对称的点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,3)5. 下列函数中,有最小值的是()A. y=x^2B. y=x^3C. y=x^2+1D. y=x^2-16. 已知一元二次方程x^2-5x+6=0的解是x1和x2,则(x1-2)(x2-2)的值是()A. 0B. 1C. 2D. 37. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°8. 已知正方形的对角线长为8cm,则其边长是()A. 6cmB. 8cmC. 10cmD. 12cm9. 下列各组数中,成等差数列的是()A. 2,4,8,16B. 1,3,5,7C. 2,4,8,12D. 3,6,9,1210. 若等比数列的首项为a,公比为q,且a≠0,q≠1,则其第n项an的表达式是()A. an=aq^(n-1)B. an=aq^nC. an=a^nD. an=aq二、填空题(每题4分,共40分)11. 若a、b是方程x^2-3x+2=0的两个根,则a^2+b^2的值是______。
12. 在直角坐标系中,点A(3,4)关于y轴的对称点是______。
13. 已知函数y=2x-1,若x=3,则y的值为______。
14. 在△ABC中,∠A=90°,∠B=30°,则△ABC是______三角形。
15. 若等差数列的首项为3,公差为2,则其第10项是______。
江苏省扬州市2022~2023学年七年级下学期第一次月考数学试题一、选择题:(本大题共8小题,每小题3分,共24分)1. 下列计算正确的是 ( )A. B. C. D. 325a a a+=326a a a ⋅=236(2)8a a -=-()340a a a a ÷=≠2. 计算的结果是( )()32a -A. B. C. D. 5a 5a -6a 6a -3. 如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于( )A. 25°B. 30°C. 45°D. 55°4. 若,则 ( )0(1)x x -=A. B. C. D. 1x =1x =-1x =±1≥x 5. 一个多边形的每个内角均为135°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形6. 在下列条件中,①∠A+∠B=∠C ; ②∠A :∠B :∠C=1:2:3; ③∠A=∠B=∠C ;1213 ④∠A=∠B=2∠C ; ⑤∠A=2∠B=3∠C ,能确定△ABC 为直角三角形的条件有( )A. 2个B. 3个C. 4个D. 5个7. 如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m ,n ,则m﹣n 等于( )A. 2B. 3C. 4D. 无法确定8. 如图,将一条长为60cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有( )A. 4种B. 5种C. 6种D. 7种二、填空题:(本大题共10小题,每小题3分,共30分)9. 已知,则=________.128m =m 10. 已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是_______米.11. 已知,,则_______.5ma =7n a =2m n a -=12. 已知三角形的两边长分别为5和7,则第三边的取值范围是_______.x 13. 如图,在△ABC 中,∠B =42°,∠C =64°,AD 平分∠BAC ,交BC 于D ,DE AB ,交AC 于E ,则∠ADE ∥的大小是_______°14. 如图所示,分别以n 边形的顶点为圆心,以1cm 为半径画圆,则图中阴影部分的面积之和为________.15. 用等腰直角三角板画,并将三角板沿方向平移到如图所示的虚线处后绕点逆时针45AOB ∠= OB M 方向旋转,则三角板的斜边与射线的夹角为______.22OA α16. 如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为_____°.17. 若,则x 的值为________.()121x x +-=18. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别是4、5、8,则四边形DHOG 的面积是________.三、解答题:(本大题共10小题,共96分)19. 计算:(1);()()32x x x -÷⋅-(2);()()332a a -⋅-(3);()()()()24331111m m m m -⋅-+-⋅-(4).20172018522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭20. 如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.21.(1)若,,求的值.32x =35y =9x y -(2)已知,求的值.26279ba ==ab +(3)已知,,用含有m ,n 的代数式表示.3x m =5x n =14x 22. 比较274与813的大小,并说明理由.23. 一个多边形,它所有的内角与一个外角的和为1700°,求这个多边形的边数与这一个外角的度数.24. 如图,已知∠A =∠F ,∠C =∠E ,求证:BE ∥CD .25. 已知:如图,BC //DE ,BE 、DF 分别是∠ABC 、∠ADE 的平分线. 求证:∠1=∠2.26. 如图,已知∠ABC +∠ECB =180°,∠P =∠Q .求证:∠1=∠2.27. 如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,M 为边AC 上一点,ME ⊥BC ,垂足为E ,∠AME 的平分线交直线AB 于点F .试说明BD 与MF 的位置关系,并说明理由.28. 直线与直线垂直相交于点O ,点A 在直线上运动,点B 在直线上运动.MN PQ PQ MN(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大AE BE 、BAO ∠ABO ∠AB 、AEB ∠小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.AEB ∠(2)如图2,已知不平行分别是和的角平分线,又分别是AB CD AD BC ,、BAP ∠ABM ∠DE CE 、和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,ADC ∠BCD ∠A B 、CED ∠请说明理由;若不发生变化,试求出的度数.CED ∠(3)如图3,延长至G ,已知的角平分线与的角平分线及反向延长线相交于BA BAO OAG ∠∠、BOQ ∠,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)E F 、AEF ABO ∠江苏省扬州市2022~2023学年七年级下学期第一次月考数学试题一、选择题:(本大题共8小题,每小题3分,共24分)1. 下列计算正确的是 ( )A. B. C. D.325a a a +=326a a a ⋅=236(2)8a a -=-()340a a a a ÷=≠C【详解】解:A .不是同类项,不能合并,故A 错误;B .,故B 错误;325a a a ⋅=C .,故C 正确;236(2)8a a -=-D .,故D 错误.3411a a a a -÷==故选C .2. 计算的结果是( )()32a -A. B. C. D. 5a 5a -6a 6a -D【详解】试题分析:根据幂的乘方和积的乘方运算法则计算作出判断:.()()3322361a a a ⨯-=-⋅=-故选D.考点:幂的乘方和积的乘方.3. 如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于 ( )A. 25°B. 30°C. 45°D. 55°A【详解】解:如图.∵a ∥b ,∴∠4=∠2=55°.又∵∠4=∠1+∠3,∴∠3=∠4-∠1=55°-30°=25°.故选A.4. 若,则 ( )0(1)x x -=A. B. C. D. 1x =1x =-1x =±1≥x B【详解】解:当x ≠1时,,∴且x ≠1,解得:x =-1.故选B .0(1)1x -=1x =5. 一个多边形的每个内角均为135°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形D 【详解】解:正多边形的每个外角都相等,每个外角为,18013545︒-︒=︒多边形的外角和为,360︒所以边数为:360458︒÷︒=故选:D.6. 在下列条件中,①∠A+∠B=∠C ; ②∠A :∠B :∠C=1:2:3; ③∠A=∠B=∠C ;1213 ④∠A=∠B=2∠C ; ⑤∠A=2∠B=3∠C ,能确定△ABC 为直角三角形的条件有( )A. 2个B. 3个C. 4个D. 5个B 【详解】①因为∠A+∠B=∠C ,则2∠C=180°,∠C=90°,符合题意;②因为∠A :∠B :∠C=1:2:3,设∠A=x ,则x+2x+3x=180,x=30,∠C=30°×3=90°,符合题意;③因为∠A=∠B=∠C ,设∠A=x ,则x+2x+3x=180,x=30,∠C=30°×3=90°,符合题意;1213④因为∠A=∠B=2∠C ,设∠C=x ,则x+2x+2x=180,x=36,∠B=∠A=36°×2=72°,不符合题意;⑤因为∠A=2∠B=3∠C ,设∠A=6x ,则∠B=3x , ∠C=2 x ,6x+3x+2x=180 ,解得x= ,∠A= ,不符合题意;18011108011所以能确定△ABC 是直角三角形的有①②③共3个.故选B .本题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.7. 如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m ,n ,则m﹣n 等于( )A. 2B. 3C. 4D. 无法确定B 【详解】试题分析:设空白出图形的面积为x,根据题意得:m+x=9,n+x=6,则m n=9 6=3.故选B .考点:三角形的面积.8. 如图,将一条长为60cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有 ( )A. 4种B. 5种C. 6种D. 7种A 【详解】解:∵三段长度由短到长的比为1:2:3,∴三段长度分别为:10cm ,20cm ,30cm .①当剪切处右边上部分的长度为10cm ,剪切处左边的卷尺为20cm 时,折痕处为:10+20÷2=20cm ;②当剪切处右边上部分的长度为10cm ,剪切处左边的卷尺为30cm 时,折痕处为:10+30÷2=25cm ;③当剪切处右边上部分的长度为20cm ,剪切处左边的卷尺为10cm 时,折痕处为:20+10÷2=25cm ;④当剪切处右边上部分的长度为20cm ,剪切处左边的卷尺为30cm 时,折痕处为:20+30÷2=35cm ;⑤当剪切处右边上部分的长度为30cm ,剪切处左边的卷尺为10cm 时,折痕处为:30+10÷2=35cm ;⑥当剪切处右边上部分的长度为30cm ,剪切处左边的卷尺为20cm 时,折痕处为:30+20÷2=40cm ;综上所述:折痕对应的刻度有4种可能.故选A .点睛:本题考查了图形的剪拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的运用.二、填空题:(本大题共10小题,每小题3分,共30分)9. 已知,则=________.128m =m -3【详解】解:,∴m =-3.故答案为-3.31228m -==10. 已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是_______米.-43.510⨯【详解】解:0.00035=.43.510-⨯故答案为.43.510-⨯11. 已知,,则_______.5ma =7n a =2m n a -=257【分析】首先应用含a m 、a n 的代数式表示a 2m-n ,然后将a m 、a n 的值代入即可求解.【详解】解:==25÷7=.22m n m n a a a -=÷2()m na a ÷257故答案为.257本题主要考查了同底数幂的除法,幂的乘方,熟练掌握运算性质并灵活运用是解题的关键.x12. 已知三角形的两边长分别为5和7,则第三边的取值范围是_______.x2<<12【详解】解:由题意得:7-5<x<7+5,即2<x<12.故答案为2<x<12.∥13. 如图,在△ABC中,∠B=42°,∠C=64°,AD平分∠BAC,交BC于D,DE AB,交AC于E,则∠ADE 的大小是_______°37【分析】根据平行线的性质可得∠ADE=∠BAD,然后可得∠BAC=74°,进而问题可求解∥【详解】解:∵DE AB,∴∠ADE=∠BAD,∵∠B=42°,∠C=64°,∴∠BAC=180°-42°-64°=74°.∵AD平分∠BAC,∴∠BAD=37°,∴∠ADE=37°.故答案为37.本题考查了三角形内角和定理以及角平分线的定义,得到∠ADE=∠BAD是解题的关键.14. 如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为________.【详解】单独一个个求扇形的面积是不可能的,由于所有扇形的圆心角的和正好是多边形的外角和,而多边形的外角和为360°,因此所有扇形正好组成一个半径1的圆.15. 用等腰直角三角板画,并将三角板沿方向平移到如图所示的虚线处后绕点逆时针45AOB ∠= OB M 方向旋转,则三角板的斜边与射线的夹角为______.22OA α22【分析】根据平移的性质,对应线段平行,再根据旋转角为22°进行计算.【详解】如图,根据题意,得∠AOB =45°,M 处三角板的45°角是∠AOB 的对应角,根据三角形的外角的性质,可得三角板的斜边与射线OA 的夹角为22°.故答案为22.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键是利用了对应线段平行且对应角相等的性质.16. 如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为_____°.180°【详解】∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°−180°=180,故答案为180.17. 若,则x 的值为________.()121x x +-=3或1或-1【分析】分底数为1或-1,指数为0几种情况,分类讨论,列方程求解即可.【详解】解:当,解得:,21x -=3x =此时,()121x x +-=当,解得:,21x -=-1x =此时,()()12211x x +-=-=当,解得:,此时,10x +=1x =-()()102121x x +-=--=综上所述:的值为:3或1或-1.x 故3或1或-1.本题考查了乘方的性质、0指数的性质,解题关键是根据底数和指数进行分类讨论,注意:0指数底数不为0.18. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别是4、5、8,则四边形DHOG 的面积是________.7【详解】解:连接OC ,OB ,OA ,OD .∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,∴S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE .∵S 四边形AEOH =4,S 四边形BFOE =5,S 四边形CGOF =8,∴4+8=5+S 四边形DHOG ,解得:S 四边形DHOG =7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而得到结论.三、解答题:(本大题共10小题,共96分)19. 计算:(1);()()32x x x -÷⋅-(2);()()332a a -⋅-(3);()()()()24331111m m m m -⋅-+-⋅-(4).20172018522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭(1) 4x -(2) 9a (3)0 (4)125-【分析】(1)根据幂的混合运算法则计算即可;(2)根据幂的混合运算法则计算即可;(3)根据同底数幂的乘法法则计算即可;(4)根据积的乘方法则计算即可.【小问1详解】解:原式==;31+2x --4x -【小问2详解】解:原式=246(1)(1)(1)m m m -⋅---=66(1)(1)m m ---=0【小问3详解】解:原式=246(1)(1)(1)m m m -⋅---=66(1)(1)m m ---=0【小问4详解】解:原式=201751212(×)×1255-=125-本题主要考查了同底数幂的乘法,幂的乘方与积的乘方等知识,解题关键是掌握运算法则.20. 如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC的面积=5×7-×7×5-×7×2-×5×1=8.12121221. (1)若,,求的值.32x =35y =9x y -(2)已知,求的值.26279ba ==ab +(3)已知,,用含有m ,n 的代数式表示.3x m =5x n =14x (1) ;(2)6 ;(3)4253m n【分析】(1)逆用同底数幂的的除法法则解答即可;(2)先把原式变成求出a 、b 的值,即可得到结果;66233b a ==(3)把变成即可得到结论.14x 95x x ⋅【详解】解:(1)=;2222999(3)(3)25x y x y x y -=÷=÷=÷425(2) , , 则 ;26279b a ==∴66233b a ==∴3,3a b ==6a b +=(3).14953353()x x x x x m n =⋅=⋅=本题考查了同底数幂的乘法与幂的乘方,解决本题的关键是熟练掌握公式,灵活运用公式的逆运算.22. 比较274与813的大小,并说明理由.= 427381【详解】试题分析:把底数统一成3即可得出结论.试题解析:解:,,∴.4341227(3)3==3431281(3)3==432781=23. 一个多边形,它所有的内角与一个外角的和为1700°,求这个多边形的边数与这一个外角的度数.11;80°【分析】设边数为n ,这个外角为x 度,则0<x <180°,然后根据“所有的内角与一个外角的和为1700°”列方程,然后采用列举法即可解答.【详解】解:设边数为n ,这个外角为x 度,则0<x <180°.根据题意得:(n ﹣2)•180°+x =1700°,即(n ﹣2)•180°+x =9×180°+80°∵0<x <180°,∴x =80°,n -2=9∴x =80°,n =11.∴这个多边形的边数为11 ,这一个外角的度数为80°.本题主要考查了多边形内角和定理、二元一次方程的应用等知识点,正确设出未知数,列出二元一次方程是解答本题的关键.24. 如图,已知∠A =∠F ,∠C =∠E ,求证:BE ∥CD .