有趣的行程问题
- 格式:doc
- 大小:24.50 KB
- 文档页数:1
【叙事】行程问题之“火车问题”-有趣的数学作文600字数学中的行程问题是一种有很多类型的题,有难也有易。
今天我介绍的这种题型,名叫“火车问题”。
就我自己而言,我觉得还是挺难的,因为他把在行程问题中移动的部分角色计算了长度,因此,它根据哪些角色被计量了长度被分为四大类:分别有火车过电线杆,火车过桥,火车过人,和火车过火车这四种基础的类型。
火车过电线杆是指一个计量长度的角色,过一个静止的不计量长度的角色,火车过桥问题是指一个计量长度的角色,过一个静止的计量长度的角色,火车过行人是指一个,计量长度的角色过一个不计量长度,但会移动的角色,火车过火车,就是,一个移动的计量长度的角色,过另外一个移动的计量长度的角色。
(上面所有的XXX1过XXX里的XXX1都是会移动的)今天我要给大家讲的,主要是最后两种类型:火车过行人问题和火车过火车问题。
一、火车过行人问题,火车过行人问题,顾名思义,就是一辆火车,过一个行走中的人,形成的过程就是火车头先遇到行人,然后两个角色继续走,直到火车的车尾与旅行人相遇时,这过程就完成了。
它的计算方法是:火车长度除以(行人的速度+火车的速度)=火车经过行人的时间。
二、火车过火车问题,它是最基础的火车问题里面最难的一种,他的意思是一辆火车相遇另外一辆火车后经过它,就是当其中一辆火车的头碰到另外一辆火车的头,到其中一辆火车的尾和另外一辆火车的尾相遇。
它的计算方法是:两辆火车的长度相加再除以任意一辆火车的速度=其中一辆火车经过另一辆火车的时间。
当然,这几种题型都可以组合后变得更难,但是,凡事都要打好基本功,这些基础题型也不容忽视哦!关于关于火车问题的题有很多每道题都都很难,但是很有意思,最后祝大家在解题的时候认真、快乐!感谢您的阅读,祝您生活愉快。
小学数学奥数题与解题方法在小学数学的学习中,奥数题常常是让同学们感到既有趣又具有挑战性的部分。
奥数题不仅能够锻炼我们的思维能力,还能培养我们解决问题的技巧和方法。
接下来,让我们一起探讨一些常见的小学数学奥数题以及它们的解题方法。
一、行程问题行程问题是奥数中常见的题型之一。
例如:小明和小红同时从学校和家出发相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过10 分钟两人相遇,求学校到家的距离。
解题方法:行程问题的关键在于理解速度、时间和路程之间的关系,即路程=速度×时间。
对于相向而行的情况,两人走过的路程之和就是总路程。
在这个例子中,小明的速度是每分钟60 米,走了10 分钟,所以小明走的路程是 60×10 = 600 米;小红的速度是每分钟 50 米,走了 10 分钟,小红走的路程是 50×10 = 500 米。
那么学校到家的距离就是 600 + 500 = 1100 米。
二、工程问题工程问题也是经常出现的一类奥数题。
比如:一项工程,甲单独做需要15 天完成,乙单独做需要20 天完成,两人合作需要多少天完成?解题方法:工程问题中,通常把工作总量看作单位“1”。
甲单独做需要 15 天完成,那么甲每天的工作效率就是 1÷15 = 1/15;乙单独做需要 20 天完成,乙每天的工作效率就是 1÷20 = 1/20。
两人合作每天的工作效率就是 1/15 + 1/20 = 7/60,所以两人合作完成这项工程需要的时间是 1÷7/60 = 60/7 天。
三、年龄问题年龄问题常常让同学们感到困惑。
例如:今年爸爸 35 岁,儿子 10 岁,几年后爸爸的年龄是儿子的 2 倍?解题方法:年龄问题的关键是抓住年龄差不变。
爸爸和儿子的年龄差是 35 10 = 25 岁。
当爸爸的年龄是儿子的 2 倍时,年龄差还是 25 岁,此时儿子的年龄是 25 岁,所以需要经过 25 10 = 15 年。
第十讲 列方程解应用题——有趣的行程问题数学是一门具有广泛应用性的科学,我国著名数学家华罗庚先生曾说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学”.数学应用题的类型很多,比较简单的是方程应用题,又以一元一次方程应用题最为基础,方程应用题种类繁多,以行程问题最为有趣而又多变.行程问题的三要素是:距离(s)、速度(v)、时间(t),行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.熟悉相遇问题、追及问题等基本类型的等量关系是解行程问题的基础;而恰当设元、恰当借助直线图辅助分析是解行程问题的技巧.例题【例1】 某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A 、C 两地的距离为10千米,则A 、B 两地的距离为 千米. (重庆市竞赛题)思路点拨 等量关系明显,关键是考虑C 地所处的位置.注: 列方程的方法为解应用题提供—般的解题步骤和规范的计算方法,使问题“化难为易”,充分显示了字母代数的优越性,它是算术方法解应用题在字母代数础上的发展.【例2】 如图,某人沿着边长为90米的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度行走,当乙第一次迫上甲时在正方形的( ).A .AB 边上 B .DA 边上C .BC 边上D .CD 边上 (安徽省竞赛题)思路点拨:本例是一个特殊的环形的追及问题,注意甲实际在乙的前面3×90=270(米)处.【例3】 父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑?步的距离与父亲跑4步的距离相等.现在儿子站在100米的中点处,父亲站在100米跑道的起点处同时开始跑.问父亲能否在100米的终点处超过儿子?并说明理由.(重庆市竞赛题)思路点拨 把问题转化为追及问题,即比较父亲追上儿子时,儿子跑的路程与50的大小,为了理顺步长、路程的关系,需增设未知数,这是解题的关键.【例4】 钟表在12点钟时三针重合,经过多少分钟秒针第一次将分针和时针所夹的锐角平分? (湖北省数学竞赛选拔赛试题)思路点拨 先画钟表示意图,运用秒针分别与时针、分针所成的角相等建立等量关系,关键是要熟悉与钟表相关的知识.注: 明确要求将数学开放性问题作为考试的试题,是近一二年的事情,开放题是相对于常规的封闭题而言,封闭题往往条件充分,结论确定,而开放题常常是条件不充分或结论不确定,思维多向.解钟表上的行程问题,常用到以下知识:(1)钟表上,相邻两个数字之间有5个小格,每个小格表示1分钟,如与角度联系起来,每一小格对应6°;(2)分针走一周,时针走121周,即分针的速度是时针速度的12倍.【例5】 七年级93个同学在4位老师的带领下准备到离学校32千米处的某地进行社会调查,可是只有一辆能坐25人的汽车.为了让大家尽快地到达目的地,决定采用步行与乘车相结合的办法。
行程问题知识点
1. 速度的重要性就好比汽车的油门呀!你想想,小明和小红比赛跑步,同样的路程,小明速度快,那他不就先到终点啦?就像赛车和老爷车比赛一样,速度快的优势太明显啦!
2. 时间也是关键呢!你看,小张要去一个地方,慢慢悠悠走用了好长时间,要是他快点走,那花费的时间不就少多了嘛,这多容易理解呀!比如等公交车,焦急等待的时间可不好受呀!
3. 路程可是行程的核心呀!哎呀,小李要走 10 千米的路,这 10 千米就是路程呀,这就是他要完成的任务,就好像爬山要爬到山顶一样明确!
4. 相遇问题可有意思啦!就像小王和小赵在街上走着,突然碰面了,这就是他们的行程交汇啦,这多神奇呀!就好像两条不同的线交织在一起。
5. 追及问题也好有趣哦!小军在前面跑,小浩在后面追,是不是很像警察追小偷呀,直到小浩追上小军,这过程多刺激呀!
6. 顺流和逆流的差别可大啦!一艘船顺流而下时速度好快呀,可逆流时就变得慢吞吞的,这就好比顺水推舟和逆水行舟的差别呀!
7. 相对速度也很神奇呀!一辆车往前开,另一辆车对着开过来,它们的相对速度感觉好快呀,就像两只奔跑的小动物快速靠近一样!
8. 多次行程问题就像一场漫长的战斗呀!小李今天跑了一段路,明天又跑一段,加起来的过程就是多次行程啦,就像打游戏闯关一样有挑战性!
我觉得行程问题知识点真的超级重要和有趣呀,理解了它们就能更好地解决各种各样的行程相关问题啦!。
行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。
比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。
这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。
这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。
是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。
比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。
只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。
有趣的行程问题的小学数学日记1、有趣的行程问题的小学数学日记今天,坐着无聊,我对爸爸说:我们一起去做奥数题吧!好的!爸爸满口答应了。
因为我行程问题没巩固,所以我先复习行程问题。
爸爸说:让我先来介绍一下行程问题。
好的。
我高兴的'拍了拍手。
爸爸便开始意味深长地介绍起来:我们每天的生活离不开步行、乘车,物体也无时不刻在运动,这即是所谓的行。
有行即产生距离,需要时间,这就构成了行程问题中的三个重要关系量:路程、速度、时间,研究这三个量关系的应用题称之为行程问题。
这三个量之间的关系可以用下面的公式来表示:路程=速度*时间速度=路程/时间时间=路程/速度最新的小学生数学日记有趣的行程问题:听完了爸爸的介绍,我们开始做例1.例1是这样的:小华和李成家相距400米,两人同时从家中出发,在同一条路上行走,小华每分钟走60米,李成每分钟走70米,,问3分钟后两人相距多少米这题太简单了。
只要用小华和李成的速度和乘时间就可以求出两人行走的路程。
然后用400米减去两人行走的路程就可以求出3分钟后两人相距多少米了。
我骄傲地说。
爸爸笑了笑说:我认为你考虑问题还不周全。
题目中没有说到底是相向前行,还是相背而行,还是同向而行。
喔,知道了。
这题的解答如下:(1)相向:400-(60+70)*3=10(米)答:3分钟后两人相距10米。
(2)相背:400+(60+70)*3=790(米)答:3分钟后两人相距790米。
(3)同向:小华在前400-70*3+60*3=370米答:3分钟后两人相距370米。
__aoxue123(4)同向:李成在前400-60*3+70*3=430米答:3分钟后两人相距430米。
啊!行程问题真有趣!2、有趣的行程问题的数学日记今天,坐着无聊,我对爸爸说:"我们一起去做奥数题吧!""好的!"爸爸满口答应了。
因为我行程问题没巩固,所以我先复习行程问题。
爸爸说:"让我先来介绍一下行程问题。
奥数比例中的行程问题一、什么是奥数比例中的行程问题呢?哎呀,小伙伴们,这个奥数比例中的行程问题啊,就像是一场有趣的冒险。
想象一下,你有一个小木偶,它要在不同的路程里跑来跑去,而且速度还不一样呢。
比如说,小木偶在一段路程里跑得可快啦,就像一阵小旋风;在另一段路程里呢,又慢腾腾的,像只小蜗牛。
这里面就涉及到比例关系啦。
如果把路程看成是一堆小饼干,速度就是小木偶吃饼干的速度,那时间呢,就是小木偶吃完这些饼干需要多久。
这个时间、速度和路程之间的关系,就可以用比例来表示啦。
二、一些常见的题型类型1. 简单的速度比例问题比如说,小木偶A的速度是小木偶B速度的2倍,它们同时出发,走同样的路程。
那小木偶A和小木偶B所用的时间比例是多少呢?这就很有趣啦,就像两个小朋友比赛跑步,一个跑得快,一个跑得慢,那他们到达终点的时间肯定不一样。
根据速度和时间成反比的关系,小木偶A的速度是小木偶B的2倍,那么小木偶A所用的时间就是小木偶B的1/2。
2. 往返行程中的比例问题小木偶从A地出发到B地,然后再从B地返回A地。
去的时候速度是v1,回来的时候速度是v2,那往返的平均速度是多少呢?这可不能简单地把v1和v2相加除以2哦。
我们要根据路程和时间的关系来算。
设A到B的路程是s,那么去的时间就是s/v1,回来的时间就是s/v2,往返的总路程是2s,总时间是s/v1 + s/v2,通过化简就能得到平均速度的表达式啦。
3. 多人行程中的比例问题假设有小木偶A、小木偶B和小木偶C。
小木偶A和小木偶B从甲地出发,小木偶C从乙地出发,相向而行。
小木偶A的速度是v1,小木偶B的速度是v2,小木偶C的速度是v3。
当小木偶A和小木偶C相遇的时候,小木偶B和他们的距离是多少呢?这就要考虑到他们的速度比例和行走的时间啦。
因为相遇的时候,小木偶A和小木偶C行走的时间是相同的,根据路程 = 速度×时间,我们可以算出他们各自走的路程,然后再根据小木偶B的速度和时间,就能算出小木偶B和他们的距离啦。
行程问题典型例题
行程问题是一个经典的数学问题,它涉及到物体在一定时间内移动的距离和速度。
这类问题可以通过数学模型进行求解,包括公式、代数和几何等。
以下是一些典型的行程问题例题:
相遇问题:两个物体在同一时间从不同的地点出发,沿着同一直线相向而行,求它们相遇的时间和地点。
追及问题:一个物体在另一个物体的后面,在同一时间出发,沿着同一直线同向而行,求追及的时间和地点。
环形跑道问题:两个物体在同一起点沿着同一个圆形跑道相反方向而行,求再次相遇的时间和地点。
行船问题:一个船在水面上航行,水流的速度会影响船的航行速度,求船的航行时间和距离。
火车过桥问题:一列火车通过一座桥,桥的长度和火车的长度相同,求火车完全通过桥的时间。
飞行问题:一个飞机在空中飞行,受到风速的影响,求飞机的航行时间和距离。
这些例题都是行程问题的典型代表,可以通过它们来理解和掌握行程问题的基本概念和解决方法。
典型应用题--行程问题比拟复杂的行程问题多人行程例题多人行程这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻, 第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系.例1.甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3. 5小时到达西村后马上返回.在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?例2.甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时.有一辆迎面开来的卡车分别在他们出发后6时、7时、8时先后与甲、乙、丙三辆车相遇.求丙车的速度.例3、李华步行以每小时4千米的速度从学校出发到20. 4千米外的冬令营报到.0.5小时后, 营地老师闻讯前来迎接,每小时比李华多走1.2千米,又经过了1.5小时,张明从学校骑车去营地报到.结果3人同时在途中某地相遇.问:张明每小时行驶多少千米?第1页共29页典型应用题--行程问题例4:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.在途中,甲和乙相遇后3分钟和丙相遇.问:这个花画的周长是多少米?