见解析【分析】根据∠A=∠F,∠C=∠E,和三角形内角和定理,∠A+∠C+∠AHC=180°,∠F+∠E+∠FGE=180°,得出∠AHC=∠FGE,根据平行线的判定定理,内错角相等,两直线平行,即可判定BE∥CD.【详解】如图,∵∠A=∠F,∠C=∠E,又∵∠A+∠C+∠AHC=180°,∠F+∠E+∠FGE=180°,∴∠AHC=∠FGE,∴BE∥CD此题主要考查平行线的判定定理,熟练运用,即可解题.25. 已知:如图,BC//DE,BE、DF分别是∠ABC、∠ADE的平分线. 求证:∠1=∠2.见解析【分析】根据平行线的性质得出∠ABC =∠ADE ,根据角平分线定义得出∠3=∠ABC ,∠4=∠ADE ,求出1212∠3=∠4,根据平行线的判定得出DF //BE ,根据平行线的性质即得出可结论.【详解】证明:∵BC //DE ,∴∠ABC =∠ADE .∵BE 、DF 分别是∠ABC 、∠ADE 的平分线,∴∠3=∠ABC ,∠4=∠ADE ,1212∴∠3=∠4,∴DF //BE ,∴∠1=∠2.26. 如图,已知∠ABC +∠ECB =180°,∠P =∠Q .求证:∠1=∠2.见解析【分析】由同旁内角互补,两直线平行得到AB ∥CD ,进而得到∠ABC =∠BCD ,再由∠P =∠Q ,得到PB ∥CQ ,从而有∠PBC =∠QCB ,根据等式性质得到∠1=∠2.【详解】证明:∵∠ABC +∠ECB =180°,∴AB ∥CD ,∴∠ABC =∠BCD .∵∠P =∠Q ,∴PB ∥CQ ,∴∠PBC =∠QCB ,∴∠ABC ﹣∠PBC =∠BCD ﹣∠QCB ,即∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.27. 如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,M 为边AC 上一点,ME ⊥BC ,垂足为E ,∠AME 的平分线交直线AB 于点F .试说明BD 与MF 的位置关系,并说明理由.BD MF∥【分析】根据角平分线的定义与四边形的内角和定理求出∠ABD +∠AMF =90°,又∠AFM +∠AMF =90°,得到∠ABD =∠AFM ,然后根据同位角相等,两直线平行可得BD MF .∥【详解】解: BD MF .理由如下:∥∵∠A =90°,ME ⊥BC ,∴∠ABC +∠AME =360° 90°×2=180°.∵BD 平分∠ABC ,MF 平分∠AME ,∴∠ABD =∠ABC ,∠AMF =∠AME ,1212∴∠ABD +∠AMF =(∠ABC +∠AME )=90°.12又∵∠AFM +∠AMF =90°,∴∠ABD =∠AFM ,∴BD MF .∥本题考查了直角三角形的性质,垂线的定义,平行线的判定,三角形的内角和定理.正确识图,准确找出角度之间的关系是解题的关键.28. 直线与直线垂直相交于点O ,点A 在直线上运动,点B 在直线上运动.MN PQ PQ MN(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大AE BE 、BAO ∠ABO ∠AB 、AEB ∠小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.AEB ∠(2)如图2,已知不平行分别是和的角平分线,又分别是AB CD AD BC ,、BAP ∠ABM ∠DE CE 、和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,ADC ∠BCD ∠A B 、CED ∠请说明理由;若不发生变化,试求出的度数.CED ∠(3)如图3,延长至G ,已知的角平分线与的角平分线及反向延长线相交于BA BAO OAG ∠∠、BOQ ∠,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)E F 、AEF ABO ∠(1)不发生变化,∠AEB =135°;(2)不发生变化,∠CED =67.5°;(3)60°或45°【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB =90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出∠BAE =∠OAB ,∠ABE =∠ABO ,由三角形内角和定理即可得出结论;1212(2)延长A D 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB =90°,进而得出∠OAB +∠OBA =90°,故∠PAB +∠MBA =270°,再由A D 、BC 分别是∠BAP 和∠ABM 的角平分线,可知∠BAD =∠BAP ,∠ABC =∠ABM ,由三角形内角和定理可知∠F =45°,再根据DE 、CE 分别是∠ADC 1212和∠BCD 的角平分线可知∠CDE +∠DCE =112.5°,进而得出结论;(3)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO =∠BAO ,∠EOQ =∠BOQ ,进而得出∠E 的1212度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF =90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB =90°,∴∠OAB +∠OBA =90°,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴∠BAE =∠OAB ,∠ABE =∠ABO ,1212∴∠BAE +∠ABE =(∠OAB +∠ABO )=45°,12∴∠AEB =135°;(2)∠CED 的大小不变.延长A D 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB =90°,∴∠OAB +∠OBA =90°,∴∠PAB +∠MBA =270°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴∠BAD =∠BAP ,∠ABC =∠ABM ,1212∴∠BAD +∠ABC =(∠PAB +∠ABM )=135°,12∴∠F =45°,∴∠FDC +∠FCD =135°,∴∠CDA +∠DCB =225°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴∠CDE +∠DCE =112.5°,∴∠CED =67.5°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴∠EAO =∠BAO ,∠EOQ =∠BOQ ,1212∴∠E =∠EOQ -∠EAO =(∠BOQ -∠BAO )=∠ABO ,1212∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴∠EAF =90°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①∠EAF =3∠E ,∠E =30°,∠ABO =60°;②∠EAF =3∠F ,∠E =60°,∠ABO =120°(舍弃);③∠F =3∠E ,∠E =22.5°,∠ABO =45°;④∠E =3∠F ,∠E =67.5°,∠ABO =135°(舍弃).∴∠ABO为60°或45°.故60°或45°.本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.第23页/共23页。
可编辑修改精选全文完整版七下册第一次学情调查数学试卷一、选择题(每题3分,共24分)1.下列运算正确的是()A.x3•x2=x6B.(ab)2=ab2C.(﹣m2)3=﹣m6 D.p6÷p3=p22.如图,点E在A D延长线上,下列条件中不能判定BC∥AD的是()A.∠C=∠CDEB. ∠1=∠2C. ∠3=∠4D. ∠C+∠ADC=180°3.以下列各组数据为边长,能构成三角形的是()A. 4,5,10B. 4,4,8C. 3,9,6D. 6,4,54.一个多边形的每个内角都是150°,这个多边形是( )A.八边形B.十边形C.十二边形D.十四边形5.若x2+mx﹣12=(x+3)(x+n),则m+n的值是()A.﹣2B.2C.﹣5D.56.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a7.若a2+b2=5,ab=2,则a﹣b的值为()A.0B.±2C.±1D.28.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2)C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2二、填空题(每题3分,共24分)9.计算:()—3=10.最薄的金箔的厚度为0.000000000095m,用科学记数法表示为m11.若x2﹣mx+36是个完全平方式,则m的值是.12.如果(x+3)(x2﹣ax+2)的乘积中不含x2项,则a=.13.如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠BCD+∠D=180°,⑤∠B+∠BCD=180°,其中能够得到AB∥CD的条件有.(填序号)(13题) (14题) (16题)14.如图,在锐角三角形ABC 中,CD 和BE 分别是AB 和AC 边上的高,且CD 和BE 交于点P ,若∠A =40°,则∠BPC 的度数是 .15.如图a 是长方形纸带,∠DEF=24°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .16.如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S =30,则S 1﹣S 2= .三、解答题(10+10+10+10+8+10+8+10+12+14)17.计算:(1)(﹣3a 3)2÷a 2 (2)(﹣a 3)2•a 3﹣(﹣3a 3)318.计算:(1)(x +3)2﹣(x ﹣1)(x ﹣2) (2)(2x ﹣3y )2﹣(y +3x )(3x ﹣y )19.因式分解:(1)1642-a (2)y xy y x 8822+-20.先化简,再求值:(1)已知:a m =2,a n =3,求a m +n 的值. (2)已知:x +2y =2,求3x ×9y ×3的值.21.先化简,再求值(3x +2)(3x ﹣2)﹣5x (x +1)﹣(x ﹣1)2,其中x=—2.22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在右图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A ).23.如图,四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC , DF 平分∠ADC ,则BE 与DF 有何位置关系?试说明理由.24.如图,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于点G 、H ,AB ∥CD ,∠A =∠D ,试说明:(1)AF ∥ED ;(2)∠1=∠2第22题图第24题25.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2 B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2﹣4y2=24,3x+2y=6,求3x﹣2y的值;②计算:.26.在△ABC中,∠C>∠B.如图①,AD⊥BC于点D,AE平分∠BAC.(1)如图①,∠B=50°,∠C=60°,则∠DAE=(2)你能猜想出∠DAE与∠B、∠C之间的关系是什么?并说明理由。
2021-2022学年苏州市七年级(下)月考数学试卷(4月份)一.选择题(每题3分,共24分)1.(3分)下列各式从左到右的变形,是因式分解的是()A.ab+bc+d=a(b+c)+d B.(a+2)(a﹣2)=a2﹣4C.a3﹣1=(a﹣1)(a2+a+1)D.6ab2=2ab•3b2.(3分)如图,由下列条件不能得到AB∥CD的是()A.∠3=∠4B.∠B+∠BCD=180°C.∠1=∠2D.∠B=∠53.(3分)已知a=(﹣0.3)0,b=﹣3﹣1,c=(−13)−2,比较a,b,c的大小()A.a<b<c B.b<c<a C.a<c<b D.b<a<c4.(3分)若M=(x﹣2)(x﹣7),N=(x﹣6)(x﹣3),则M与N的关系为()A.M=N B.M>N C.M<N D.M与N的大小由x的取值而定5.(3分)(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.96.(3分)有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C,在△ABC中,∠DBA+∠DCA=40°,则∠A的度数是()A.40°B.44°C.45°D.50°7.(3分)如图,正方形卡片A类,B类和长方形卡片C类若干张,要拼一个长为(a+mb),宽为(3a+b)的大长方形(m为常数),若知道需用到的B类卡片比A类卡片少1张,则共需C类卡片()张.A.5B.6C.7D.88.(3分)将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于()A.10°B.15°C.20°D.35°二.填空题(每题3分,共24分)9.(3分)熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为.10.(3分)已知一个多边形的每个内角都相等,其内角和为2340°,则这个多边形每个外角的度数是°.11.(3分)若2023x=5,2023y=4,则20232x﹣y的值为.12.(3分)小兰在计算一个二项式的平方时,得到的正确结果是x2+(■﹣1)xy+9y2,但中间项的某一部分不慎被墨汁污染了,则■处所对应的数可能是.13.(3分)如图,海关大厦与电视台大厦的大楼顶部各有一个射灯,当光柱相交时,且它们都在同一个平面内,若∠1=76°,则∠2+∠3=.14.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°.15.(3分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b 为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(2+i)2=4+4i+i2=4+4i﹣1=3+4i.根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2=.16.(3分)如图,在四边形ABCD中,∠A+∠B=210°,作∠ADC、∠BCD的平分线交于点O1,再作∠O1DC、∠O1CD的平分线交于点O2,则∠O2的度数为.三.解答题(共72分)17.(12分)计算(1)x5•(﹣2x)3+x9÷x2•x﹣(3x4)2;(2)(2a﹣3b)2﹣4a(a﹣2b);(3)(3x﹣y)2(3x+y)2;(4)(2a﹣b+5)(2a+b﹣5).18.(12分)因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.19.(6分)已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.20.(6分)已知x+y=3,xy=54,求下列各式的值:(1)(x2﹣2)(y2﹣2);(2)x2y﹣xy2.21.(8分)解决下列问题:(1)若4a﹣3b+7=0,求32×92a+1÷27b的值;(2)已知x满足22x+4﹣22x+2=96,求x的值.(3)对于任意有理数a、b、c、d,我们规定符号(a,b)⋇(c,d)=ad﹣bc+2,例如:(1,3)⋇(2,4)=1×4﹣2×3+2=0.当a2+a+5=0时,求(2a+1,a﹣2)⋇(3a+2,a﹣3)的值.22.(8分)阅读材料:已知a+b=8,ab=15,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=64﹣30=34.参考上面的方法求解下列问题:(1)已知x满足(x﹣2)(3﹣x)=﹣1,求(x﹣2)2+(3﹣x)2的值.(2)如图①,已知长方形ABCD的周长为12,分别以AD、AB为边,向外作正方形ADEF、ABGH,且正方形ADEF、ABGH的面积和为20.①长方形ABCD的面积;②如图②,连接HF、CF、CH,求△CFH的面积.23.(10分)利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:材料一:已知m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∵(m﹣n)2≥0,(n﹣4)2≥0∴(m﹣n)2=0,(n﹣4)2=0∴m=n=4.材料二:探索代数式x2+4x+2与﹣x2+2x+3是否存在最大值或最小值?①x2+4x+2=(x2+4x+4)﹣2=(x+2)2﹣2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2﹣2≥﹣2.∴代数式x2+4x+2有最小值﹣2;②﹣x2+2x+3=﹣(x2﹣2x+1)+4=﹣(x﹣1)2+4,∵﹣(x﹣1)2≤0,∴﹣x2+2x+3=﹣(x﹣1)2+4≤4.∴代数式﹣x2+2x+3有最大值4.学习方法并完成下列问题:(1)代数式x2﹣6x+3的最小值为;(2)如图,在紧靠围墙的空地上,利用围墙及一段长为100米的木栅栏围成一个长方形花圃,为了设计一个尽可能大的花圃,设长方形垂直于围墙的一边长度为x米,则花圃的最大面积是多少?(3)已知△ABC的三条边的长度分别为a,b,c,且a2+b2+74=10a+14b,且c为正整数,求△ABC周长的最小值.24.(10分)【生活常识】射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.【应用探究】有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,若OM⊥ON,试证明AB∥CD;(2)如图3,光线AB与CD相交于点P,若∠MON=48°,求∠BPC的度数;(3)如图4,光线AB与CD所在的直线相交于点P,∠MON=α,∠BPC=β,试猜想α与β之间满足的数量关系,并说明理由.2021-2022学年江苏省苏州市七年级(下)月考数学试卷(4月份)参考答案与试题解析一.选择题(每题3分,共24分)1.(3分)下列各式从左到右的变形,是因式分解的是()A.ab+bc+d=a(b+c)+d B.(a+2)(a﹣2)=a2﹣4C.a3﹣1=(a﹣1)(a2+a+1)D.6ab2=2ab•3b【分析】根据因式分解的定义,因式分解是把多项式写成几个整式积的形式,对各选项分析判断后利用排除法求解.【解答】解:A.原式右边不是整式积的形式,不是因式分解,故本选项不符合题意;B.原式是整式的乘法,不是因式分解,故本选项不符合题意;C.原式符合因式分解的定义,是因式分解,故本选项符合题意;D.原式不符合因式分解的定义,故本选项不符合题意;故选:C.2.(3分)如图,由下列条件不能得到AB∥CD的是()A.∠3=∠4B.∠B+∠BCD=180°C.∠1=∠2D.