例5、AB两地相距30千米,甲乙丙三人同时从A到B,而且要求同时到达.现在有两辆自行车, 但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑.骑自行车的平均速度为每小时20千米,甲步行的速度是每小时5千米,乙和丙每小时4千米,那么三人需要多少小时可以同时到达?例6、有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.在途中,甲和乙相遇后3分钟和丙相遇.问:这个花圃的周长是多少米?第2页共29页典型应用题--行程问题二次相遇行程问题做题思路点拨:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B 地后返回,乙继续走到A地后返回,第二次在D地相遇.一般知道AC和AD的距离,主要抓住第二次相遇时走的路程是第一次相遇时走的路程的两倍.例1.甲乙两车同时从A、B两地相向而行,在距B地54千米处相遇,它们各自到达对方车站后立即返回,在距A地42千米处相遇.请问A、B两地相距多少千米?A. 120B. 100C. 90D. 80例2.两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇.两城市相距〔〕千米A. 200B. 150C. 120D. 100环形问题:例3.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6 分钟甲到B 点,又过10分钟两人再次相遇,那么甲环行一周需要〔〕?A. 24分钟B. 26分钟C. 28分钟D. 30分钟追及问题的要点及解题技巧一、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题.所有行程问题都是围绕"追及距离=速度差X追及时间〞这一条根本关系式展开的,由此还可以得到如下两条关系式:追及时间=追及距离+速度差速度差=追及距离+追及时间多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.比方我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.二、屡次相遇追及问题的解题思路所有行程问题都是围绕“路程=速度X时间“这一条根本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步分析题目中所涉及的数量,问题即可迎刃而解.多人屡次相遇追及的解题关键屡次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差第3页共29页典型应用题--行程问题复杂追及问题例L 一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10 分钟有一辆公交车超过一个行人.每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A. 10B. 8C. 6D.4例2.小明在商场的一楼要乘扶梯到二楼.扶梯方向向上,小芳那么从二楼到一楼.小明的速度是小芳的2倍.小明用了2分钟到达二楼,小芳用了8分钟到达一楼.如果我们把一个箱子放在一楼的第一个阶梯上问多长时间可以到达二楼?总结:在多个行程问题模型存在的时候.我们利用其速度差,速度和的关系将未知的变量抵消. 可以很轻松的一步求得结果!第4页共29页典型应用题--行程问题例1. 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4 千米的地方追上小明.然后爸爸立即回家,到家后又立即回头去追小明,再追上小明的时候,离家恰好是8千米.问这时是几点几分?小明爸爸〔=二7公7/ B家4千米“8-4〞千米图37-1例2.A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B 两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?第5页共29页典型应用题--行程问题环形跑道较复杂的行程问题环形跑道问题特殊场地行程问题之一.是多人〔一般至少两人〕屡次相遇或追及的过程,解决多人、屡次相遇与追击问题的关键是:看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析.例1,甲、乙两人同时从400米的环形路跑道的一点A背向出发,8分钟后两人第三次相遇.甲每秒钟比乙每秒钟多行0.1米,两人第三次相遇的地点与A点沿跑道上的最短距离是多少米?A.166 米B.176 米C. 224 米D. 234 米练习:甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?第6页共29页典型应用题一行程问题7例2.二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌.问第十五次击掌时,甲走多长时间乙走多少路程?例3.乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,那么乙车马上调头;一旦甲车从后面追上乙车, 那么甲车马上调头,那么两车出发后第11次相遇的地点距离点有多少米?〔每一次甲车追上乙车也看作一次相遇〕第7页共29页典型应用题--行程问题钟面行程问题的要点及解题技巧一、什么是钟面行程问题?钟面行程问题是研究钟面上的时针和分针关系的问题,常见的有两种:〔1〕研究时针、分针成一定角度的问题,包括重合、成一条直线、成直角或成一定角度;⑵研究有关时间误差的问题. 在钟面上每针都沿顺时针方向转动,但因速度不同总是分针追赶时针,或是分针超越时针的局面,因此常见的钟面问题往往转化为追及问题来解.二、钟面问题有哪几种类型?第一类是追及问题〔注意时针分针关系的时候往往有两种情况〕;第二类是相遇问题〔时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时, 可以求出路程和〕;第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系.三、钟面问题有哪些关键问题?①确定分针与时针的初始位置;②确定分针与时针的路程差;四、解答钟面问题有哪些根本方法?①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格.分针每小时走60分格, 即一周;而时针只走5分格,故分针每分钟走1分格,时针每分钟走1 / 12分格.②度数方法:从角度观点看,钟面圆周一周是360° ,分针每分钟转360/60度,即6° ,时针每分钟转360/12*60 度,即1/2 度.奥数行程:钟面行程问题的例题一例1:从5时整开始,经过多长时间后,时针与分针第一次成了直线?例2:从6时整开始,经过多少分钟后,时针与分针第一次重合?例3:在8时多少分,时针与分针垂直?第8页共29页典型应用题--行程问题奥数行程:钟面行程问题的例题二例1:从9点整开始,经过多少分,在几点钟,时针与分针第一次成直线?例2:一个指在九点钟的时钟,分针追上时针需要多少分钟?例3:时钟的分针和时针现在恰好重合,那么经过多少分钟可以成一条直线?奥数行程:走走停停的要点及解题技巧一、行程问题里走走停停的题目应该怎么做1.画出速度和路程的图.2.要学会读图.3.每一个加速减速、匀速要分清楚,这有利于你的解题思路.4.要注意每一个行程之间的联系.二、学好行程问题的要诀行程问题可以说是难度最大的奥数专题.类型多:行程分类细,变化多,工程抓住工作效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓题目难:理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解水平、逻辑分析和概括水平跨度大:从三年级到六年级都要学行程——四年的跨度,需要不断的复习稳固来加深理解、夯实根底那么想要学好行程问题,需要掌握哪些要诀呢?