∠B=∠5【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【解答】解:A、∵∠3=∠4,∴AB∥CD,不符合题意;B、∵∠B+∠BCD=180°,∴AB∥CD,不符合题意;C、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,符合题意;D、∵∠B=∠5,∴AB∥CD,不符合题意.3.(3分)已知a=(﹣0.3)0,b=﹣3﹣1,c=(−13)−2,比较a,b,c的大小()A.a<b<c B.b<c<a C.a<c<b D.b<a<c【分析】直接利用零指数幂的性质、负整数指数幂的性质分别化简,进而判断得出答案.【解答】解:∵a=(﹣0.3)0=1,b=﹣3﹣1=−13,c=(−13)−2=9,∴b<a<c.故选:D.4.(3分)若M=(x﹣2)(x﹣7),N=(x﹣6)(x﹣3),则M与N的关系为()A.M=NB.M>NC.M<ND.M与N的大小由x的取值而定【分析】利用多项式乘多项式法则先计算M、N,再计算M﹣N的值,最后根绝M﹣N的值得结论.【解答】解:∵M﹣N=(x﹣2)(x﹣7)﹣(x﹣6)(x﹣3)=x2﹣9x+14﹣(x2﹣9x+18)=x2﹣9x+14﹣x2+9x﹣18=﹣4<0,∴M﹣N<0,∴M<N.故选:C.5.(3分)(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9【分析】先将算式因式分解,找到含有选项的因数即可.【解答】解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.6.(3分)有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C,在△ABC中,∠DBA+∠DCA=40°,则∠A的度数是()A.40°B.44°C.45°D.50°【分析】在△DBC和△ABC中分别使用内角和定理,即可得出答案.【解答】解:由题意得:∠DBA+∠DCA+∠DBC+∠DCB+∠A=180°,且∠DBC+∠DBC+∠D=180°,∴∠DBA+∠DCA+∠A=∠D,∴∠A=90°﹣(∠DBA+∠DCA)=50°.故选:D.7.(3分)如图,正方形卡片A类,B类和长方形卡片C类若干张,要拼一个长为(a+mb),宽为(3a+b)的大长方形(m为常数),若知道需用到的B类卡片比A类卡片少1张,则共需C类卡片()张.A.5B.6C.7D.8【分析】设A类卡片需用x张,C类卡片需用y张,则B类卡片需用(x﹣1)张,根据拼成的长方形面积与卡片的面积相等列出方程,求解即可.【解答】解:设A类卡片需用x张,C类卡片需用y张,则B类卡片需用(x﹣1)张,由题意,得(a+mb)(3a+b)=a2x+(x﹣1)b2+aby.∴3a2+3mab+ab+mb2=a2x+(x﹣1)b2+aby.即:3a2+mb2+(3m+1)ab=a2x+(x﹣1)b2+aby.∴x=3,m=x﹣1,y=.3m+1.∴m=2,y=7.8.(3分)将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于()A.10°B.15°C.20°D.35°【分析】根据三角形的内角和定理和四边形的内角和即可得到结论.【解答】解:如图,∵∠C=50°,∴∠3+∠4=∠A+∠B=∠A′+∠B′=180°﹣∠C=130°,∵∠1+∠2+∠3+∠4+∠A′+∠B′=360°,∠1=85°,∴∠2=360°﹣85°﹣2×130°=15°,故选:B.二.填空题(每题3分,共24分)9.(3分)熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为 1.56×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 156=1.56×10﹣4,故答案是:1.56×10﹣4.10.(3分)已知一个多边形的每个内角都相等,其内角和为2340°,则这个多边形每个外角的度数是24°.【分析】根据多边形的内角和是2340°列出方程可得边数,再根据外角的度数可得答案.【解答】解:设多边形的边数为n,则(n﹣2)×180°=2340°,解得:x=15,则这个多边形的边数是:360°÷15=24°.故答案为:24.11.(3分)若2023x =5,2023y =4,则20232x ﹣y 的值为 254 .【分析】利用同底数幂的除法的法则及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【解答】解:当2023x =5,2023y =4时,20232x ﹣y =20232x ÷2023y=(2023x )2÷2023y=52÷4=254, 故答案为:254.12.(3分)小兰在计算一个二项式的平方时,得到的正确结果是x 2+(■﹣1)xy +9y 2,但中间项的某一部分不慎被墨汁污染了,则■处所对应的数可能是 7或﹣5 .【分析】根据完全平方公式即可求出答案.【解答】解:∵(x ±3y )2=x 2±6xy +9y 2,∴■﹣1=±6,∴■处所对应的数可能是7或﹣5,故答案为:7或﹣5.13.(3分)如图,海关大厦与电视台大厦的大楼顶部各有一个射灯,当光柱相交时,且它们都在同一个平面内,若∠1=76°,则∠2+∠3= 284° .【分析】过点E 作EM ∥AB ,根据平行线的性质求解即可.【解答】解:如图,过点E 作EM ∥AB ,∵AB∥CD,∴AB∥CD∥EM,∴∠2+∠AEM=180°,∠3+∠CEM=180°,∴∠2+∠AEM+∠3+∠CEM=360°,即∠1+∠2+∠3=360°,∴∠2+∠3=284°.故答案为:284°.14.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【分析】利用三角形外角性质得到∠1=∠B+∠F+∠C,然后利用五边形的内角和求∠A+∠B+∠C+∠F+∠D+∠E+∠G的度数.【解答】解:如图,∵∠1=∠B+∠2,而∠2=∠F+∠C,∴∠1=∠B+∠F+∠C,∵∠A+∠1+∠D+∠E+∠G=∠A+∠B+∠C+∠F+∠D+∠E+∠G=(5﹣2)×180°=540°.故答案为540.15.(3分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b 为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(2+i)2=4+4i+i2=4+4i﹣1=3+4i.根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2=7﹣7i.【分析】直接利用已知结合多项式乘多项式以及完全平方公式化简,进而得出答案.【解答】解:(2+i)(1﹣2i)+(2﹣i)2=2﹣4i+i﹣2i2+4+i2﹣4i=6﹣i2﹣7i=6﹣(﹣1)﹣7i=7﹣7i.故答案为:7﹣7i.16.(3分)如图,在四边形ABCD中,∠A+∠B=210°,作∠ADC、∠BCD的平分线交于点O1,再作∠O1DC、∠O1CD的平分线交于点O2,则∠O2的度数为142.5°.【分析】根据四边形的内角和为360°可得∠ACD+∠BCD=150°,再根据角平分线的定义可得∠CDO2+∠DCO2=37.5°,再根据内角和定理可得答案.【解答】解:∵四边形的内角和是360°,∠A+∠B=210°,∴∠ACD+∠BCD=150°,∵∠ADC、∠BCD的平分线交于点O1,∠O1DC、∠O1CD的平分线交于点O2,∴∠CDO2=12∠CDO1=14∠ADC,∠DCO2=12∠DCO1=14∠BCD,∴∠CDO2+∠DCO2=14(∠ADC+∠BCD)=37.5°,∴∠O2=180°﹣37.5°=142.5°.故答案为:142.5°.三.解答题(共72分)17.(12分)计算(1)x5•(﹣2x)3+x9÷x2•x﹣(3x4)2;(2)(2a﹣3b)2﹣4a(a﹣2b);(3)(3x﹣y)2(3x+y)2;(4)(2a﹣b+5)(2a+b﹣5).【分析】(1)根据积的乘方,同底数幂的乘除法和合并同类项的方法可以解答本题;(2)根据完全平方公式和单项式乘多项式可以解答本题;(3)根据平方差公式和完全平方公式可以解答本题;(4)根据平方差公式和完全平方公式可以解答本题.【解答】解:(1)x5•(﹣2x)3+x9÷x2•x﹣(3x4)2=x5•(﹣8x3)+x8﹣(9x8)=﹣8x8+x8﹣9x8=﹣16x8;(2)(2a﹣3b)2﹣4a(a﹣2b)=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2;(3)(3x﹣y)2(3x+y)2=[(3x﹣y)(3x+y)]2=(9x2﹣y2)2=81x4﹣18x2y2+y4;(4)(2a﹣b+5)(2a+b﹣5)=[2a﹣(b﹣5)][2a+(b﹣5)]=4a2﹣(b﹣5)2=4a2﹣b2+10b﹣25.18.(12分)因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可;(4)原式利用完全平方公式,以及平方差公式分解即可.【解答】解:(1)原式=2b(a2﹣4ab+4b2)=2b(a﹣2b)2;(2)原式=a2(m﹣n)﹣9(m﹣n)=(m﹣n)(a2﹣9)=(m﹣n)(a+3)(a﹣3);(3)原式=(9x2﹣4)(9x2+4)=(3x+2)(3x﹣2)(9x2+4);(4)原式=(m2+5﹣6)2=(m2﹣1)2=(m+1)2(m﹣1)2.19.(6分)已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.【分析】先根据题意得出∠1+∠3=∠2+∠E,再由∠2+∠E=∠5可知,∠1+∠3=∠5,即∠ADC=∠5,据此可得出结论.解法二,证明∠3=∠4即可解决问题.【解答】证明:∵∠1=∠2,∠3=∠E,∴∠1+∠3=∠2+∠E.∵∠2+∠E=∠5,∴∠1+∠3=∠5,∴∠ADC =∠5,∴AD ∥BE .解法二:∵∠1=∠2,∴BD ∥EC ,∴∠4=∠E ,∵∠3=∠E ,∴∠3=∠4,∴AD ∥BE .20.(6分)已知x +y =3,xy =54,求下列各式的值:(1)(x 2﹣2)(y 2﹣2);(2)x 2y ﹣xy 2.【分析】(1)先利用多项式乘多项式法则计算整式,再变形已知代入求值.(2)先分解整式,再变形已知代入求值.【解答】解:(1)原式=x 2y 2﹣2x 2﹣2y 2+4=(xy )2﹣2(x 2+y 2)+4.∵x +y =3,xy =54,∴x 2+y 2=(x +y )2﹣2xy=9﹣2×54=9−52=132.∴原式=(54)2﹣2×132+4 =2516−13+4=−11916.(2)原式=xy(x﹣y).∵x+y=3,xy=5 4,∴(x﹣y)2=(x+y)2﹣4xy=9﹣4×5 4=4.∴x﹣y=±2.∴原式=54×(±2)=±52.21.(8分)解决下列问题:(1)若4a﹣3b+7=0,求32×92a+1÷27b的值;(2)已知x满足22x+4﹣22x+2=96,求x的值.(3)对于任意有理数a、b、c、d,我们规定符号(a,b)⋇(c,d)=ad﹣bc+2,例如:(1,3)⋇(2,4)=1×4﹣2×3+2=0.当a2+a+5=0时,求(2a+1,a﹣2)⋇(3a+2,a﹣3)的值.【分析】(1)利用幂的乘方将原式中各数变形为底数为3,然后根据同底数幂的乘除法运算法则进行计算,从而代入求值;(2)利用提公因式法进行因式分解,从而结合同底数幂的运算法则进行计算;(3)根据新定义运算法则列式计算,从而利用整体思想代入求值.【解答】解:(1)原式=32×(32)2a+1÷(33)b=32×34a+2÷33b=32+4a+2﹣3b=34a+4﹣3b,∵4a﹣3b+7=0,∴4a﹣3b=﹣7,∴原式=3﹣7+4=3﹣3=127;(2)22x+4﹣22x+2=96,22x+2×22﹣22x+2=96,22x+2×(22﹣1)=96,22x+2×3=96,22x+2=32,∴2x+2=5,解得:x=3 2;(3)原式=(2a+1)(a﹣3)﹣(a﹣2)(3a+2)+2=2a2﹣6a+a﹣3﹣(3a2+2a﹣6a﹣4)+2=2a2﹣6a+a﹣3﹣3a2﹣2a+6a+4+2=﹣a2﹣a+3,∵a2+a+5=0,∴a2+a=﹣5,∴原式=﹣(a2+a)+3=﹣(﹣5)+3=5+3=8.22.(8分)阅读材料:已知a+b=8,ab=15,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=64﹣30=34.参考上面的方法求解下列问题:(1)已知x满足(x﹣2)(3﹣x)=﹣1,求(x﹣2)2+(3﹣x)2的值.(2)如图①,已知长方形ABCD的周长为12,分别以AD、AB为边,向外作正方形ADEF、ABGH,且正方形ADEF、ABGH的面积和为20.①长方形ABCD的面积;②如图②,连接HF、CF、CH,求△CFH的面积.【分析】(1)设a=x﹣2,b=3﹣x,可得a+b=1,ab=(x﹣2)(3﹣x)=1,由(a+b)2=a2+b2+2ab 代入求出a2+b2的值即可;(2))①设AB=a,BC=b,则2a+2b=12,即a+b=6,由正方形ADEF、ABGH的面积和为20,得到a2+b2=20,根据(a+b)2=a2+b2+2ab代入求出ab即可;②S△CFH=S正方形CGME﹣S△CHG﹣S△CEF﹣S△FHM,即(a+b)2−12a(a+b)−12b(a+b)−12ab,变形为12[(a+b)2﹣ab],整体代入计算即可.【解答】解:(1)设a=x﹣2,b=3﹣x,则a+b=1,ab=(x﹣2)(3﹣x)=﹣1,由(a+b)2=a2+b2+2ab得,1=a2+b2﹣2,∴a2+b2=3,即(x﹣2)2+(3﹣x)2的值为3;(2)①设AB=a,BC=b,则2a+2b=12,即a+b=6,由于正方形ADEF、ABGH的面积和为20,即a2+b2=20,由(a+b)2=a2+b2+2ab得,36=20+2ab,∴ab=8,即长方形ABCD的面积为8;②如图,S△CFH=S正方形CGME﹣S△CHG﹣S△CEF﹣S△FHM=(a+b)2−12a(a+b)−12b(a+b)−12ab=12(a2+b2+ab)=12[(a+b)2﹣ab]=12(36﹣8)=14.23.(10分)利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:材料一:已知m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∵(m﹣n)2≥0,(n﹣4)2≥0∴(m﹣n)2=0,(n﹣4)2=0∴m=n=4.材料二:探索代数式x2+4x+2与﹣x2+2x+3是否存在最大值或最小值?①x2+4x+2=(x2+4x+4)﹣2=(x+2)2﹣2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2﹣2≥﹣2.∴代数式x2+4x+2有最小值﹣2;②﹣x2+2x+3=﹣(x2﹣2x+1)+4=﹣(x﹣1)2+4,∵﹣(x﹣1)2≤0,∴﹣x2+2x+3=﹣(x﹣1)2+4≤4.∴代数式﹣x2+2x+3有最大值4.学习方法并完成下列问题:(1)代数式x2﹣6x+3的最小值为﹣6;(2)如图,在紧靠围墙的空地上,利用围墙及一段长为100米的木栅栏围成一个长方形花圃,为了设计一个尽可能大的花圃,设长方形垂直于围墙的一边长度为x米,则花圃的最大面积是多少?(3)已知△ABC的三条边的长度分别为a,b,c,且a2+b2+74=10a+14b,且c为正整数,求△ABC周长的最小值.【分析】(1)将代数式配方即可;(2)设花圃的面积为S平方米,根据题意得S=x(100﹣2x)配方成﹣2(x﹣25)2+1250,即可求出最大面积;(3)根据配方法可得a和b的值,再根据三角形的三边关系即可求出c的最小值,进一步求周长最小值即可.【解答】解:(1)x2﹣6x+3=x2﹣6x+9﹣9+3=(x﹣3)2﹣6,∵(x﹣3)2≥0,∴x2﹣6x+3=(x﹣3)2﹣6≥﹣6,故答案为:﹣6.(2)设花圃的面积为S平方米,根据题意,得S=x(100﹣2x)=﹣2x2+100x=﹣2(x2﹣50x+625﹣625)=﹣2(x﹣25)2+1250,∵﹣2(x﹣25)2≤0,∴S=﹣2(x﹣25)2+1250≤1250,当x=25时,100﹣50=50<100,∴花圃的最大面积为1250平方米;(3)∵a2+b2+74=10a+14b,∴a2﹣10a+25+b2﹣14b+49=0,∴(a﹣5)2+(b﹣7)2=0,∴a=5,b=7,∴2<c<12,∵c为正整数,∴c最小为3,∴△ABC周长的最小值为5+7+3=15.24.(10分)【生活常识】射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.【应用探究】有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,若OM⊥ON,试证明AB∥CD;(2)如图3,光线AB与CD相交于点P,若∠MON=48°,求∠BPC的度数;(3)如图4,光线AB与CD所在的直线相交于点P,∠MON=α,∠BPC=β,试猜想α与β之间满足的数量关系,并说明理由.【分析】(1)根据平行线的判定方法以及直角三角形的两个锐角互余证明即可;(2)由题意∠PCB+∠PBC=360°﹣2(∠2+∠3)=360°﹣134°×2=92°,再根据三角形内角和定理解决问题即可;(3)由题意∠P+∠EBD=∠O+∠4,∠4=∠3=∠O+∠2,∠1=∠2=∠PBD,推出β+∠1=α+α+∠1可得结论.【解答】解:(1)如题图2中,∠1=∠2,∠3=4.∵OM⊥ON.∴∠3+∠2=90°,∴∠1+∠4=90°,∴∠1+∠2+∠3+∠4=180°,∵(∠1+∠2+∠3+∠4)+(∠ABC+∠BCD)=360°,∴∠ABC+∠BCD=180°,∴AB∥CD;(2)如题图3中,∵∠MON=46°,∴∠2+∠3=180°﹣∠MON=180°﹣46°=134°,∵∠1=∠2,∠3=∠4,∴∠PCB+∠PBC=360°﹣2(∠2+∠3)=360°﹣134°×2=92°,∴∠BPC=180°﹣∠PCB﹣∠PBC=180°﹣92°=88°;(3)结论:β=2α.理由:如题图4中,∵∠P+∠PBD=∠O+∠4,∠4=∠3=∠O+∠2,∠1=∠2=∠PBD,∴β+∠1=α+α+∠1,∴β=2α.。
2024年江苏省南京市七年级数学下学期第一次月考模拟练习试卷
(测试内容:第7-8章满分:100分)
学校:___________姓名:___________班级:___________考号:___________
.如图所示的图案分别是四种汽车的车标,其中可以看作是由基本图案”经过平移得到的是(....
2.如图,∠1和∠2是同位角的图形有( )
A.1个B.2个C.3个D.4个
A.CF B.BE C.AD
第3题第6题
.下列运算中,正确的是()
∠的度数为.
则DAE
第12题第13题第14题
13.如图,将一副三角尺按如图所示的方式摆放,则∠AED的大小为
∠的度数为
52
∠=°.已知AM与CB平行,则MAC
BAC
图1 图2
条件的t的值为.
三、解答题(本大题10个小题,共68分.)
17.计算:
′′的面积为______.
AA B B
∴∥.(________________________
AD BC
20.如图,已知∥
DE AC,CD
(1)求证:CD EF
∥.
α
DC边上,且∠1=∠2.