要诀一:大局部题目有规律可依,要诀是“学透〞根本公式要诀二:无规律的题目有“攻略' 一画〔画图法〕二抓〔比例法、方程法〕竞赛测试中的行程题涉及到很多中数学方法和思想〔比方:假设法、比例、方程〕等的熟练运用,而这些方法和思想,都是小学奥数中最为经典并能考察孩子思维的专项.第9页共29页典型应用题一行程问题X奥数行程:走走停停的例题及答案〔一〕例题1:甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?例题2:在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么, 甲追上乙需要多少秒?例3.在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?第10页共29页11 典型应用题--行程问题奥数行程:接送问题的例题及答案〔一〕例1:如果A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车, 车速是人步行的3倍,马车每次可以乘坐9人,在A地先将第一批学生送到B地,其余的学生同时向B地前进;车到B 地后立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进.・・屡次往返后,当全体学生到达B地时,马车共行了多少千米?例2:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?〔设人和汽车都作匀速运动,他上车及调头时间不记〕例3:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5: 4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行, 甲车和乙车的速度比是5: 4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?第11页共29页典型应用题--行程问题例1:有两个班的小学生要到少年宫参加活动,但只有一辆车接送.第一班的学生做车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车马上返回接第二班学生上车并直接开往少年宫.学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50 公里/小时,学生步行速度是4公里/小时,要使两个班的学生同时到达少年宫,第一班的学生步行了全程的几分之几?〔学生上下车时间不计〕A. 1/7;B. 1/6;C. 3/4;D. 2/5;例2:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?〔设人和汽车都作匀速运动,他上车及调头时间不记〕例3:甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5: 4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行, 甲车和乙车的速度比是5: 4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?第12页共29页典型应用题--行程问题空间理解稍显困难,证实过程对快速解题没有帮助.一旦掌握了3个根本公式,一般问题都可以迎刃而解.在班车里.即柳卡问题.不用根本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成.如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易.二、对“发车问题〞的化归与优化“发车〞是一个有趣的数学问题.解决“发车问题〞需要一定的策略和技巧.本文重点解决这样两个问题:一是在探索过程中,如何揭示“发车问题〞的实质?二是在建模的过程中,如何选择最简明、最严谨和最易于学生理解并接受的方法或情景?为便于表达,现将“发车问题〞进行一般化处理:某人以匀速行走在一条公交车线路上,线路的起点站和终点站均每隔相等的时间发一次车.他发现从背后每隔a分钟驶过一辆公交车,而从迎面每隔b分钟就有一辆公交车驶来.问:公交车站每隔多少时间发一辆车?〔假设公交车的速度不变,而且中间站停车的时间也忽略不计.〕1、把“发车问题〞化归为“和差问题〞由于车站每隔相等的时间发一次车,所以同向的、前后的两辆公交车间的距离相等.这个相等的距离也是公交车在发车间隔时间内行驶的路程.我们把这个相等的距离假设为“1〞.根据“同向追及〞,我们知道:公交车与行人a分钟所走的路程差是1,即公交车比行人每分钟多走1/a,1/a就是公交车与行人的速度差.根据“相向相遇〞,我们知道:公交车与行人b分钟所走的路程和是1,即公交车与行人每分钟一共走1/b, 1/b就是公交车和行人的速度和.这样,我们把“发车问题〞化归成了“和差问题根据“和差问题〞的解法:大数二〔和+差〕:2,小数二〔和一差〕4-2,可以很容易地求出公交车的速度是〔1/a+1/b〕 4-2o又由于公交车在这个“间隔相等的时间〞内行驶的路程是1,所以再用“路程:速度二时间〞,我们可以求出问题的答案, 即公交车站发车的间隔时间是[〔1/a+1/b〕 4-2] =24- 〔1/a+1/b〕o2、把“发车问题〞优化为“往返问题〞如果这个行人在起点站停留m分钟,恰好发现车站发n辆车,那么我们就可以求出车站发车的问隔时间是m : n分钟.但是,如果行人在这段时间内做个“往返运动〞也未尝不可,那么他的“往返〞决不会影响答案的准确性.由于从起点站走到终点站,行人用的时间不一定被a和b都整除,所以他见到的公交车辆数也不一定是整数.故此,我们不让他从起点站走到终点站再返回.那么让他走到哪再立即返回呢?或者说让他走多长时间再立即返回呢?取a和b的公倍数〔如果是具体的数据,最好取最小公倍数〕,我们这里取ab.假设刚刚有一辆公交车在起点站发出,我们让行人从起点站开始行走,先走ab分钟,然后马上返回;这时恰好是从行人背后驶过第b辆车.当行人再用ab分钟回到起点站时,恰好又是从迎面驶来第a辆车.也就是说行人返回起点站时第〔a+b〕辆公交车正好从车站开出,即起点站2ab分钟开出了〔a+b〕辆公交车.这样,就相当于在2ab分钟的时间内,行人在起点站原地不动看见车站发出了〔a+b〕辆车.于是我们求出车站发车的间隔时间也是2ab:〔a+b〕-2-r〔1/a+1/b〕o这样的往返假设也许更符合“发车问题〞的情景,更简明、更严谨,也更易于学生理解和接受. 如果用具体的时间代入,那么会更加形象,更便于说明问题.第13贝共29贝典型应用题一行程问题上小学数学行程:发车问题的例题〔一〕例1:如果A、B两地相距10千米,一个班有学生45人,由A地去B地,现在有一辆马车,车速是人步行立即返回,在途中与步行的学生相遇后,再接9名学生前往B地,余下的学生继续向B地前进...屡次往返后,当全体学生到达B地时,马车共行了多少千米?例2:某工厂每天早晨都派小汽车接专家上班,有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?〔设人和汽车都作匀速运动,他上车及调头时间不记〕例3.甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5: 4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?甲乙两辆汽车分别从A.B两成出发,相向而行,甲车和乙车的速度比是5: 4,到两车相遇时距离中点48千米,两城之间的路程是多少千米?第14页共29页典型应用题--行程问题小学数学行程:发车问题的例题〔二〕年宫.学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50 公里/小时,学生步行速度是4公里/小时,要使两个班的学生同时到达少年宫,第一班的学生步行了全程的几分之几?〔学生上下车时间不计〕A. 1/7;B. 1/6;C. 3/4;D. 2/5例2.某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车?