(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.为。
2021-2022学年七年级数学下册第一次月考测试题(附答案)一、选择题(共24分)1.如图,∠1的同位角是()A.∠4B.∠3C.∠2D.∠12.如图,若a∥b,∠1=115°,则∠2=()A.55°B.60°C.65°D.75°3.如图,点E在BC的延长线上,则下列条件中,能判定AD∥BC的是()A.∠B=∠DCE B.∠1=∠2C.∠3=∠4D.∠D+∠DAB=180°4.如图AD是∠BAC的平分线,EF∥AC交AB于点E,交AD于点F,∠BAC=70°,∠1的度数为()A.25°B.35°C.30°D.70°5.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A.B.C.D.6.下列计算正确的是()A.a3+a4=a7B.a3•a6=a9C.2m•5m=7m D.a3+a3=3a37.如图,以BC为边的三角形共有()个A.5B.4C.3D.28.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=56°,∠B=44°,则∠CDE的大小为()A.38°B.40°C.44°D.56°二、填空题(共30分)9.如图,若AB∥CD,∠1=50°,则∠2=度.10.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为.11.计算:(﹣0.25)100×4100=.12.已知a x=4,a y=16,则a x+y=.13.如图,△ABC被撕去了一角,经测量得∠A=68°,∠B=23°,则△ABC是三角形.(填“锐角”“直角”或“钝角”)14.在如图所示的“北京奥运会开幕小型张”中,邮票的形状是一个多边形.这个多边形的内角和等于°.15.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为.16.如图,△ABC的∠A为50°,剪去∠A后得到一个四边形,则∠1+∠2=°.17.如图,下列推理:①若∠1=∠2,则AB∥CD;②若AB∥CD,则∠3=∠4;③若∠ABC+∠BCD=180°,则AD∥BC;④若∠1=∠2,则∠ADB=∠CBD.其中正确的是.(填序号)18.已知,大正方形的边长为5厘米,小正方形的边长为2厘米,起始状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向右沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S平方厘米.当S=4时,小正方形平移的时间为秒.三、解答题(共66分)19.计算(1)x3•x5+x6•x2;(2)(x2y3)m;(3)计算:(m﹣n)2×(n﹣m)3×(m﹣n)6;(4)若a m=2,a n=3,求a3m+2n的值.20.如图,将图中的“小船”平移,使点A平移到点A′,点B平移到点B′,画出平移后的小船.21.如图,∠CME+∠ABF=180°,MA平分∠CMN.若∠MNA=62°,求∠A的度数.根据提示将解题过程补充完整.解:因为∠ABM+∠ABF=180°,又因为∠CME+∠ABF=180°(已知),所以∠ABM=∠CME所以AB∥CD,理由:()所以∠CMN+()=180°,理由:()因为∠MNA=62°,所以∠CMN=()因为MA平分∠CMN,所以∠AMC=∠CMN=().(角平分线的定义)因为AB∥CD,所以∠A=∠AMC=()理由:()22.已知:如图,AD∥BE,∠A=∠E,(1)求证:∠1=∠2;(2)若DC平分∠ADE,直接写出图中所有与∠1相等的角.23.如图,AD为△ABC的中线,BE为三角形ABD中线.(1)若∠ABE=20°,∠BAD=45°,求∠BED的度数;(2)画出△BED中BD边上的高;(3)若△ABC的面积为80,BD=8,则点E到BC边的距离为多少?参考答案一、选择题(共24分)1.解:∠1的同位角是∠4,故选:A.2.解:∵a∥b,∴∠1+∠2=180°,∵∠1=115°,∴∠2=65°.故选:C.3.解:若∠B=∠DCE,则AB∥CD,故A选项不合题意;若∠1=∠2,则AB∥CD,故B选项不合题意;若∠3=∠4,则AD∥BC,故C选项符合题意;若∠D+∠DAB=180°,则AB∥CD,故D选项不合题意;故选:C.4.解:∵AD是∠BAC的平分线,∴∠CAD=∠BAC=35°,∵EF∥AC,∴∠1=∠CAD=35°.故选:B.5.解:AC边上的高应该是过B作垂线段AC,符合这个条件的是C;A,B,D都不过B点,故错误;故选:C.6.解:A.a3和a4不是同类项,不能合并,所以A选项不符合题意;B.a3•a6=a9,所以B选项符合题意;C.2m•5m=10m,所以C选项不符合题意;D.a3+a3=2a3,所以D选项不符合题意.故选:B.7.解:以BC为边的三角形有△BCE,△BAC,△DBC,故选:C.8.解:∵CD平分∠ACB,∴∠BCD=∠ACB,∵∠ACB=180°﹣∠A﹣∠B=180°﹣56°﹣44°=80°,∴∠BCD=40°,∵DE∥BC,∴∠CDE=∠BCD=40°,故选:B.二、填空题(共30分)9.解:∵AB∥CD,∴∠3=∠1=50°,因而∠2=180°﹣∠3=180°﹣50°=130°,故∠2=130°.10.解:∵7﹣2=5,7+2=9,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故答案为:7.11.解:(﹣0.25)100×4100=[(﹣0.25)×4]100=(﹣1)100=1,故答案为:1.12.解:∵a x=4,a y=16,∴a x+y=a x×a y=4×16=64.故答案为:64.13.解:由三角形内角和定理得:∠C=180°﹣∠A﹣∠B=180°﹣68°﹣23°=89°<90°,∴△ABC是锐角三角形;故答案为:锐角.14.解:(6﹣2)×180°=720°.故答案为:72015.解:∵第一次回到出发点P时,所经过的路线正好构成一个的正多边形,∴正多边形的边数为:100÷10=10,根据多边形的外角和为360°,∴则他每次转动的角度为:360°÷10=36°,故答案为:36°.16.解:∵∠A=50°,∴在△ABC中,∠B+∠C=180°﹣∠A=180°﹣50°=130°,根据四边形的内角公式:∠1+∠2=(4﹣2)×180°﹣(∠B+∠C)=360°﹣130°=230°.故答案为:230.17.解:∵∠1=∠2,∴AB∥CD,故①正确;根据AB∥CD不能推出∠3=∠4,故②错误;根据∠ABC+∠BCD=180°能推出AB∥CD,不能推出AD∥BC,故③错误;根据∠1=∠2不能推出∠ADB=∠CBD,故④错误;即正确的是①,故答案为:①.18.解:当S=4时,重叠部分长方形的宽=4÷2=2cm,重叠部分在大正方形的左边时,t=2÷1=2,重叠部分在大正方形的右边时,t=5÷1=5,综上所述,小正方形平移的时间为2或5秒.故答案为:2或5.三、解答题(共66分)19.解:(1)原式=x8+x8=2x8;(2)原式=(x2)m•(y3)m=x2m y3m;(3)原式=﹣(m﹣n)2•(m﹣n)3•(m﹣n)6=﹣(m﹣n)11;(4)∵a m=2,a n=3,∴a3m+2n=(a m)3•(a n)2=23×32=72.20.解:根据平移的性质可得将小船向右平移5个单位,再向上平移3个单位可得:如图所示:21.解:因为∠ABM+∠ABF=180°,又因为∠CME+∠ABF=180°(已知),所以∠ABM=∠CME,所以AB∥CD(同位角相等,两直线平行),所以∠CMN+∠MNA=180°(两直线平行,同旁内角互补),因为∠MNA=62°,所以∠CMN=118°,因为MA平分∠CMN,所以∠AMC=∠CMN=59°(角平分线的定义),因为AB∥CD,所以∠A=∠AMC=59°(两直线平行,内错角相等),故答案为:同位角相等,两直线平行;∠MNA;两直线平行,同旁内角互补;118°;59°;59°;两直线平行,内错角相等.22.(1)证明:∵AD∥BE,∴∠A=∠3,∵∠A=∠E,∴∠3=∠E,∴DE∥AB,∴∠1=∠2;(2)解:如图,设BE和CD交于点O,∵DC平分∠ADE,∴∠ADC=∠1,∵AD∥BE,∴∠ADC=∠BOC=∠DOE=∠1,∴与∠1相等的角有:∠ADC、∠BOC、∠DOE、∠2.23.解:(1)∵∠ABE=20°,∠BAD=45°,∴∠BED=20°+45°=65°;(2)如图所示:(3)∵AD为△ABC的中线,∴S△BAD=S△ACB,∵BE为三角形ABD中线,∴S△BED=S△BAD,∵△ABC的面积为80,∴S△BED=20,∵BD=8,∴EF=5.。
江苏省泰州市第二中学附属初中2022-2022学年七年级数学10月月考试题成绩__________一、选择题(3分×8=24分)题 号 1 2 3 4 5 6 7 8 答 案1.四位同学画数轴如下图所示,你认为正确的是2.下列各数中2,1.090 090 009…,227,0,3.1415926,2.156156156…是无理数的有A.1个B.2个C.3个D.4个 3.一个有理数的绝对值等于其本身,这个数是 A.正数 B.非负数 C.零 D.负数4.冬季某天我国三个城市的最高气温分别是-11℃,3℃,-3℃,它们任意两城市中最大的温差是A.11℃B.13℃C.14℃D.6℃5.如图,某数轴的单位长度为1.5,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是 A.-2 B.-3 C.-4.5 D.06.时代超市出售的三种品牌月饼袋上,分别标有质量为:(500±5)g 、(500±10)g 、(500±20)g 的字样,从中任意拿出两袋,它们的质量最多相差 A.10g B.20g C.30g D.40g7.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是A.200B.119C.120D.3198.若ab ≠0,则bba a +的取值不可能是A.0B.1C.2D.-2 二、填空题(3×10=30分) 9.-2的相反数是_________.10.如果数轴上的点A 对应的数为-1,那么与A 点相距3个单位长度的点所对应的有理数为__________.11.倒数是本身的数是__________.12.若a =1,b =4,且ab<0,则a +b =__________.13.某公交车上原坐有 22 人,经过 4 个站点时上下车情况如下(上车为正,下车为负),(+4,-8)),(-5,+6),(-3,+6),(+1,-8),则车上还有__________人.14.一支长为18厘米的铅笔放在单位长度为2厘米的数轴上,能覆盖________________个表示整数的点.15.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依此类推,则a 2022的值为__________.16.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳计算结果中的个位数字的规律,猜测32009+1的个位数字是__________.17.如果规定符号“*”的意义是a*b =,则2*(-3)的值等于______________.18.如图所示是计算机某计算程序,若开始输入1-=x ,则最后输出的结果是 __________.19.计算(5×8=40分)(1)3-4+7-28 (2)(-5.3)+|-2.5|+()2.3-()8.4+-(3)(-1)-(+6)-2.25+(4)73 -3.5-84⎛⎫÷⨯ ⎪⎝⎭(5)(6)(7)2315-325⎛⎫÷⨯÷ ⎪⎝⎭(8)155112121277225⎛⎫⎛⎫⨯--⨯+-÷ ⎪ ⎪⎝⎭⎝⎭20.已知:|a|=3,|b|=2,ab <0,求a -b 的值.(8分)21.(10分)用数轴上的点表示下列各数,并且用“<”号把各数连起来: 5-,5.2,3,25-,0,3--,213.22.(8分)用火柴棒按下图的方式搭图形:…①②③(1)图②有__________根火柴棒;图③有__________根火柴棒.(2)按上面的方法继续下去,第100个图形中有__________根火柴棒?(3)第n(n≥1的整数)个图形中有__________根火柴棒.23.(8分)某自行车厂计划一周生产自行车1400辆,平均每天计划生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况:(超过每天计划生产数记为正、不足每天计划生产数记为负)星期一二三四五六日增减+5 -2 -4 +13 -10 +14 -9 (1)该厂星期四生产自行车__________辆;产量最多的一天比产量最少的一天多生产自行车__________辆;(2)该厂本周实际每天平均生产多少辆自行车?24.根据下面给出的数轴,解答下面的问题:(6分)(1)请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A :__________;B :__________;(2)观察数轴,与点A 的距离为4的点表示的数是:__________;(3)若将数轴折叠,使得A 点与-3表示的点重合,则B 点与数__________表示的点重合; (4)若数轴上M 、N 两点之间的距离为2010(M 在N 的右侧),且M 、N 两点经过(3)中折叠后互相重合,则M 、N 两点表示的数分别是:M :__________,N :__________.25.(8分)红星中学初一年级共200名学生,在一次数学测试中以135分为标准,超过的记为正,不足的记为负,成绩如下:人 数 10 40 14 15102839 14 9 129成 绩-1+3-2+1 +10 +2 0-7+7-9 -12请你算出这次考试的平均成绩.26.(8分)从2开始,连续的偶数相加,它们的和的情况如下表:加数m 的个数 和(S ) 1 ----------------------→2=1×2 2 ----------------→2+4=6=2×3 3 ------------→2+4+6=12=3×4班级_____________ 姓名___________________ 学号__________ ……………………………………装……………………………………订……………………………………线……………………………………4 ---------→2+4+6+8=20=4×55 -----→2+4+6+8+10=30=5×6(1)按这个规律,当m=6时,和为_______;(2)从2开始,m个连续偶数相加,它们的和S与m之间的关系,用公式表示出来为: __________________________________________________.(3)应用上述公式计算:①2+4+6+…+200 ②202+204+206+…+302。
七年级(下)第二次月考数学试卷一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个角不是(bù shi)对顶角,则这两个角不相等D.所有(suǒyǒu)的对顶角相等2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2 5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y27.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.8.(3分)计算(jì suàn)的结果(jiē guǒ)是()A.﹣B.C.﹣D.9.(3分)在同一平面内,有8条互不重合(chónghé)的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推(yǐ cǐ lèi tuī),则l1和l8的位置(wèi zhi)关系是()A.平行B.垂直C.平行或垂直D.无法确定10.(3分)算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为米(精确到米).12.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.13.(3分)直线a外有一定点A,A到直线a的距离是5cm,P是直线a上的任意一点,则AP5cm(填写<或>或=或≤或≥)14.(3分)若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.15.(3分)若一个角是34°,则这个角的余角是°.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作(cāozuò),分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点(jiāodiǎn)为E n.若∠E n=1度,那∠BEC等于(děngyú)度三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数(jiā shù)起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据得∠1=∠A=67°所以,∠CBD=23°+67°=°;根据当∠ECB+∠CBD=°时,可得CE∥AB.所以∠ECB=°此时CE与BC的位置关系为.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择(xuǎnzé)若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到(dá dào)预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样(zhèyàng)的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.21.问题(wèntí)再现:数形结合是解决数学问题的一种(yī zhǒnɡ)重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形(túxíng)的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成(xíngchéng)两个矩形和两个正方形,如图1:这个图形的面积可以(kěyǐ)表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面(shàng miɑn)的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接(zhíjiē)写出结论即可,不必写出解题过程)22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.23.已知,AB∥CD,点E为射线(shèxiàn)FG上一点.(1)如图1,直接(zhíjiē)写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案与试题(shìtí)解析一、选择题1.(3分)下列说法(shuōfǎ)正确的是()A.若两个(liǎnɡ ɡè)角相等,则这两个角是对顶角B.若两个(liǎnɡ ɡè)角是对顶角,则这两个角是相等C.若两个(liǎnɡ ɡè)角不是对顶角,则这两个角不相等D.所有的对顶角相等【解答】解:根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∴选项A、C错误;根据对顶角的性质:对顶角相等;∴选项D错误;故选:B.2.(3分)已知一个圆的半径为Rcm,若这个圆的半径增加2cm,则它的面积增加()A.4cm2B.(2R+4)cm2C.(4R+4)cm2D.以上都不对【解答】解:∵S2﹣S1=π(R+2)2﹣πR2,=π(R+2﹣R)(R+2+R),=4π(R+1),∴它的面积增加4π(R+1)cm2.故选:D.3.(3分)在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c 则 a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c【解答】解:A、∵a∥b,b∥c,∴a∥c,故本选项符合(fúhé)题意;B、在同一(tóngyī)平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合(fúhé)题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合(fúhé)题意;D、当a∥b,b∥c时,a∥c,故本选项不符合(fúhé)题意;故选:A.4.(3分)下列计算正确的是()A.(a4)3=a7B.a8÷a4=a2C.(ab)3=a3b3D.(a+b)2=a2+b2【解答】解:∵(a4)3=a12,∴选项A不符合题意;∵a8÷a4=a4,∴选项B不符合题意;∵(ab)3=a3b3,∴选项C符合题意;∵(a+b)2=a2+b2+2ab,∴选项D不符合题意.故选:C.5.(3分)已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是()A.29°30′B.30°30′C.31°30′D.59°30′【解答】解:∵∠α与∠β互为补角,∠α=120°30′,∴∠β=180°﹣120°30′=59°30′,∴∠β的余角=90°﹣59°30′=30°30′.故选:B.6.(3分)下列式子正确的是()A.a2﹣4b2=(a+2b)(a﹣2b)B.(a﹣b)2=a2﹣b2C.(a+b)2=a2+b2D.(x+3y)(x﹣3y)=x2﹣3y2【解答(jiědá)】解:A、a2﹣4b2=(a+2b)(a﹣2b),故原题分解(fēnjiě)正确;B、(a﹣b)2=a2﹣2ab+b2,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(x+3y)(x﹣3y)=x2﹣9y2,故原题计算错误;故选:A.7.(3分)下列图形中,线段(xiànduàn)AD的长表示点A到直线BC距离的是()A.B.C.D.【解答(jiědá)】解:线段AD的长表示点A到直线(zhíxiàn)BC距离的是图D,故选:D.8.(3分)计算的结果是()A.﹣B.C.﹣D.【解答】解:原式=(﹣×1.5)2021×(﹣1.5)=﹣1.5=﹣,故选:A.9.(3分)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法(wúfǎ)确定【解答(jiědá)】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选:A.10.(3分)算式(suànshì)(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是()A.4 B.2 C.8 D.6【解答(jiědá)】解:原式=(2﹣1)(2+1)×(22+1)×(24+1)×…×(232+1)+1=(22﹣1)×(22+1)×(24+1)×…×(232+1)+1=(24﹣1)×(24+1)×…×(232+1)+1=(232﹣1)×(232+1)+1=264﹣1+1=264,因为(yīn wèi)21=2,22=4,23=8,24=16,25=32,所以底数为2的正整数次幂的个位数是2、4、8、6的循环,所以264的个位数是6.故选:D.二、填空题11.(3分)某学校有A、B、C三栋教学楼,B楼在A楼的正北方向上,与A 楼相距40米;C楼在A楼的东偏南30°方向上,与A楼相距80米,通过画图(用1厘米代表20米),量出B、C两楼间的距离为106米(精确到米).【解答】解:在图形上测量知B,C两楼之间的距离为106米.12.(3分)如图,已知AB∥CD,F为CD上一点(yī diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数(dù shu)为整数,则∠C的度数(dù shu)为36°或37°.【解答(jiědá)】解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x﹣60°,又∵6°<∠BAE<15°,∴6°<3x﹣60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角(wài jiǎo),∠C的度数为整数,∴∠C=60°﹣23°=37°或∠C=60°﹣24°=36°,故答案为:36°或37°.13.(3分)直线a外有一定点A,A到直线a的距离(jùlí)是5cm,P是直线a 上的任意一点,则AP≥5cm(填写(tiánxiě)<或>或=或≤或≥)【解答(jiědá)】解:根据题意,得A到直线(zhíxiàn)a的垂线段的长是5cm,由垂线(chuí xiàn)段最短,得AP≥5cm.故填:≥.14.(3分)若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.15.(3分)若一个角是34°,则这个角的余角是56°.【解答】解:若一个角是34°,则这个角的余角是90°﹣34°=56°,故答案为:56.16.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于2n 度【解答(jiědá)】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点(jiāodiǎn)为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点(jiāodiǎn)为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点(jiāodiǎn)为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推(yǐ cǐ lèi tuī),∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .三、解答(jiědá)题17.在求1+2+22+23+24+25+26的值时,小明发现(fāxiàn):从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后(ránhòu)在①式的两边(liǎngbiān)都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2021(a≠0且a≠1)的值.【解答(jiědá)】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093;(2)1+a+a2+a3+…+a2021(a≠0且a≠1)═[(1+a+a2+a3+…+a2021)×a﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=[(a+a2+a3+…+a2021+a2021)﹣(1+a+a2+a3+…+a2021)]÷(a﹣1)=(a2021﹣1)÷(a﹣1)=.18.如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,若使所修路段CE∥AB,∠ECB应为多少度?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮她补充完整.解:由已知,根据两直线平行,同位角相等得∠1=∠A=67°所以,∠CBD=23°+67°=90°;根据(gēnjù)同旁内角(tónɡ pánɡ nèi jiǎo)互补,两直线平行当∠ECB+∠CBD=180°时,可得CE∥AB.所以(suǒyǐ)∠ECB=90°此时CE与BC的位置(wèi zhi)关系为垂直(chuízhí).【解答】解:由已知,根据两直线平行,同位角相等得:∠1=∠A=67°,所以,∠CBD=23°+67°=90°,根据同旁内角互补,两直线平行,当∠ECB+∠CBD=180°时,可得CE∥AB,所以∠ECB=90°,此时CE与BC的位置关系为垂直,故答案为:两直线平行,同位角相等,90,同旁内角互补,两直线平行,180,90,垂直.19.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.【解答(jiědá)】解:(1)如图1,将正方形等分成如图的四个小正方形,将这4个转发装置(zhuāngzhì)安装在这4个小正方形对角线的交点处,此时(cǐ shí),每个小正方形的对角线长为,每个转发装置都能完全覆盖一个(yī ɡè)小正方形区域,故安装(ānzhuāng)4个这种装置可以达到预设的要求;(2)(画图正确给1分)将原正方形分割成如图2中的3个矩形,使得BE=31,OD=OC.将每个装置安装在这些矩形的对角线交点处,则AE=,,∴OD=,即如此安装三个这个转发装置,也能达到预设要求.20.如图,已知两条射线(shèxiàn)OM∥CN,动线段(xiànduàn)AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段(xiànduàn)CB 上,OB平分∠AOF,OE平分(píngfēn)∠COF.(1)请在图中找出与∠AOC相等的角,并说明(shuōmíng)理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.【解答】解:(1)∵OM∥CN,∴∠AOC=180°﹣∠C=180°﹣108°=72°,∠ABC=180°﹣∠OAB=180°﹣108°=72°,又∵∠BAM=∠180°﹣∠OAB=180°﹣108°=72°,∴与∠AOC相等的角是∠AOC,∠ABC,∠BAM;(2)∵OM∥CN,∴∠OBC=∠AOB,∠OFC=∠AOF,∵OB平分∠AOF,∴∠AOF=2∠AOB,∴∠OFC=2∠OBC,∴∠OBC:∠OFC=;(3)设∠OBA=x,则∠OEC=2x,在△AOB中,∠AOB=180°﹣∠OAB﹣∠ABO=180°﹣x﹣108°=72°﹣x,在△OCE中,∠COE=180°﹣∠C﹣∠OEC=180°﹣108°﹣2x=72°﹣2x,∵OB平分∠AOF,OE平分∠COF,∴∠COE+∠AOB=∠COF+∠AOF=∠AOC=×72°=36°,∴72°﹣x+72°﹣2x=36°,解得x=36°,即∠OBA=36°,此时(cǐ shí),∠OEC=2×36°=72°,∠COE=72°﹣2×36°=0°,点C、E重合(chónghé),所以(suǒyǐ),不存在.21.问题(wèntí)再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数(dàishù)公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试(chángshì)解决:(2)请你类比上述推导(tuīdǎo)过程,利用图形的几何意义确定:13+23+33= 62.(要求写出结论(jiélùn)并构造图形写出推证过程).(3)问题(wèntí)拓广:请用上面的表示几何图形面积(miàn jī)的方法探究:13+23+33+…+n3=[n (n+1)]2.(直接写出结论即可,不必写出解题过程)【解答】解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案(dá àn)为:62;(3)由上面表示几何图形的面积(miàn jī)探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=n(n+1),∴13+23+33+…+n3=[n(n+1)]2.故答案(dá àn)为:[n(n+1)]2.22.计算(jì suàn):(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2(2)a•a3•(﹣a2)3.【解答(jiědá)】解:(1)(﹣)﹣2+(π﹣3.14)0+(﹣2)2=4+1+4=9;(2)a•a3•(﹣a2)3=a•a3•(﹣a6)=﹣a10.23.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分(píngfēn)∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数(dù shu).【解答(jiědá)】解:(1)∠AED=∠EAF+∠EDG.理由(lǐyóu):如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明(zhèngmíng):如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分(píngfēn)∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°﹣20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角(wài jiǎo),∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°﹣80°﹣20°=80°.内容总结(1)+a2021(a≠0且a≠1)的值.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2186÷2=1093。
2023-2024学年江苏省苏州市昆山市秀峰中学七年级(下)第一次月考数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列运算不正确的是()A. B. C. D.2.如图,已知,,下列结论;;;;其中正确的结论共有()A.1个B.2个C.3个D.4个3.已知,,,则a,b,c的关系为①②③④,其中正确的个数有()A.1个B.2个C.3个D.4个4.已知直线,将一块含角的直角三角板ABC按如图方式放置,其中A,B两点分别落在直线m,n上,若,则的度数为()A. B. C. D.5.如图,在中,,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①的面积的面积;②;③;④A.①②③④B.①②④C.①②③D.③④6.如图①,一张四边形纸片ABCD,,若将其按照图②所示方式折叠后,恰好,,则的度数为()A.B.C.D.7.如果等式,则等式成立的x的值的个数为()A.1个B.2个C.3个D.4个8.下列说法:①平分三角形内角的射线是三角形的角平分线;②直角三角形只有一条高;③一个多边形的边数每增加一条,这个多边形的外角和就增加;④在中,若,则为直角三角形,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题:本题共10小题,每小题3分,共30分。
9.一个氢原子的直径约为,将这个数用科学记数法表示为______.10.如图梯形ABCD中,,,,高为7cm,若将梯形ABCD向右平移4cm得到梯形,则平移前后两梯形重叠部分的面积为______11.计算:______.12.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为______.13.已知一个多边形的内角和和外角和的度数之比为9:2,那么它是______边形.14.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成与若,则______15.有一个棱长10cm的正方体,在某种物质的作用下,棱长以每秒扩大为原来的倍的速度膨胀,则3秒后该正方体的体积是______立方厘米.16.如图,射线BD,AE分别是的外角,的角平分线,射线BD与直线AC交于点D,射线AE与直线BC交于点E,若,,则的度数为______.17.如图,在中,,,若的面积为4,则四边形AEFD的面积为______.18.如图,在同一平面内,线段射线MN,垂足为M,线段射线MN,垂足为若点P是射线MN上一点,连结PA、PB,记,,且,则__________用含、的代数式表示三、计算题:本大题共1小题,共8分。
江苏初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.的倒数是___ ____;绝对值是3的数是.2.用“>”或“<”填空:(1)0 ;(2)-3 -5;(3).3.如果向南走20米记为是-20米,那么向北走70米记为____________.4.在数轴上与表示—2 的点距离3个单位长度的点表示的数是_____________.5.若,则a+b= .6.绝对值不大于2.5的整数有,它们的和是.7.某班5名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,0,﹣1,+6,则他们的平均成绩是分.8.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为.9.规定,则的值为_________.10.某公交车原坐有22人,经过2个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),则车上还有________人.11.如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第(6)幅图中含有个正方形.二、选择题1.的相反数是()A.B.3C.D.2.江阴2013年元旦的最高气温为8℃,最低气温为-2℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃3.下列结论正确的是()A.有理数包括正数和负数B.无限不循环小数叫做无理数C.0是最小的整数D.数轴上原点两侧的数互为相反数4.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个5.下列各对数:+(﹣3)与﹣3,+(+3)与+3,﹣(﹣3)与+(﹣3),﹣(+3)与-(﹣3),+(+3)与﹣(﹣3),+3与﹣3中,互为相反数的有()A.3对B.4对C.5对D.6对6.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a+b>0B.a>b C.ab<0D.b﹣a>07.已知,=8,且<0,则的值等于()A.B.C.或11D.或8.观察以下数组:(2),(4、6),(8、10、12),(14、16、18、20),…问2014在第几组()A.44B.45C.46D.无法确定9.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2012将与圆周上的哪个数字重合()A.0B.1C.2D.3三、计算题1.(本题满分3分)把下列各数:-2.5 ,-1,-|-2|,-(-3),0 在数轴上表示出来,并用“<”把它们连接起来:2.(本题满分24分)计算或化简:(1)(-3)+(-2);(2)(-8)-(+6);(3);(4);(5);(6);(7)(8)(-4)×(-2)+(-8)×(-2)+12×(-2)四、解答题1.(本题满分5分)把下列各数填入相应的集合中,,+13.5,,3.14,,,,0,+5,2.1010010001…, ,①正数集合 { …}②负数集合 { …}③无理数集合 { …}④整数集合 { …}⑤分数集合 { …}2.(本题满分5分)我们知道,在数轴上,|a|表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用数a,b表示,那么A、B两点之间的距离为:AB=|a-b|.利用此结论,回答以下问题:(1)数轴上表示2和5的两点的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;数轴上表示x和-1的两点A,B之间的距离是,如果AB=2,那么x是;3.(本题满分5分)2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力支援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+,,,,+,,,.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为29升(出发时满油箱),求途中至少需补充多少升油?4.(本题满分8分)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?答:我抽取的2张卡片是、,乘积的最大值为.(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?答:我抽取的2张卡片是、,商的最小值为.(3)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?答:我抽取的2张卡片是、,组成的最大数为.(4)从中取出4张卡片,用学过的运算方法,使结果为24.如何抽取?写出运算式子.(写出一种即可).答:我抽取的4张卡片是、、、,算24的式子为.江苏初一初中数学月考试卷答案及解析一、填空题1.的倒数是___ ____;绝对值是3的数是.【答案】,±3.【解析】试题分析:根据倒数和绝对值的定义可得的倒数是,绝对值是3的数是±3.【考点】倒数和绝对值的定义.2.用“>”或“<”填空:(1)0 ;(2)-3 -5;(3).【答案】(1)>;(2)>;(3)<.【解析】根据正数大于零,零大于负数,正数大于负数;两个负数,绝对值大的反而小可得 0>, -3>-5,,<.【考点】有理数的大小比较.3.如果向南走20米记为是-20米,那么向北走70米记为____________.【答案】+70米.【解析】已知向南走20米记为是-20米,根据正数、负数表示相反意义的量可得向北走70米记为+70米.【考点】正数、负数的意义.4.在数轴上与表示—2 的点距离3个单位长度的点表示的数是_____________.【答案】-5或1.【解析】在数轴上与表示—2 的点距离3个单位长度的点表示的数有两个,在-2的左侧的数为-5,右侧的数为1,.【考点】数轴.5.若,则a+b= .【答案】.【解析】由可得,b=-1,所以a+b=.【考点】d的非负性.6.绝对值不大于2.5的整数有,它们的和是.【答案】±2,±1,0;0.【解析】绝对值不大于2.5的整数就是在-2.5和2.5之间的整数,有±2,±1,0共5个,它们的和为0.【考点】绝对值;有理数的加法.7.某班5名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:﹣4,+9,0,﹣1,+6,则他们的平均成绩是分.【答案】92.【解析】根据题意可得,他们的平均成绩为90+(-4+9+0-1+6)÷5=90+2=92分.【考点】有理数的混合运算的应用.8.如图是一个程序运算,若输入的x为﹣5,则输出y的结果为.【答案】-10.【解析】根据运算程序,输入的x为﹣5,可得[-5+4-(-3)]×(-5)=-10,所以输出的结果为-10.【考点】有理数的混合运算.9.规定,则的值为_________.【答案】-1.【解析】根据题目中的规定可得=3×(-4)+2×6-1=-1.【考点】有理数的混合运算.10.某公交车原坐有22人,经过2个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,6),则车上还有________人.【答案】19.【解析】由题意可得某公交车原坐有22人,经过2个站点车上还有22+4-8-5+6=19人.【考点】正负数的意义;有理数的加减运算.11.如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第(6)幅图中含有个正方形.【答案】91.【解析】观察图形可得,第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第6个有1+4+9+16+25+36=91个正方形.【考点】规律探究题.二、选择题1.的相反数是()A.B.3C.D.【答案】B.【解析】只有符号不同的两个数互为相反数,根据相反数的定义可得的相反数是3,故答案选B.【考点】相反数的定义.2.江阴2013年元旦的最高气温为8℃,最低气温为-2℃,那么这天的最高气温比最低气温高()A.-10℃B.-6℃C.6℃D.10℃【答案】D.【解析】江阴2013年元旦的最高气温为8℃,最低气温为-2℃,那么这天的最高气温比最低气温高8-(-2)=10℃,故答案选D.【考点】有理数的减法.3.下列结论正确的是()A.有理数包括正数和负数B.无限不循环小数叫做无理数C.0是最小的整数D.数轴上原点两侧的数互为相反数【答案】B.【解析】选项A,有理数包括正有理数、0和负有理数,选项A错误;选项B,无限不循环小数叫做无理数,选项B正确;选项C,-2是整数,但是-2<0,选项C错误;选项D,-1与4位于数轴上原点的两侧,但是它们不是互为相反数,选项D错误.