〔设人和汽车典型应用题--行程问题小学数学行程:猎狗追兔问题的要点及解题技巧猎狗追兔问题是行程问题中比拟典型的一类题,该类问题除考察追及问题的根本公式外,还要综合运用比例、份数等手段解决.解题思想是将两种动物单位化为统一,然后用路程差除以速度差得到追及时间,或者由速度比得出路程比,再引入份数思想,进而解决问题.以下题为例:【例1】一猎狗正在追赶前方20米远兔子,狗一跳前进3米,而兔子一跳前进2.1米,但狗跳3次的时间兔子可以跳4次,问猎狗跑多少米能追上兔子?我们再看下一道题:【例2]猎狗前面26步远有一只野兔,猎狗追之,兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离,问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少米?小学数学行程:猎狗追兔问题的例〔一〕例1.猎犬发现在离它9米远的前方有一只奔跑的兔子,马上追赶,猎犬步子大.它跑5步的路程,兔子跑9步,但兔子动作快,猎犬跑2步的时间,兔子跑3步,猎犬至少跑多少米才能追上兔子?例2.猎狗发现离它110米处有一只奔跑的兔子,马上紧追上去,猎狗跑5步的距离兔子要跑9步,猎狗跑2步的时间兔子要跑3步,问猎狗跑多远才能追上兔子?猎狗追兔问题二:例1.猎狗前面26步远的地方有一野兔,猎狗追之.兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离.问兔跑几步后,被狗抓获?例2.猎犬发现在离它10米的前方有一只奔跑的兔,马上追.猎犬的步子大,它跑5步等于兔跑9步,兔子动作快,猎犬2步时它能跑3步,猎犬至少跑多少米才能追上兔子?例3.猎人带狗去打猎.发现兔子跑出去70米时,猎狗立即去追兔子.猎狗跑2步的时间兔子跑3步,猎狗跑7步的距离兔子跑13步.那么猎狗跑多少米才能追上兔子?平均速度问题的例题例1. 〔2007年4月〞“希望〃全国数学邀请赛〞四年级2试〕赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?例2.张师傅开汽车从A到B为平地〔见下列图〕,车速是36千米/时;从B到C为上山路, 车速是28千米/时;从C到D为下山路,车速是42千米/时.下山路是上山路的2倍,从A到D全程为72千米,张师傅开车从A到D共需要多少时间?10个经典又复杂的行程问题1、甲、乙两人分别从相距100米的A、B两地出发,相向而行,其中甲的速度是2米每秒, 乙的速度是3米每秒.一只狗从A地出发,先以6米每秒的速度奔向乙,碰到乙后再掉头冲向甲, 碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇.问在此过程中狗一共跑了多少米?2、甲从A地前往B地,乙从B地前往A地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回.两人首次在距离A地700米处相遇,后来乂在距离B地400 米处相遇.求A、B两地间的距离.3、甲、乙、丙三人百米赛跑,每次都是甲胜乙10米,乙胜丙10米.那么甲胜丙多少米?4、哥哥弟弟百米赛跑,哥哥赢了弟弟1米.第二次,哥哥在起跑线处退后1米与弟弟比赛,那么谁会获胜?5、船在静水中往返A、B两地和在流水中往返A、B两地相比,哪种情况下更快?6、船在流水中逆水前进,途中一个救生圈不小心掉入水中,一小时后船员才发现并调头追赶.那么追上救生圈所需的时间会大于一个小时,还是小于一个小时,还是等于一个小时?下面这个问题也很类似:假设人在传送带上的实际行走速度等于人在平地上的行走速度加上一个传送带的速度.7、你需要从机场的一号航站楼走到二号航站楼.路途分为两段,一段是平地,一段是自动传送带. 假设你的步行速度是一定的,因而在传送带上步行的实际速度就是你在平地上的速度加上传送带的速度.如果在整个过程中,你必须花两秒钟的时间停下来做一件事情〔比方蹲下来系鞋带〕,那么为了更快到达目的地,你应该把这两秒钟的时间花在哪里更好?第20页共29页。
七年级 第十节列方程解应用题 有趣的行程问题 24题扫描二维码,下载客户端,随时随地做题支持iPhone/Android手机1.设计方案:学生乙先步行,老师带学生甲乘摩托车走出一定路程,让学生甲步行,老师返回接学生乙,然后老师带乘学生乙,与学生甲步行同时到达博物馆即可要确定摩托车中途接乙的返回点.分)设两个学生为甲、乙二人.学生乙先步行,老师带学生甲乘摩托车走了千米,共用了小时.他们比乙多行了千米)。
这时老师让甲步行前进,而自己返回接乙,中途遇到学生乙时,用了小时)。
乙遇到老师时,已经步行了千米),离博物馆还有千米)。
如果甲、乙二人搭乘摩托车的路程相同,那么,解得千米分)这样,在路上学生甲共计用的时间为小时),学生乙共计用的时间为小时分)因此,上述方案可使师生人同时出发后只用小时就可同时到达博物馆.设甲每分钟走米,乙每分钟走米,丙每分钟走米,甲出发分钟后追上乙车,由题意,得,老师带着两个学生到离学校千米的博物馆参观.老师开一辆摩托车,速度为千米小时.这辆摩托车后坐可带乘一名学生,带人后速度为千米小时.学生如果步行,速度为千米小时.请你设计一种方案,使得师生人同时出发后用个小时同时到达博物馆.2.甲、乙、丙三辆车都匀速从地驶往地.乙车比丙车晚分钟出发,出发后分钟追上丙车;甲车比乙车晚分钟出发,出发后分钟追上丙车,则甲车出发后______分钟追上乙车.3.①②③A. 上设甲的速度是每小时千米,则乙的速度是每小时千米,由题意得.检验:当时,是原方程的解.,,.此时是上午点分.故选.设乙车上的乘客看见甲车在他窗口外经过的时间是秒.由题意,有,解得.经检验,是原方程的解.即乙车上的乘客看见甲车在他窗口外经过的时间是秒.故答案为:.9.甲、乙两列客车的长分别为米和米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是___秒.10.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为千11. 3.6设火车的速度是则解得:答:这列火车的车身长为米(1)出发后___分钟时,甲乙两人第一次在正方形的顶点处相遇;(1)a=1或a=7;(2)t 的值为0.5、2、8或9.5.正确答案: B DA 边上设、两地之间的距离为千米,若在的上游时:动点Q 从B 出发,以3 cm/s 的速度,按同样的方向运动.设运动时间为t (s),当t = 5时,动点P 、Q 第一次相遇.(1)求a 的值;(2)若a > 3,在P 、Q 第二次相遇前,当动点P 、Q 在轨道上相距12cm 时,求t 的值.如图,甲、乙两人沿着边长为90米的正方形,按A →B →C →D →A …方向,甲从A 以65米/分的速度,乙从B 以72米/分的速度同时行走,当乙第一次追上甲时在正方形的( )A AB 边上B DA 边上C BC 边上D CD 边上23.某人乘船由地顺流而下到地,然后又逆流而上到地,共乘船小时,已知船在静水中的速度为每小时千米,水流速度为每小时千米,若、两地的距离为千米,求、两地的距离.24.。