故答案选B.【考点】有理数、无理数、整数、相反数的定义.4.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个【答案】C.【解析】根据整数的定义可得在数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有+1,-14,0,-5共4个,故答案选C.【考点】整数的定义.5.下列各对数:+(﹣3)与﹣3,+(+3)与+3,﹣(﹣3)与+(﹣3),﹣(+3)与-(﹣3),+(+3)与﹣(﹣3),+3与﹣3中,互为相反数的有()A.3对B.4对C.5对D.6对【答案】A.【解析】根据互为相反数的两个数相加得0可得+(﹣3)+(﹣3)=-6,+(+3)+( +3)=6,,﹣(﹣3)+[+(﹣3)]=0,﹣(+3)+[-(﹣3)]=0,+(+3)+[﹣(﹣3)]=6,+3+(﹣3)=0,所以互为相反数的有﹣(﹣3)与+(﹣3)、﹣(+3)与-(﹣3)和+3与﹣3三对,故答案选A.【考点】相反数的定义.6.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A.a+b>0B.a>b C.ab<0D.b﹣a>0【答案】B.【解析】观察数轴可得a<0,b<0,,a>b,根据有理数的运算法则可得 a+b<0 ,ab>0,b﹣a<0,故答案选B.【考点】数轴;有理数的运算法则.7.已知,=8,且<0,则的值等于()A.B.C.或11D.或【答案】A.【解析】已知,=8,可得x=±3,y=±8,又因<0,可得x=-3,y=8或x=3,y=-8所以的值等于±5,故答案选A.【考点】绝对值;有理数的加法.8.观察以下数组:(2),(4、6),(8、10、12),(14、16、18、20),…问2014在第几组()A.44B.45C.46D.无法确定【答案】B.【解析】试题分析:观察数列可得,每组数的最后一个数为2,6,12,20,…可得第n组的最后一个数为n(n+1),当n=44时,44×(44+1)=1980,当n=45时,45×(45+1)=2070,说明第44组的最后一个数为1980,第45组的最后一个数为2070,2014在1980和2070之间,所以2014在第45组,故答案选B.【考点】数字规律探究题.9.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2012将与圆周上的哪个数字重合()A.0B.1C.2D.3【答案】C.【解析】解:圆在旋转的过程中,圆上的四个数,每旋转一周即循环一次,则与圆周上的0重合的数是-2,-6,-10…,即-(-2+4n),同理与3重合的数是:-(-1+4n),与2重合的数是-4n,与1重合的数是-(1+4n),其中n是正整数.而-2012=-4×503,所以数轴上的数-2012将与圆周上的数字2重合.故答案选C.【考点】规律探究题.三、计算题1.(本题满分3分)把下列各数:-2.5 ,-1,-|-2|,-(-3),0 在数轴上表示出来,并用“<”把它们连接起来:【答案】图见解析,-2.5<-|-2|<-1<0<-(-3).【解析】先把各数在数轴上表示出来,再按数轴上右边的数总比左边的数大比较即可试题解析:-2.5<-|-2|<-1<0<-(-3)【考点】数轴;有理数的大小比较.2.(本题满分24分)计算或化简:(1)(-3)+(-2);(2)(-8)-(+6);(3);(4);(5);(6);(7)(8)(-4)×(-2)+(-8)×(-2)+12×(-2)【答案】(1);(2);(3);(4);(5);(6);(7);(8).【解析】试题分析:根据有理数的混合运算顺序依次运算即可.试题解析:解:(1)原式=-5;(2)原式=-8-6=-14;(3)原式=-0.5-7.5+3.25+2.75=-8+6=-2;(4)原式=;(5)原式=-6-100+6=-100;(6)原式=;(7)原式=;(8)原式=.【考点】有理数的混合运算.四、解答题1.(本题满分5分)把下列各数填入相应的集合中,,+13.5,,3.14,,,,0,+5,2.1010010001…, ,①正数集合 { …}②负数集合 { …}③无理数集合 { …}④整数集合 { …}⑤分数集合 { …}【答案】详见解析.【解析】根据实数的分类,依次填写即可.试题解析:①正数集合 {,+13.5,3.14,,+5,2.1010010001…,…}②负数集合 {,,,,,…}③无理数集合 { 2.1010010001…, ,…}④整数集合 {,0,+5,…}⑤分数集合 {,+13.5,,3.14,,,,…}考点:实数的分类.2.(本题满分5分)我们知道,在数轴上,|a|表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A、B,分别用数a,b表示,那么A、B两点之间的距离为:AB=|a-b|.利用此结论,回答以下问题:(1)数轴上表示2和5的两点的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;数轴上表示x和-1的两点A,B之间的距离是,如果AB=2,那么x是;【答案】(1)3,3,4 ;(2)∣x+1∣,1或-3.【解析】直接根据数轴上A、B两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离.试题解析:(1)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3.【考点】数轴;绝对值.3.(本题满分5分)2010年8月7日夜22点左右,甘肃舟曲发生特大山洪泥石流灾害,甘肃消防总队迅即出动兵力支援灾区.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+,,,,+,,,.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为29升(出发时满油箱),求途中至少需补充多少升油?【答案】(1)正东方向18千米;(2)23千米;(3)7升.【解析】(1)已知向东为正,向西为负,将当天的行驶记录相加,如果是正数,消防官兵的冲锋舟最后到达的地方在出发点的东方;如果是负数,养护小组最后到达的地方在出发点的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.试题解析:解:(1)∵14-9+8-7+13-6+10-5=18>0,∴B地在A地的东边18千米;∵路程记录中各点离出发点的距离分别为:14千米;14-9=5千米;14-9+8=13千米;14-9+8-7=6千米;14-9+8-7+13=19千米;14-9+8-7+13-6=13千米;14-9+8-7+13-6+10=23千米;14-9+8-7+13-6+10-5=18千米.∴最远处离出发点23千米;∵这一天走的总路程为:14+|-9|+8+|-7|+13+|-6|+10+|-5|=72千米,应耗油72×0.5=36(升),∴还需补充的油量为:36-29=7(升)【考点】正数、负数的意义;有理数的运算.4.(本题满分8分)小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?答:我抽取的2张卡片是、,乘积的最大值为.(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?答:我抽取的2张卡片是、,商的最小值为.(3)从中取出2张卡片,使这2张卡片上数字组成一个最大的数,如何抽取?最大的数是多少?答:我抽取的2张卡片是、,组成的最大数为.(4)从中取出4张卡片,用学过的运算方法,使结果为24.如何抽取?写出运算式子.(写出一种即可).答:我抽取的4张卡片是、、、,算24的式子为.【答案】(1)(-3)(-5) 15;(2)(-5) +3 -;(3)+3 +4 43;(4)(-3) 4 0 +3,[3-(-3)]×(0+4).(答案不唯一,符合要求即可)【解析】(1)根据有理数的乘法法则即可确定;(2)根据有理数的除法法则即可确定;(3)根据组成数字的数的性质即可确定;(4)根据有理数的混合运算法则即可确定.试题解析:(1)∵从中取出2张卡片,使这2张卡片上数字的乘积最大,∴我抽取的2张卡片是-3、-5,乘积的最大值为15;∵从中取出2张卡片,使这2张卡片上数字相除的商最小,∴我抽取的2张卡片是-5、3,商的最小值;∵从中取出2张卡片,使这2张卡片上数字组成一个最大的数,∴我抽取的2张卡片是4、3,组成的最大数为43;∵从中取出4张卡片,用学过的运算方法,使结果为24,∴我抽取的4张卡片是-3、4、3、0,算24的式子为[3-(-3)]×(0+4).【考点】有理数的混合运算.。
2020年新苏教版数学七年级下册第一次月考模拟试卷7一、选择题(每题3分,共27分)1.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.8、6、3 C.2、6、3 D.11、4、62.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6 C.2.5×10﹣5D.2.5×10﹣63.一个六边形,每一个内角都相等,每个内角的度数为()A.100°B.120°C.135°D.150°4.下列等式正确的是()A.(﹣x2)3=﹣x5B.x3+x3=2x6C.a3•a3=2a3 D.26+26=275.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的外角和都是360°C.有一个内角是直角的三角形是直角三角形D.三角形的一个外角大于任何一个内角6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1 B.2 C.3 D.48.如图,△ABC的两条中线AM、BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为()A.4 B.3 C.4.5 D.3.59.已知9m÷32m+2=n,n的值是()A.﹣2 B.2 C.0.5 D.﹣0.5二、填空(每空2分,共26分)10.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为.11.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为.12.计算:﹣(x2)3=;(﹣0.125)2012•(﹣8)2013=.13.若a x=2,则a3x=;若2a+3b=3,则9a•27b的值为.14.如果一个三角形有两个外角的和等于270°,则此三角形一定是三角形.15.如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为cm2.16.AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=°.17.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG=度.18.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=度.19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=时,△AOP为直角三角形;当∠A=时,△AOP为等腰三角形.三、解答题20.计算(1)﹣t3•(﹣t)4÷(﹣t)5(2)(﹣1)2015+2﹣1﹣()﹣2+(π﹣3.14)0(3)(a﹣b)2•(a﹣b)n•(b﹣a)3(4 )2(x3)2•x3﹣(4x3)3+(﹣3x)4•x5.21.如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.22.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:;(4)能使S△ABQ=S△ABC的格点Q,共有个,在图中分别用Q1、Q2、…表示出来.23.如图,已知AB∥CD.(1)判断∠FAB与∠C的大小关系,并说明理由;(2)若∠C=35°,AB是∠FAD的平分线.①求∠FAD的度数;②若∠ADB=110°,求∠BDE的度数.24.如图,在△ABC中,BE、CD相交于点E,设∠A=2∠ACD=76°,∠2=143°,求∠1和∠DBE的度数.25.有一块长方形钢板ABCD,现将它加工成如图所示的零件,按规定∠1、∠2应分别为45°和30°.检验人员量得∠EGF为78°,就判断这个零件不合格,你能说明理由吗?26.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.参考答案与试题解析一、选择题(每题3分,共27分)1.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.8、6、3 C.2、6、3 D.11、4、6【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:根据三角形的三边关系,知A、2+2=4,不能组成三角形;B、3+6>8,能够组成三角形;C、3+2=5<6,不能组成三角形;D、4+6<11,不能组成三角形.故选B.2.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6 C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.3.一个六边形,每一个内角都相等,每个内角的度数为()A.100°B.120°C.135°D.150°【考点】多边形内角与外角.【分析】根据多边形的内角和公式求出六边形的内角和,计算出每个内角的度数即可.【解答】解:六边形的内角和为:(6﹣2)×180°=720°,每个内角的度数为:720°÷6=120°,故选:B.4.下列等式正确的是()A.(﹣x2)3=﹣x5B.x3+x3=2x6C.a3•a3=2a3 D.26+26=27【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】分别根据幂的乘方与积的乘方法则、同底数幂的乘法法则及合并同类项的法则对各选项进行逐一判断即可.【解答】解:A、(﹣x2)3=﹣x6≠﹣x5,故本选项错误;B、x3+x3=2x3≠2x6,故本选项错误;C、a3•a3=a6≠2a3,故本选项错误;D、26+26=27,故本选项正确.故选D.5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的外角和都是360°C.有一个内角是直角的三角形是直角三角形D.三角形的一个外角大于任何一个内角【考点】三角形的外角性质;三角形的角平分线、中线和高.【分析】根据三角形的外角和定理,直角三角形的定义,外角与内角的关系定理,三角形中的中线、角平分线、高线定义进行分析即可得到答案.【解答】解:A、三角形的中线、角平分线、高线都是线段正确,故此选项错误;B、根据三角形外角和定理:任意三角形的外角和都是360°正确,故此选项错误;C、根据直角三角形的定义:有一个内角是直角的三角形是直角三角形正确,故此选项错误;D、根据三角形外角与内角的关系定理:三角形的一个外角大于任何一个与它不相邻的内角,故此选项正确.故选:D.6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.7.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB∥CD的条件个数有()A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】根据平行线的判定定理,(1)(3)(4)能判定AB∥CD.【解答】解:(1)∠B+∠BCD=180°,同旁内角互补,两直线平行,则能判定AB∥CD;(2)∠1=∠2,但∠1,∠2不是截AB、CD所得的内错角,所不能判定AB∥CD;(3)∠3=∠4,内错角相等,两直线平行,则能判定AB∥CD;(4)∠B=∠5,同位角相等,两直线平行,则能判定AB∥CD.满足条件的有(1),(3),(4).故选:C.8.如图,△ABC的两条中线AM、BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为()A.4 B.3 C.4.5 D.3.5【考点】三角形的面积.【分析】先求出△NAB的面积=△MBA的面积,得出△AON的面积=△BOM的面积=2,再求出△ABN的面积=△BCN的面积,即可求出四边形MCNO的面积.【解答】解:如图连接MN,∵AM、BN是△ABC的两条中线,∴MN∥AB,∴△NAB的面积=△MBA的面积,∴△AON的面积=△BOM的面积=2,∵△ABO的面积为4,∴△ABN的面积=4+2=6,∵N为中点,∴△BCN的面积=△ABN的面积=6,∴四边形MCNO的面积=△BCN的面积﹣△BOM的面积=6﹣2=4,故选:A.9.已知9m÷32m+2=n,n的值是()A.﹣2 B.2 C.0.5 D.﹣0.5【考点】同底数幂的除法.【分析】先把32m+2化为底数为9的幂,再根据同底数幂的除法运算法则计算,最后比较指数的值即可.【解答】解:∵32m+2=(32)m+1=9m+1,∴9m÷3m+2=9m÷9m+1=9﹣1==()2,∴n=2.故选B二、填空(每空2分,共26分)10.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为7.【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为3和1两边,没由明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去,当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故答案是:7.11.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为75°.【考点】三角形内角和定理.【分析】设∠B=x,则∠C=x﹣25°,再由三角形内角和定理求出x的值即可.【解答】解:∵∠B比∠C大25°,∴设∠B=x,则∠C=x﹣25°,∵∠A+∠B+∠C=180°,∴55°+x+x﹣25°=180°,解得x=75°.故答案为:75°.12.计算:﹣(x2)3=﹣x6;(﹣0.125)2012•(﹣8)2013=﹣8.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变指数相乘的性质的逆用求解即可.【解答】解:﹣(x2)3=﹣x6;(﹣0.125)2012•(﹣8)2013=﹣8,故答案为:﹣x6;﹣8.13.若a x=2,则a3x=8;若2a+3b=3,则9a•27b的值为27.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方,底数不变指数相乘的性质的逆用求解即可.【解答】解:∵a x=2,∴a3x=(a x)3=23=8.∵2a+3b=3,∴9a•27b=32a+3b=33=27,故答案为:8;2714.如果一个三角形有两个外角的和等于270°,则此三角形一定是直角三角形.【考点】三角形的外角性质.【分析】根据三角形的外角和是360°,则第三个外角是90°,则与其相邻的内角是90°,即该三角形一定是直角三角形.【解答】解:∵一个三角形的两个外角的和是270°,∴第三个外角是90°,∴与90°的外角相邻的内角是90°,∴这个三角形一定是直角三角形.故答案为:直角.15.如图,直径为2cm的圆O1平移3cm到圆O2,则图中阴影部分的面积为6cm2.【考点】平移的性质.【分析】由平移的性质知,⊙O1与⊙O2是全等的,所以图中的阴影部分的面积与图中的矩形的面积是相等的,故图中阴影部分面积可求.【解答】解:∵⊙O1平移3cm到⊙O2∴⊙O1与⊙O2全等∴图中的阴影部分的面积=图中的矩形的面积∴2×3=6cm2∴图中阴影部分面积为6cm2.故答案为:6.16.AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=5°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】求出∠AEC=∠AEB=90°,根据三角形的内角和定理求出∠BAC,根据角平分线求出∠DAC,根据三角形内角和定理求出∠EAC,即可求出答案.【解答】解:∵AE⊥BC,∴∠AEC=∠AEB=90°,∵∠B=60°,∠C=70°,∴∠BAC=180°﹣60°﹣70°=50°,∵AD平分∠BAC,∴∠DAC=∠BAC=25°,∵∠AEC=90°,∠C=70°,∴∠EAC=180°﹣90°﹣70°=20°,∴∠EAD=25°﹣20°=5°,故答案为:5.17.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG=64度.【考点】平行线的性质;对顶角、邻补角;翻折变换(折叠问题).【分析】此题要求∠AEG的度数,只需求得其邻补角的度数,根据平行线的性质以及折叠的性质就可求解.【解答】解:根据长方形的对边平行,得AD∥BC,∴∠DEF=∠1=58°.再根据对折,得:∠GEF=∠DEF=58°.再根据平角的定义,得:∠AEG=180°﹣58°×2=64°.18.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=360度.【考点】多边形内角与外角;三角形的外角性质.【分析】根据四边形的内角和等于360°,及三角形一个外角等于和它不相邻的两个内角的和得出.【解答】解:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.故答案为:360.19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=60°或90°时,△AOP为直角三角形;当∠A=30°或75°或120°时,△AOP为等腰三角形.【考点】等腰三角形的判定;直角三角形的性质.【分析】①根据直角三角形的定义即可解决.②分三种情形讨论即可:a、当点O为等腰三角形顶点.b、当点A为等腰三角形顶点.C、当点P为顶点.