列方程解应用题——有趣的行程问题例1、某人乘船由A地顺流而下到B地,然后又逆流而上到C地,共乘船4小时,已知船在水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、C两地的距离为10千米,则A、B两地的距离为_______千米.例2、如图,甲乙两人沿着边长为90米的正方形,按A→B→C→D→A...方向,甲从A以65米/分的速度,乙从B以72米/分的速度行走,当乙第一次追上甲时在正方形的()A.AB边上B.DA边上C. BC边上D.CD边上例3、已知某一铁路桥长1000米,现有一列火车从桥上通过,小亮和小芳分别从不同的角度进行了观测.小亮说:火车从开始上桥到完全通过共用了1分钟,小芳说:整个火车完全在桥上的时间为40秒钟.请根据以上信息求出火车的长度和火车的速度.例4、父亲和儿子在100米的跑道上进行赛跑,已知儿子跑5步的时间父亲能跑6步,儿子跑7步的距离和父亲跑4步的距离相等.现在儿子站在100米的中点处,父亲站在100米跑道的起点处同时开始跑.问父亲能否在100米的终点处超过儿子?并说明理由.例5、甲、乙两人分别从A、B两地同时出发,在距离B地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B 地、A地后,立刻返回,又在距A地4千米处相遇,求A、B两地相距多少千米?例6、8个人乘相同速度的两辆小汽车同时赶往火车站,每辆车乘4人(不包括司机),其中一辆小汽车在距火车站15千米的地方出现故障,此时,距停止检票的时间还有42分钟,这时,唯一可利用的交通工具是另一辆小汽车,已知包括司机在内这两辆车限乘5人,且这辆车的平均速度为60千米/时,人步行的平均速度是5千米/时,试设计两种方案,通过计算说明这8个人能够在停止检票前赶到火车站.1、某人以4千米/小时的速度步行由甲地到乙地,然后又以6千米/小时的速度从乙地返回甲地,那么此人往返一次的平均速度是____千米/小时.2、在公路上,汽车A、B、C、D分别以每小时80千米、70千米、50千米的速度匀速行驶,A从甲站开往乙站,同时,B、C从乙站开往甲站.A在与B相遇两小时后与C相遇,则甲、乙两站相距____千米.3、汽车以每小时72千米的速度笔直地开向寂静的山谷,驾驶员按一声喇叭,4秒后听到回响,已知声音的速度是每秒340米,听到回响时汽车离山谷的距离是______米.4、现在是4点5分,再过_____分钟,分针和时针第一次重合.5、甲、乙两人同时从A地到B地,如果乙的速度v保持不变,而甲1v的速度到达B地,则下列结论中先用2v的速度到达中点,再用2正确的是( ).A.甲、乙两人同时到达B地B.甲先到B地C.乙先到B地D.无法确定谁先到6、甲与乙比赛登楼,他俩从36层的长江大厦底层出发,当甲到达6楼时,乙刚到达5楼,按此速度,当甲到达顶层时,乙可到达().A.31层B.30层C.29层D.28层7、小明爸爸骑着摩托车带着小明在公路上匀速行驶,下面是小明每隔1小时看到的里程情况,你能确定小明在12:00时看到的里程表上的数吗?12:00,是一个两位数,它的两个数字之和为7;13:00十位与个位数字与12:00所看到的正好颠倒了;14:00比12:00时看到的两位数中间多了个0.8、如图,正方形ABCD的周长为40米,甲、乙两人分别从A、B 同时出发,沿正方形的边行走,甲按逆时针方向每分钟行55米,乙按顺时针方向每分钟行30米.(1)出发后____分钟时,甲、乙两人第一次在正方形的顶点处相遇.(2)如果用记号(a,b)表示两人行了a分钟,并相遇过b次,那么当两人出发后第一次处在正方形的两个相对顶点位置时,对应的记号应是_____.9、某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,求此人此时骑摩托车的速度应该是多少?10、甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是____秒.11、甲、乙两人从两地同时出发,若相向而行,a小时相遇;若相向而行,则b小时甲追及乙,那么甲、乙两人的速度之比为____. 12、某商场有一部自动扶梯匀速由下而上运动,甲、乙两人都急于上楼办事,因此在乘扶梯的同时匀速登梯,甲登了55级后到达楼上,乙登梯速度是甲的2倍(单位时间内乙登梯级数是甲的2倍),他登了60级后到达楼上,那么,由楼下到楼上自动扶梯级数为_____.13、甲乙两人同时从A地出发沿同一条线路到B地,若甲用一半的时间以a千米/时的速度行走,另一半时间以b千米/时的速度行走;而乙用a千米/时的速度走了一半的路程,另一半的路程以b千米/时的速度行走(a≠b),则().A.甲先到达B地B.乙先到B地C.甲、乙同时到达B地D.甲、乙谁先到达不能确定14、如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环形,乙点依逆时针方向环形,若乙的速度是甲的速度的4倍,则它们第2007次相遇在边()上.A.ABB.BCC.CDD.DA15、铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/小时,骑车人速度10.8千米/小时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒,问这列火车的车身长为多少米?16、某出租汽车停车站已停有6辆出租汽车.第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆.问:第一辆出租汽车开车后,经过最少多少时间,车站不能正点发车?。
【叙事】行程问题之“火车问题” 有趣的数学作文600字当我们谈到有趣的数学问题时,很少有比“火车问题”更具挑战性和趣味性的了。
这个问题源自叙事数学,它是一个经典的数学问题,同时也是一个经典的心理学问题。
很多人会在这个问题上纠结,因为它涉及到时间、速度和距离等复杂的数学概念。
下面我们就来探讨一下这个有趣的数学问题。
“火车问题”有很多版本,但最基本的版本是这样的:假设有两列火车A和B在两个不同的站点同时以不同的速度出发,并朝着彼此相向而行。
我们需要计算的是当两列火车相遇时,它们各自行驶的距离和时间。
这个问题看上去简单,但当我们深入思考的时候就会发现其中蕴含着很多数学的奥秘。
我们需要考虑的是两列火车的行驶速度。
假设火车A的速度是v1,火车B的速度是v2,并且v1>v2。
如果我们假设火车A和火车B分别行驶t小时后相遇,那么火车A行驶的距离就是v1*t,火车B行驶的距离就是v2*t。
我们知道当两列火车相遇时,它们行驶的距离之和就等于两站点之间的距离。
所以我们可以根据这个关系式来解决“火车问题”。
这个问题看上去很简单,但实际上却有着深刻的数学内涵。
我们需要知道两列火车相遇时它们各自行驶的距离和时间。
通过列出关系式,我们可以求解出t,然后进一步计算出两列火车相遇时它们各自行驶的距离和时间。
处理“火车问题”还需要灵活运用速度、距离和时间等数学知识。
我们需要根据具体情况,采用不同的方法来解决问题。
我们还需要善于分析问题,灵活运用数学概念,这样才能更好地解决“火车问题”。
对于一些高阶的“火车问题”,我们可能需要用到更高深的数学知识,比如代数、几何和微积分等。
这些数学知识会让我们更好地理解和解决问题。
“火车问题”是一个既有趣又具有挑战性的数学问题。
通过解决这个问题,我们不仅可以锻炼自己的数学思维能力,还可以更好地理解数学知识。
我们都可以尝试来思考一下这个问题,挑战自己的数学思维。
在学习“火车问题”的过程中,我们还可以通过实际的例子来加深对问题的理解。
无论是小学奥数,还是公务员考试,还是公司的笔试面试题,似乎都少不了行程问题——题目门槛低,人人都能看懂;但思路奇巧,的确会难住不少人。
平时看书上网与人聊天和最近与小学奥数打交道的过程中,我收集到很多简单有趣而又颇具启发性的行程问题,在这里整理成一篇文章,和大家一同分享。
这些题目都已经非常经典了,绝大多数可能大家都见过;希望这里能有至少一个你没见过的题目,也欢迎大家来信提供更多类似的问题。
让我们先从一些最经典最经典的问题说起吧。
选中空白部分显示答案。
甲、乙两人分别从相距100 米的 A 、B 两地出发,相向而行,其中甲的速度是 2 米每秒,乙的速度是3 米每秒。
一只狗从A 地出发,先以6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了。
不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米。
说到这个经典问题,故事可就多了。
下面引用某个经典的数学家八卦帖子:John von Neumann 曾被问起一个中国小学生都很熟的问题:两个人相向而行,中间一只狗跑来跑去,问两个人相遇后狗走了多少路。
诀窍无非是先求出相遇的时间再乘以狗的速度。
Neumann 当然瞬间给出了答案。
提问的人失望地说你以前一定听说过这个诀窍吧。
Neumann 惊讶道:“什么诀窍?我就是把狗每次跑的都算出来,然后计算无穷级数⋯⋯”某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。