【解答】解:①∵∠AON=30°,∴当∠A=60°时,∠APO=90°,此时△AOP是直角三角形,当∠A=90°时,△AOP是直角三角形,故答案为60°或90°,②当点O为等腰三角形顶点时,∠A=75°,当点A为等腰三角形顶点时,∠A=120°,当点P为顶点时,∠A=30°,故答案为30°或75°或120°.三、解答题20.计算(1)﹣t3•(﹣t)4÷(﹣t)5(2)(﹣1)2015+2﹣1﹣()﹣2+(π﹣3.14)0(3)(a﹣b)2•(a﹣b)n•(b﹣a)3(4 )2(x3)2•x3﹣(4x3)3+(﹣3x)4•x5.【考点】整式的混合运算.【分析】(1)根据同底数幂的乘除法法则计算即可求解;(2)先算乘方、负整数指数幂和零指数幂,再算加减法即可求解;(3)根据同底数幂的乘法法则计算即可求解;(4)先算幂的乘方和积的乘方、再算同底数幂的乘法,再合并同类项即可求解.【解答】解:(1)﹣t3•(﹣t)4÷(﹣t)5=t3+4﹣5=t2;(2)(﹣1)2015+2﹣1﹣()﹣2+(π﹣3.14)0=﹣1+﹣+1=;(3)(a﹣b)2•(a﹣b)n•(b﹣a)3=﹣(a﹣b)2+n+3=﹣(a﹣b)5+n;(4 )2(x3)2•x3﹣(4x3)3+(﹣3x)4•x5.=2x6•x3﹣64x9+81x4•x5=2x9﹣64x9+81x9=19x9.21.如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.【考点】多边形内角与外角;多边形的对角线.【分析】首先外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数.【解答】解:设外角为x°,x+4x+30=180,解得:x=30,360°÷30°=12,对角线的总条数==48,答:这个多边形的边数为十二,对角线的总条数是48条.22.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:平行且相等;(4)能使S△ABQ=S△ABC的格点Q,共有4个,在图中分别用Q1、Q2、…表示出来.【考点】作图-平移变换;三角形的面积.【分析】(1)根据中线的定义得出AB的中点即可得出△ABC的AB边上的中线CD;(2)平移A,B,C各点,得出各对应点,连接得出△A1B1C1;(3)利用平移的性质得出AC与A1C1的关系;(4)首先求出S△ABC的面积,进而得出Q点的个数.【解答】解:(1)如图所示:;(2)如图所示:;(3)根据平移的性质得出,AC与A1C1的关系是:平行且相等;(4)如图所示:能使S△ABQ=S△ABC的格点Q,共有4个.故答案为:平行且相等;4.23.如图,已知AB∥CD.(1)判断∠FAB与∠C的大小关系,并说明理由;(2)若∠C=35°,AB是∠FAD的平分线.①求∠FAD的度数;②若∠ADB=110°,求∠BDE的度数.【考点】角的大小比较;平行线的判定与性质.【分析】(1)相等,根据平行线的性质由AB∥CD,得到∠FAB=∠C即可;(2)①根据角平分线的定义得到∠FAD=2∠FAB,代入求出即可;②求出∠ADB+∠FAD=180°,根据平行线的判定得出CF∥BD,再根据平行线的性质推出∠BDE=∠C=35°.【解答】解:(1)∠FAB与∠C的大小关系是相等,理由是:∵AB∥CD,∴∠FAB=∠C.(2)①∵∠FAB=∠C=35°,∵AB是∠FAD的平分线,∴∠FAD=2∠FAB=2×35°=70°,答:∠FAD的度数是70°.②∵∠ADB=110°,∠FAD=70°,∴∠ADB+∠FAD=110°+70°=180°,∴CF∥BD,∴∠BDE=∠C=35°,答:∠BDE的度数是35°.24.如图,在△ABC中,BE、CD相交于点E,设∠A=2∠ACD=76°,∠2=143°,求∠1和∠DBE的度数.【考点】三角形的外角性质.【分析】求出∠ACD,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠ACD计算即可得解;再根据三角形的一个外角等于与它不相邻的两个内角的和列式求解即可得到∠DBE.【解答】解:∵2∠ACD=76°,∴∠ACD=38°,在△ACD中,∠1=∠A+∠CD=76°+38°=114°;在△BDE中,∠DBE=∠2﹣∠1=143°﹣114°=29°.25.有一块长方形钢板ABCD,现将它加工成如图所示的零件,按规定∠1、∠2应分别为45°和30°.检验人员量得∠EGF为78°,就判断这个零件不合格,你能说明理由吗?【考点】平行线的性质.【分析】过点G作GH∥AD,再由平行线的性质即可得出结论.【解答】解:点G作GH∥AD,∵∠1=45°,∴∠EGH=∠1=45°.∵AD∥BC,∴GH∥BC.∵∠2=30°,∴∠FGH=∠2=30°,∴∠EGF=∠EGH+∠FGH=45°+30°=75°,∴这个零件不合格.26.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,再表示出∠1+∠2即可;(2)方法与(1)相同;(3)根据点P的位置,分D、E、P三点共线前、后和三点共线时三种情况,利用三角形的一个外角等于与它不相邻的两个内角的和讨论求解.【解答】解:(1)如图,连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠DPE=∠α=50°,∠C=90°,∴∠1+∠2=50°+90°=140°,故答案为:140°;(2)连接PC,由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,∵∠C=90°,∠DPE=∠α,∴∠1+∠2=90°+∠α;(3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.2016年4月30日。
苏科版七年级下册数学第一次月考试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列计算正确的是( )A.x3+x3=x6B.x3•x3=x9C.x3÷x﹣1=x4D.(2xy)3=2x3y2.以下列各组数据为边长,能构成三角形的是( )A.3,4,5B.4,4,8C.3,10,4D.4,5,103.若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为( )A.4a2﹣1B.4a2﹣4a+1C.4a2+4a+1D.2a2﹣4.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则( )A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 5.下列说法正确的有几个?( )①平移不改变图形的形状和大小;②一个多边形的内角中最多有3个锐角;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等;④同位角相等;⑤一个角的两边和另一个角的两边分别垂直,则这两个角相等.A.2个B.3个C.4个D.5个6.如图,用不同的代数式表示阴影部分的面积,可以表示下面哪个等式( )A.(a+b)2=a2+2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a+b)=a2+ab二、填空题(本大题共10小题,每小题3分,共30分)7.计算:= .8.比较大小:810167.9.某种感冒病毒的直径是0.00000712米,用科学记数法表示为 米.10.一个等腰三角形的两边分别是5cm和9cm,则三角形的周长是 .11.已知x2﹣2mx+4是关于x的完全平方式,则m的值为 .12.如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2= °.13.一个正多边形的每个内角等于108°,则它的边数是 .14.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= .15.计算:20203﹣2019×2020×2021= .16.如图,大正方形卡片边长为a,小正方形卡片边长为b,取出两张小卡片放入大卡片内拼成图案.已知图中的阴影部分A的面积等于B、C的面积和,那么a、b的关系式是 .三.解答题(共102分)17.计算:(1)t m+1•t+(﹣t)2•t m(m是整数);(2);(3)(x+y)(x﹣y)(x2+y2);(4);(5)(a﹣2b+3)(a+2b﹣3).18.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是 ;(3)求出平移过程中AB扫过的面积.19.化简求值:(﹣2y﹣x)(2y﹣x)﹣(x+2y)2,其中x=﹣1,y=﹣2.20.已知(x﹣2)(x2﹣mx+n)的结果中不含x2项和x的项,求(m+n)(m2﹣mn+n2)的值.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.(1)已知2x=3,2y=5,求:2x﹣2y+1的值;(2)x﹣2y﹣1=0,求:2x÷4y×8的值.23.如图,AB∥CD,∠A=100°,∠C=75°,∠1:∠2=5:7,求∠1和∠B的度数.24.若x+y=6,且(x+2)(y+2)=24.(1)求xy的值;(2)求x2+y2的值;(3)求x4+y4的值.25.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC 交AB于F.(1)若∠ABC=60°,则∠ADC= °,∠AFD= °;(2)BE与DF平行吗?试说明理由;(3)若把题目中的条件“∠A=∠C=90°”换成“∠A=∠C”,其它条件不变,BE与DF还平行吗?试说明理由.26.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).(1)当α为 度时,AD∥BC,并在图3中画出相应的图形;(2)在旋转过程中,试探究∠CAD与∠BAE之间的关系;(3)当△ADE旋转速度为5°/秒时,且它的一边与△ABC的某一边平行(不共线)时,直接写出时间t的所有值.参考答案与试题解析一.选择题(共6小题)1.下列计算正确的是( )A.x3+x3=x6B.x3•x3=x9C.x3÷x﹣1=x4D.(2xy)3=2x3y【分析】根据同底数幂的乘法,可判断A,B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.2.以下列各组数据为边长,能构成三角形的是( )A.3,4,5B.4,4,8C.3,10,4D.4,5,10【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、3+4>5,能构成三角形;B、4+4=8,不能构成三角形;C、3+4<10,不能构成三角形;D、4+5<10,不能构成三角形.故选:A.3.若三角形的底边长为2a+1,该底边上的高为2a﹣1,则此三角形的面积为( )A.4a2﹣1B.4a2﹣4a+1C.4a2+4a+1D.2a2﹣【分析】利用三角形的面积等于底与高乘积的一半列示求解即可.【解答】解:三角形的面积为:(2a+1)(2a﹣1)=2a2﹣,故选:D.4.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则( )A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 【分析】先分别计算出结果,再比较大小.【解答】解:a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣,c=(﹣)﹣2=9,d=(﹣)0=1.故b<a<d<c.故选:B.5.下列说法正确的有几个?( )①平移不改变图形的形状和大小;②一个多边形的内角中最多有3个锐角;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等;④同位角相等;⑤一个角的两边和另一个角的两边分别垂直,则这两个角相等.A.2个B.3个C.4个D.5个【分析】根据平行线的性质,平移的性质,多边形的内角与外角的性质进行判断即可.【解答】解:①平移不改变图形的形状和大小,故①说法正确;②一个多边形的内角中最多有3个锐角,故②说法正确;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等,故③说法正确;④同位角只有在两直线平行的情况下相等,④说法错误;⑤一个角的两边和另一个角的两边分别垂直,则这两个角相等或互补,故⑤说法错误.故选:B.6.如图,用不同的代数式表示阴影部分的面积,可以表示下面哪个等式( )A.(a+b)2=a2+2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.a(a+b)=a2+ab【分析】对阴影部分的面积算两次即可得出答案.方法一、正方形的面积公式;方法二、大正方形面积减去一个小正方形和两个矩形的面积之和得到阴影部分的面积,即可得出等式.【解答】解:阴影部分面积:方法一:(a﹣b)2,方法二:大正方形面积为:a2,小正方形面积为b2,两个矩形面积为2(a﹣b)b=2ab﹣2b2,∴阴影部分面积为:a2﹣b2﹣(2ab﹣2b2)=a2﹣2ab+b2,∴(a﹣b)2=a2﹣2ab+b2,故选:C.二.填空题(共10小题)7.计算:= .【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.【解答】解:=====.故答案为:.8.比较大小:810> 167.【分析】根据幂的乘方运算法则把它们化为底数是2的幂,再比较大小即可.【解答】解:因为810=(23)10=230,167=(24)7=228.所以810>167.故答案为:>.9.某种感冒病毒的直径是0.00000712米,用科学记数法表示为 7.12×10﹣6米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000712=7.12×10﹣6.故答案为:7.12×10﹣6.10.一个等腰三角形的两边分别是5cm和9cm,则三角形的周长是 19或23cm.【分析】题目给出等腰三角形有两条边长为5cm和9cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:(1)当腰是5cm时,三角形的三边是:5cm,5cm,9cm,能构成三角形,则等腰三角形的周长=5+5+9=19cm;(2)当腰是9cm时,三角形的三边是:5cm,9cm,9cm,能构成三角形,则等腰三角形的周长=5+9+9=23cm.因此这个等腰三角形的周长为19或23cm.故答案为:19或23cm.11.已知x2﹣2mx+4是关于x的完全平方式,则m的值为 ±2.【分析】根据完全平方式得出﹣2mx=±2•x•2,求出即可.【解答】解:∵x2﹣2mx+4是一个完全平方式,∴﹣2mx=±2•x•2,∴m=±2,故答案为:±2.12.如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2= 65°.【分析】根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质解答.【解答】解:∵纸条是长方形,∴对边互相平行,∴∠3=180°﹣∠1=180°﹣130°=50°,∴∠2=(180°﹣∠3)=(180°﹣50°)=65°.故答案为:65.13.一个正多边形的每个内角等于108°,则它的边数是 5.【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解.【解答】解:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,∴这个正多边形是正五边形.故答案为:5.14.如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= 360° .【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠F AD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠F AD+∠EDA,∴∠E+∠F=∠F AD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.15.计算:20203﹣2019×2020×2021= 2020.【分析】利用平方差公式将2020×2021化为(2020﹣1)×(2020+1)],即可得出答案.【解答】解:原式=2020×[20202﹣(2020﹣1)×(2020+1)]=2020×(20202﹣20202+1)=2020×1=2020.故答案为:2020.16.如图,大正方形卡片边长为a,小正方形卡片边长为b,取出两张小卡片放入大卡片内拼成图案.已知图中的阴影部分A的面积等于B、C的面积和,那么a、b的关系式是 a2=2b2.【分析】阴影A为正方形,其边长为2b﹣a,得到其面积为=(2b﹣a)2;阴影B、C为正方形,其边长为a﹣b,得到其面积=(a﹣b)2;然后根据阴影部分A的面积等于阴影部分B、C的面积和建立等量关系(2b﹣a)2=2(a﹣b)2,去括号、移项、合并同类项得到2b2=a2.【解答】解:阴影A的面积=(2b﹣a)2,阴影B、C的面积分别=(a﹣b)2;根据题意得,(2b﹣a)2=2(a﹣b)2,4b2﹣4ab+a2=2a2﹣4ab+2b2,∴2b2=a2.故答案为:a2=2b2.三.解答题17.计算:(1)t m+1•t+(﹣t)2•t m(m是整数);(2);(3)(x+y)(x﹣y)(x2+y2);(4);(5)(a﹣2b+3)(a+2b﹣3).【分析】(1)根据同底数幂的乘法法则以及合并同类项法则计算;(2)根据同底数幂的乘法法则进行计算;(3)根据平方差公式进行运算;(4)先用幂的乘方公式,再用平方差公式的逆运算,再用完全平方公式计算;(5)先把第一个因式化成[a﹣(2b﹣3)],再与后面的因式[a+(2b﹣3)]运用平方差公式计算;【解答】解:(1)原式=t m+2+t2•t m=t m+2+t m+2=2t m+2;(2)原式=﹣x6•4x2y4•(﹣)=x9y7;(3)原式=(x2﹣y2)(x2+y2)=x4﹣y4;(4)原式=[()()]2=(﹣)2=﹣+;(5)原式=[a﹣(2b﹣3)][a+(2b﹣3)]=a2﹣(2b﹣3)2=a2﹣4b2+12b﹣9.18.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF;(2)若连接AD、CF,则这两条线段之间的关系是 平行且相等 ;(3)求出平移过程中AB扫过的面积.【分析】(1)分别作出B,C的对应点E,F即可.(2)利用平移的性质解决问题即可.(3)利用分割法求解即可.【解答】解:(1)如图,△DEF即为所求作.(2)AD=CF,AD∥CF.故答案为:平行且相等;(3)线段AB扫过的面积=6×8﹣2××2×4﹣2××6×2=2819.化简求值:(﹣2y﹣x)(2y﹣x)﹣(x+2y)2,其中x=﹣1,y=﹣2.【分析】直接利用乘法公式以及整式的混合运算法则化简,再代入x,y的值计算即可.【解答】解:(﹣2y﹣x)(2y﹣x)﹣(x+2y)2=(x+2y)(x﹣2y)﹣(x2+4xy+4y2)=x2﹣4y2﹣x2﹣4xy﹣4y2=﹣4xy﹣8y2,当x=﹣1,y=﹣2时,原式=﹣4×(﹣1)×(﹣2)﹣8×(﹣2)2=﹣40.20.已知(x﹣2)(x2﹣mx+n)的结果中不含x2项和x的项,求(m+n)(m2﹣mn+n2)的值.【分析】原式利用单项式乘以多项式法则计算,根据结果不含x2项和x3项,确定出m 与n的值代入所求式子计算即可.【解答】解:原式=x3﹣mx2+nx﹣2x2+2mx﹣2n=x3+(﹣m﹣2)x2+(n+2m)x﹣2n,由结果不含x2项和x项,得到﹣m﹣2=0,n+2m=0,解得:m=﹣2,n=4,∴(m+n)(m2﹣mn+n2)=(﹣2+4)[(﹣2)2﹣(﹣2)×4+42]=2×28=56.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】(1)如图所示;(2)在△ABC中,∠BAC=180°﹣∠B﹣∠ACB=180°﹣40°﹣110°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.22.(1)已知2x=3,2y=5,求:2x﹣2y+1的值;(2)x﹣2y﹣1=0,求:2x÷4y×8的值.【分析】(1)直接利用同底数幂的乘除运算法则将原式变形得出答案;(2)直接利用同底数幂的乘除运算法则将原式变形得出答案.【解答】解:(1)∵2x=3,2y=5,∴2x﹣2y+1=2x÷(2y)2×2=3÷52×2=;(2)∵x﹣2y﹣1=0,∴x﹣2y=1,∴2x÷4y×8=2x÷22y×8=2x﹣2y×8=2×8.=16.23.如图,AB∥CD,∠A=100°,∠C=75°,∠1:∠2=5:7,求∠1和∠B的度数.【分析】设∠1=5x°,∠2=7x°,在△ABE中,∠B=180°﹣∠A﹣∠2=80°﹣7x°,在△CDE中,∠CDE=180°﹣∠C﹣∠1﹣∠2=105°﹣12x°,根据平行线的性质得出∠B=∠CDE,代入得出方程80°﹣7x°=105°﹣12x°,求出即可.【解答】解:设∠1=5x°,∠2=7x°,在△ABE中,∠B=180°﹣∠A﹣∠2=180°﹣100°﹣7x°=80°﹣7x°,在△CDE中,∠CDE=180°﹣∠C﹣∠1﹣∠2=180°﹣75°﹣5x°﹣7x°=105°﹣12x°,∵AB∥CD,∴∠B=∠CDE,∴80°﹣7x°=105°﹣12x°,解得:x=5,∴∠1=25°,∠B=80°﹣7x°=45°.24.若x+y=6,且(x+2)(y+2)=24.(1)求xy的值;(2)求x2+y2的值;(3)求x4+y4的值.【分析】(1)根据多项式乘以多项式的法则可得xy+2x+2y+4=24,即xy+2(x+y)=20,再把x+y=6代入求解即可;(2)(3)根据完全平方公式求解即可.【解答】解:(1)∵(x+2)(y+2)=24,∴xy+2x+2y+4=24,即xy+2(x+y)=20,∵x+y=6,∴xy=20﹣2×6=8;(2)∵x+y=6,xy=8,∴x2+y2=(x+y)2﹣2xy=62﹣2×8=20;(3)∵x2+y2=20,xy=8,∴x4+y4=(x2+y2)2﹣2(xy)2=202﹣2×82=272.25.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC交CD于E,DF平分∠ADC 交AB于F.