不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。
第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。
试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。
这个题目也是经典中的经典了。
把这个人两天的行程重叠到一天去,换句话说想像有一个人从山脚走到了山顶,同一天还有另一个人从山顶走到了山脚。
10.列方程解应用题──有趣的行程问题(含答
案)+
有趣的行程问题
一、问题描述
小明打算去旅行,他主要选择骑自行车或者搭乘公交车两种方式进行。
根据不同的目的地和时间,他需要分别列出合适的方程来解决行程问题。
二、骑自行车行程问题
小明打算去朋友家玩,他骑自行车的速度是每小时20公里。
假设朋友家距离小明家60公里,我们设从小明家出发的时间为0点,求小明几点能到达朋友家。
解答:
设小明到达朋友家的时间为t小时,则高度H与t之间存在线性关系,即H = 20t。
根据题意可得到方程20t = 60,解得t = 3。
因此小明将于3点到达朋友家。
三、公交车行程问题
小明打算搭乘公交车去游乐园,按照公交车时刻表,公交车每隔15分钟一班。
假设小明家距离游乐园10公里,公交车的速度是每小时30公里,求小明什么时候出门才能保证不需要等待公交车。
解答:
设小明等待公交车的时间为t分钟,则高度H与t之间存在线性关系,即H = 30t。
又公交车每隔15分钟一班,因此小明需要等待的时间必须是15的倍数。
将H代入方程可得到30t = 10,解得t = 20。
因此小明将在20分钟时出门,正好赶上下一趟公交车。
四、总结
通过以上两个行程问题的解答,我们可以看到列方程解应用题在解决行程问题时起到了重要的作用。
通过设定适当的方程,在已知条件下求解未知数,可以帮助我们找到最佳的解决方案。
希望通过这个简单的应用题,能够让大家对列方程解应用题有更深的理解。
答案:
一、小明将在3点到达朋友家。
二、小明将在20分钟时出门。
12个经典的行程问题甲、乙两人分别从相距100 米的A 、B 两地出发,相向而行,其中甲的速度是2 米每秒,乙的速度是3 米每秒。
一只狗从A 地出发,先以6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。
问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了。
不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米。
某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。
不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。
第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。
试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。
这个题目也是经典中的经典了。
把这个人两天的行程重叠到一天去,换句话说想像有一个人从山脚走到了山顶,同一天还有另一个人从山顶走到了山脚。
这两个人一定会在途中的某个地点相遇。
这就说明了,这个人在两天的同一时刻都经过了这里。
甲从A 地前往B 地,乙从B 地前往A 地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回。
两人首次在距离A 地700 米处相遇,后来又在距离B 地400 米处相遇。
求A 、B 两地间的距离。
答案:1700 米。
第一次相遇时,甲、乙共同走完一个AB 的距离;第二次相遇时,甲、乙共同走完三个AB 的距离。
可见,从第一次相遇到第二次相遇的过程花了两个从出发到第一次相遇这么多的时间。
既然第一次相遇时甲走了700 米,说明后来甲又走了1400 米,因此甲一共走了2100 米。
从中减去400 米,正好就是A 、B 之间的距离了。
甲、乙、丙三人百米赛跑,每次都是甲胜乙10 米,乙胜丙10 米。
则甲胜丙多少米?答案是19 米。
“乙胜丙10 米”的意思就是,等乙到了终点处时,丙只到了90 米处。
行程问题解题技巧和思路
1. 哎呀呀,碰到行程问题别慌呀!你看,就像你要去一个好玩的地方,得先规划好路线一样。
比如说,从家到超市5 公里,你走路每小时3 公里,那算一下不就知道得走多久啦!解题时要抓住路程、速度和时间的关系,这可是关键哦!
2. 嘿,行程问题有时候挺绕人的,可咱不怕呀!比如说两辆车同时出发,一辆速度快,一辆速度慢,它们之间的距离变化不就是个有趣的事儿嘛。
就好像跑步比赛,谁跑得快,不就更容易领先嘛,这里面的窍门可得搞清楚咯!
3. 哇塞,行程问题的思路其实不难找呢!就像你找宝藏,得有线索呀。
比如知道了总路程和两人的速度比,那就能算出各自走的路程啦。
好比分蛋糕,按比例来嘛,这样一想是不是就简单多啦?
4. 哟呵,行程问题里还藏着好多小秘密呢!比如说相遇问题,两个人相向而行,就跟你和朋友约好见面,想想怎么才能碰面最快嘛。
这不就是实际生活中的事儿嘛,可有意思啦!
5. 哈哈,解决行程问题可得仔细着点!就像走路要一步一步稳着来。
比如给你一段路程,中间休息了一会儿,那时间可得单独算呀。
就好比做一件事,中间停了会儿,总得把时间分清楚不是?
6. 呀,行程问题也不是那么难搞嘛!比如说知道了速度和时间,那路程不就呼之欲出啦。
这就像你知道每天跑多少,跑了几天,一共跑了多远不就清楚啦,是不是很好理解呀?
7. 哼,行程问题可难不倒我!就像爬山,虽然过程有点累,但到了山顶就超有成就感。
遇到难题别怕,一点点分析,总能找到答案的!
我的观点结论就是:只要掌握好方法和思路,行程问题绝对能轻松拿下!。
8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米. 行程问题分类例析河北 欧阳庆红行程问题有相遇问题,追及问题,顺流、逆流问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运用(如环形跑道). 相遇问题是相向而行.相遇距离为两运动物体的距离和.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追及,追及距离慢快S S S +=.顺逆流、顺风逆风、上下坡应注意运动方向,去时顺流,回时则为逆流.一、相遇问题例1:两地间的路程为360km ,甲车从A 地出发开往B 地,每小时行72km ;甲车出发25分钟后,乙车从B 地出发开往A 地,每小时行使48km ,两车相遇后,各自按原来速度继续行使,那么相遇以后,两车相距100km 时,甲车从出发开始共行驶了多少小时?分析:利用相遇问题的关系式(相遇距离为两运动物体的距离和)建立方程.解答:设甲车共行使了xh ,则乙车行使了h x )(6025-.(如图1)依题意,有72x+48)(6025-x =360+100, 解得x=4.因此,甲车共行使了4h.说明:本题两车相向而行,相遇后继续行使100km ,仍属相遇问题中的距离,望读者仔细体会.例2:一架战斗机的贮油量最多够它在空中飞行4.6h,飞机出航时顺风飞行,在静风中的速度是575km/h,风速25 km/h,这架飞机最多能飞出多少千米就应返回?分析:列方程求解行程问题中的顺风逆风问题.顺风中的速度=静风中速度+风速逆风中的速度=静风中速度-风速解答:解法一:设这架飞机最远飞出xkm 就应返回. 依题意,有642557525575.=-++x x 解得:x=1320.答:这架飞机最远飞出1320km 就应返回.解法二: 设飞机顺风飞行时间为th.依题意,有(575+25)t=(575-25)(4.6-t),解得:t=2.2.(575+25)t=600×2.2=1320.答:这架飞机最远飞出1320km 就应返回.说明:飞机顺风与逆风的平均速度是575km/h,则有645752.=x ,解得x=1322.5.