(1)若∠ABC=60°,则∠ADC= 120°,∠AFD= 30°;(2)BE与DF平行吗?试说明理由;(3)若把题目中的条件“∠A=∠C=90°”换成“∠A=∠C”,其它条件不变,BE与DF还平行吗?试说明理由.【分析】(1)根据四边形内角和为360°可计算出∠ADC=120°,再根据角平分线定义得到∠FDA=ADC=60°,然后利用互余可计算出∠AFD=30°;(2)由四边形的内角和为360度求出∠ADC+∠ABC度数,由DF、BE分别为角平分线,利用角平分线定义及等量代换得到∠ABE+∠FDC为90度,再由直角三角形ADF两锐角互余及∠ADF=∠FDC,利用等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)根据∠ADC+∠ABC+∠A+∠C=360°,∠A=∠C,可得∠ADC+∠ABC=360°﹣2∠C,根据BE平分∠ABC交CD于E,DF平分∠ADC交AB于F,所以∠CBE+∠CDF =(∠ADC+∠ABC)=(360°﹣2∠C)=180°﹣∠C,根据三角形内角和定理可得∠CBE+∠CEB=180°﹣∠C,可得∠CDF=∠CEB,进而可得BE∥DF.【解答】解:(1)∵∠A=∠C=90°,∠ABC=60°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=120°,∵DF平分∠ADC交AB于F,∴∠FDA=ADC=60°,∴∠AFD=90°﹣∠ADF=30°;故答案为120,30;(2)BE∥DF,理由如下:在四边形ABCD中,∵∠A=∠C=90°,∴∠ADC+∠ABC=180°,∴∵BE平分∠ABC交CD于E,DF平分∠ADC交AB于F,∴∠ADF=∠FDC,∠ABE=∠CBE,∴∠ABE+∠FDC=90°,∵∠AFD+∠ADF=90°,∠ADF=∠FDC,∴∠AFD=∠ABE,∴BE∥DF;(3)BE∥DF,理由如下:∵∠ADC+∠ABC+∠A+∠C=360°,∠A=∠C,∴∠ADC+∠ABC=360°﹣2∠C,∵BE平分∠ABC交CD于E,DF平分∠ADC交AB于F,∴∠CDF=∠ADC,∠CBE=∠ABC,∴∠CBE+∠CDF=(∠ADC+∠ABC)=(360°﹣2∠C)=180°﹣∠C,∵∠CBE+∠CEB=180°﹣∠C,∴∠CBE+∠CDF=∠CBE+∠CEB,∴∠CDF=∠CEB,∴BE∥DF.26.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°,∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).(1)当α为 15度时,AD∥BC,并在图3中画出相应的图形;(2)在旋转过程中,试探究∠CAD与∠BAE之间的关系;(3)当△ADE旋转速度为5°/秒时,且它的一边与△ABC的某一边平行(不共线)时,直接写出时间t的所有值.【分析】(1)通过画图,即可求解;(2)分①当0°<α≤45°,45°<α≤90°、α>90°时3种情况,画图计算即可;(3)分AD∥BC、DE∥AB、DE∥BC、AE∥BC四种情况,分别求解即可.【解答】解:(1)当α=15°时,AD∥BC,图形如下:故答案为15;(2)设:∠CAD=γ,∠BAE=β,①如上图,当0°<α≤45°时,α+β=90°,α+γ=45°,故β﹣γ=45°;②当45°<α≤90°时,同理可得:γ+β=45°,③当90°<α<180°时,同理可得:γ﹣β=45°;(3)①当AD∥BC时,α=15°,t=3;②当DE∥AB时,α=45°,t=9;③当DE∥BC时,α=105°,t=21;④当DE∥AC时,α=135°,t=27;⑤当AE∥BC时,α=150°,t=30;综上,t=3或9或21或27或30.。
江苏初一初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.如果收入元记作元,那么支出元记作()A.元B.元C.元D.元2.比小的数是()A.B.C.D.3.-8的相反数是().A.-8B.8C.D.4.在数轴上与的距离等于的点表示的数是()A.B.C.或D.无数个5.下面四个算式的计算结果为负数的是()A.B.C.D.6.下列各数中,,(每两个之间依次增加一个),,,是无理数的有()A.个B.个C.个D.个7.下面各正方形中的四个数字之间都有相同的规律,根据这种规律,的值是()A.B.C.D.二、单选题如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.ab>0B.a-b>0C.a+b>0D.三、填空题1.的倒数等于_______.2.比较大小:____(用“>”、“<”号填空).3.计算:=_______(结果保留).4.如果某天的最高气温是℃,最低气温是℃,那么日温差是_____________℃.5.已知,则=___________.6.绝对值不大于的整数是________________________,它们的和是___________.7.某公交车原坐有人,经过个站点时上下车情况如下(上车为正,下车为负):,,,则车上还有________人.8.已知、互为相反数,、互为倒数,则=___________.9.点表示数轴上的一个点,将点向右移动个单位,再向左移动个单位,终点恰好是原点,则点表示的数是______________.10.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
精心整理初一下册数学月考试卷及答案苏教版一、选择题(每小题3分,共30分)1、若2m ﹣4与3m ﹣1是同一个正数的平方根,则m 为()A 2、大小A .26之间3()A .4A.1C.是5、下列各数中,是无理数的是()A 、B 、3.14159C 、D 、6、若,则的值是()A.0B.1C.-1D.20077、下列式子正确的是()A.>0B.≥0C.(a+1)2>1D.(a-1)2>18、如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相A.a9202122、(1);(2);请回答下列问题:(1)观察上面解题过程,请直接写出的结果为__________________.(2)利用上面所提供的解法,请化简:.23、为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;24100名(1)试确定分派到新生产线的人数;(2)当多少人参加新生产线生产时,公司年总产值?相比分工前,公司年总产值的增长率是多少?参考答案一、选择题1、D考点】平方根.【专题】计算题.2m ﹣4﹣4故选2、3、A【分析】分别求出0、1、﹣1的平方根和立方根,再得出答案即可.【解答】解:∵0的平方根是0,0的立方根是0,∴0的平方根和立方根相等,∵﹣1没有平方根,1的平方根是±1,1的立方根是1,∴只有0的平方根和立方根相等,故选A.【点评】本题考查了对平方根和立方根的定义的应用,解决本题的关键是熟记﹣1没有平方根,1的平方根是±1.4、D5、A6、C7、B8、C9、B10、D11、.0.1 202122、23、解:设有辆汽车,则有(4+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(-1)辆是装满的,所以有方程解得5<<7.由实际意义知为整数.所以=6.答:共有6辆汽车运货.24、解:(1)假设人均年产值“1”,则年产值“100”(2…∵k=2.8>0,y随x的增大而增大当x=16时,公司的年总产值,年产值164.8万……………………………………公司的年总产值的增长率是64.8%。
苏科版初一下学期月考数学试卷百度文库一、选择题1.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯2.若a >b ,则下列结论错误的是( )A .a −7>b −7B .a+3>b+3C .a 5>b 5D .−3a>−3b3.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80°4.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .146.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .7.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)8.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩ B .8312x y x y -=⎧⎨-=⎩ C .18312x y x y +=⎧⎨+=⎩ D .8312x y x y -=⎧⎨+=⎩9.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .10.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=111.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩ C .331661x y x y +=⎧⎨-=⎩ D .331661x y x y -=⎧⎨+=⎩ 12.下列方程组中,是二元一次方程组的为( )A .1512n m m n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题13.计算:m 2•m 5=_____.14.等式01a =成立的条件是________.15.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________. 16.如果()()2x 1x 4ax a +-+的乘积中不含2x 项,则a 为______ . 17.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.18.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.19.计算:5-2=(____________)20.若2(1)(23)2x x x mx n +-=++,则m n +=________.21.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.22.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 三、解答题23.已知:方程组2325x y a x y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.24.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩ 25.已知a +b =5,ab =-2.求下列代数式的值:(1)22a b +;(2)22232a ab b -+.26.已知关于x 的方程3m x +=的解满足325x y a x y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.27.计算:(1)-22+30(2)(2a )3+a 8÷(-a )5(3)(x +2y -3)(x -2y +3)(4)(m +2)2(m -2)228.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )29.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.30.如图,D 、E 、F 分别在ΔABC 的三条边上,DE//AB ,∠1+∠2=180º.(1)试说明:DF//AC ;(2)若∠1=120º,DF 平分∠BDE ,则∠C=______º.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110 ;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.2.D解析:D【解析】分析:根据不等式的基本性质对各选项进行逐一分析即可.详解:A .不等式两边同时减去7,不等号方向不变,故A 选项正确;B .不等式两边同时加3,不等号方向不变,故B 选项正确;C .不等式两边同时除以5,不等号方向不变,故C 选项正确;D .不等式两边同时乘以-3,不等号方向改变,﹣3a <﹣3b ,故D 选项错误.故选D .点睛:本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.3.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.4.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.5.C解析:C【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.7.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.本题考查点的坐标的确定;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.8.A解析:A【分析】设这个队胜x 场,负y 场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x 场,负y 场,根据题意,得8312x y x y +=⎧⎨-=⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组. 9.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误;故选A .【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.10.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.11.C解析:C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x圈,乙每分钟跑y圈则可列方组为:331 661 x yx y+=⎧⎨-=⎩故选:C.【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.12.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A、属于分式方程,不符合题意;B、有三个未知数,为三元一次方程组,不符合题意;C、未知数x是2次方,为二次方程,不符合题意;D、符合二元一次方程组的定义,符合题意;故选:D.【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题13.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.14..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.a≠.解析:0【分析】根据零指数幂有意义的条件作答即可.【详解】a≠.由题意得:0a≠.故答案为:0【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.15.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34x y =⎧⎨=-⎩代入方程3x+ay=1,求出a 即可. 【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值.16.【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出,求出即可;【详解】解:,的乘积中不含项,,解得:.故答案为:.【点睛】本题考查了多项式乘以多项式法则和解一元 解析:14【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出4a 10-+=,求出即可;【详解】解:()()2x 1x 4ax a +-+ 322x 4ax ax x 4ax a =-++-+()32x 4a 1x 3ax a =+-+-+,()()2x 1x 4ax a +-+的乘积中不含2x 项,4a 10∴-+=, 解得:1a 4=. 故答案为:14. 【点睛】本题考查了多项式乘以多项式法则和解一元一次方程,掌握多项式乘以多项式法则是解此题的关键.17.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x −4x −5=x −4x+4−4−5=(x −2) −9,所以m=2,k=−9,所以解析:-7【解析】【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.18.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x ,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键.19.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.20.【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为、,进而求得 .【详解】解:∵,∴ 、 ,∴.故答案为.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项解析:4-【分析】根据多项式与多项式相乘的法则进行运算,得一次项系数与常数项分别为m 、n ,进而求得m n + .【详解】解:∵22(1)(23)23=2x x x x x mx n +-=--++,∴1m =- 、3n =- ,∴()=13=13=4m n +-+----.故答案为4-.【点睛】本题目考查整式的乘法,难度不大,熟练掌握多项式与多项式相乘的运算方法即可顺利解题.21.84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得 解析:84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.22.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 三、解答题23.(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a =+⎧⎨=-⎩(2)根据题意,得 120130a a +<⎧⎨->⎩解不等式组,得,12a <- 所以a 的取值范围是:12a <-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-, ∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.25.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键. 26.21m -<<【分析】先解方程组325x y a x y a-=-⎧⎨+=⎩,消去a 用含x 的式子表示y,再将x=3-m 代入y 中,从而得到用含m 的式子表示y,在根据15y -<<,解关于m 的不等式组,求出m 的取值范围.【详解】解:325x y a x y a -=-⎧⎨+=⎩①②,①5⨯+②得6315x y -=即25y x =-③ 由3m x +=得3x m =-,代入③得,12y m =-又因为15y -<<,则1125m -<-<,解得21m -<<【点睛】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.27.(1)-3 (2)7a 3(3)x 2-4y 2+12y -9(4)m 4-8m 2+16【分析】(1)原式利用零指数幂法则及乘方的意义化简,计算即可得到结果;(2)先 利用积的乘方公式和同底数幂的除法公式计算,然后合并即可得到结果; (3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式先利用平方差方式计算,再利用完全平方公式计算即可得到结果.【详解】(1)2042331=-+-=-+;(2)()()533833()872a a a a a a ÷=+-=+-; (3) ()()()()23232323x y x y y x x y +--+---=+⎡⎤⎡⎤⎣⎦⎣⎦()2222234129x y x y y =--=-+-;(4)()()()()2222222m m m m +-+-=⎡⎤⎣⎦ ()42228146m m m =-+-=.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.28.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.29.(1)证明见解析;(2)∠AED +∠D =180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(3)依据已知条件求得∠CGF 的度数,进而利用平行线的性质得出∠CEF 的度数,依据对顶角相等即可得到∠AEM 的度数.【详解】(1)∵∠CED =∠GHD ,∴CB ∥GF ;(2)∠AED +∠D =180°;理由:∵CB ∥GF ,∴∠C =∠FGD ,又∵∠C =∠EFG ,∴∠FGD =∠EFG ,∴AB ∥CD ,∴∠AED +∠D =180°;(3)∵∠GHD =∠EHF =80°,∠D =30°,∴∠CGF =80°+30°=110°,又∵CE ∥GF ,∴∠C =180°﹣110°=70°,又∵AB ∥CD ,∴∠AEC =∠C =70°,∴∠AEM =180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.30.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=120°,∴∠FDE=60°,∵DF平分∠BDE,∴∠FDB=60°,∵DF∥AC,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.。