错误原因在于飞机平均速度不是575km/h,而是)/(h km v v v v v x v x x574550600550600222≈+⨯⨯=+⋅=+逆顺逆顺逆顺 例3:甲、乙两人在一环城公路上骑自行车,环形公路长为42km ,甲、乙两人的速度分别为21 km/h 、14 km/h.(1) 如果两人从公路的同一地点同时反向出发,那么经几小时后,两人首次相遇?(2) 如果两人从公路的同一地点同时同向出发,那么出发后经几小时两人第二次相遇? 分析:这是环形跑道的行程问题.解答:(1)设经过xh 两人首次相遇.依题意,得(21+14)x=42,解得:x=1.2.因此,经过1.2小时两人首次相遇.(3) 设经过xh 两人第二次相遇.依题意,得21x-14x=42×2,图1解得:x=12.因此,经过12h两人第二次相遇.说明:在封闭的环形跑道上同向运动属追及问题,反向运动属相遇问题.从同一地点出发,相遇时,追及路程或相隔路程就是环形道的周长,第二次相遇,追及路程为两圈的周长.有趣的行程问题【探究新知】例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?分析与解:出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇.30÷(6+4)=30÷10=3(小时)答:3小时后两人相遇.本题是一个典型的相遇问题.在相遇问题中有这样一个基本数量关系:路程=速度和×时间.例2、如右下图有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
生活中的数学100题1、XXX爷爷的行程问题XXX爷爷年轻时曾提出一个思考题:甲和乙从东西两地同时出发,相向而行,两地相距100里。
甲每小时走6里,乙每小时走4里,几小时两人相遇?此外,甲带了一只狗,与甲同时出发,狗以每小时10里的速度向乙跑去,遇到乙后返回向甲跑去,遇到甲又返回向XXX跑去,直到甲乙两人相遇时狗才停住。
问这只狗共奔了多少里路?2、分面包(分数)应用题假设一个成年人一餐能吃四只面包,而四个幼儿一餐只吃一只面包。
现有100人,其中成年人和幼儿各有多少?如果一餐共吃掉了100只面包,那么成年人和幼儿的数量分别是多少?3、烤面包的时间XXX每天早上要吃三片面包,而她用的烤面包架每次只能放两片面包。
第一面需要烤2分钟,第二面只需要烤1分钟,那么她需要多长时间才能烤好三片面包?4、聪明的园丁(智力题)在一个公园中心有九棵小树,一个园丁每天要推着车子到树边浇水。
由于车子只能前进,不能后退或拐弯,因此行走路线必须尽量减少拐弯次数以提高工作效率。
请问这个园丁是如何走的,只用拐三次弯就能浇遍所有的小树?5、奇妙的侦察员(智力题)在抗日战争时期,侦察员XXX要侦察一座敌军铁路桥的长度。
然而,敌人加强了防守,拔掉了路边的里程碑,火车过桥时也不允许开窗或张望。
XXX化妆后乘上了火车,当火车行驶时,他半闭着眼睛,凭借着铁轨的“轰隆”声,就能够知道铁路桥的长度。
这是怎么回事?6、渡河(经典智力题)一个农夫要带一只狗、一只兔子和一棵青菜过河。
由于只有一只很小的旧船,且家规规定最多只能带一样东西上船,否则就会沉船。
农夫先带了青菜上船,但狗欺负兔子,所以农夫把青菜留在岸上,带着狗上船。
但兔子又想吃青菜,于是农夫又回到岸上。
请问农夫如何才能把这三样东西都安全地带过河去?7、环城电车(生活题)一条无轨电车行驶在一个环城路线上,共有10个站点。
1-5站点收费4分钱,6-10站点收费7分钱。
售票员需要准备哪些价格的车票?8、雨迹速度计(简单生活题)使用雨迹速度计可以测量雨水在地面上的流速。
四年级行程问题应用题大全《四年级行程问题应用题大全》嗨,小伙伴们!今天咱们就来好好聊聊四年级行程问题的应用题。
这行程问题啊,就像一场有趣的冒险,里面的人物就像一个个小探险家在不同的路程里穿梭呢。
我先给你们讲个简单的行程问题例子吧。
我有个好朋友小明,他特别喜欢跑步。
有一天,他在一个长长的跑道上跑。
这个跑道就像一条长长的蛇,弯弯曲曲地趴在地上。
小明从跑道的这一头出发,他的速度就像一阵小旋风,每秒钟能跑5米呢。
他跑了10秒钟,那他跑了多远呀?这就是一个很基础的行程问题啦。
咱们知道路程等于速度乘以时间,那小明跑的路程就是5×10 = 50米。
这就像我们在数小糖果一样,一个一个地数清楚。
还有一种情况呢。
我和小红一起走路去学校。
我走得快一点,速度是每分钟60米,小红走得慢一点,速度是每分钟50米。
学校离我们家有600米远。
我就想啊,我到学校要多久呢?根据时间等于路程除以速度,我到学校的时间就是600÷60 = 10分钟。
那小红到学校的时间呢?就是600÷50 = 12分钟。
你看,这样一对比,就知道谁会先到学校啦。
这就好像我们在比赛,看谁先跑到终点一样。
再来说说相遇问题吧。
就像有两个小机器人,一个从东边出发,一个从西边出发,朝着对方走。
东边的小机器人速度是每小时30千米,西边的小机器人速度是每小时40千米,它们之间的距离是280千米。
那它们多久会相遇呢?这时候啊,我们要把它们的速度加起来,因为它们是朝着对方走的嘛,就像两个人手拉手一起走。
它们的速度和就是30 + 40 = 70千米每小时。
再用路程除以速度和,280÷70 = 4小时。
哇,4个小时后它们就能相遇啦,就像两个好朋友终于见面了,多开心呀!那追及问题呢?就像一只小兔子在前面跑,速度是每分钟20米,一只大灰狼在后面追,速度是每分钟30米。
开始的时候它们相距100米。
大灰狼要多久才能追上小兔子呢?这就像一场紧张的追逐赛。
有趣的行程问题B(一)知识精讲模块一、环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
例题精选例题1 在400 米的环行跑道上,A,B 两点相距100 米。
甲、乙两人分别从A,B 两点同时出发,按逆时针方向跑步。
甲甲每秒跑5 米,乙每秒跑 4 米,每人每跑100 米,都要停10 秒钟。
那么甲追上乙需要时间是多少秒?例题2 有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚在跑道上同一处?例题3 周长为400米的圆形跑道上,有相距100米的A,B两点.甲、乙两人分别从A,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?例题4 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?例题5 如下图所示的三条圆形跑道,每条跑道的长都是0.5千米,A 、B 、C 三位运动员同时从交点O 出发,分别沿三条跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米。
问:从出发到三人第一次相遇,他们共跑了多少千米?例题6 甲、乙两车同时从同一点A 出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?例题7 如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?OCBA例题8 如图,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?例题9 下图是一个玩具火车轨道,A 点有个变轨开关,可以连接B 或者C . 小圈轨道的周长是1.5 米,大圈轨道的周长是3 米. 开始时,A 连接C ,火车从A 点出发,按照顺时针方向在轨道上移动,同时变轨开关每隔 1 分钟变换一次轨道连接. 若火车的速度是每分钟10 米,则火车第10 次回到A 点时用了 秒钟.例题10 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
有趣的行程问题
今天,妈妈一回到家就问了我一个题目。
题目是这样的:小华骑车从家去公园。
如果每小时行30千米,上午9点到达;如果每小时行10千米,那么上午11点才能到达。
现在他想在上午10点到,这时他每小时要行多少千米?
我听完题目,觉得很简单,稍稍想了一会哦,就脱口而出:“20千米。
”“怎么得来的?”我说:“因为相差2个小时,把(30+10)÷2=20(千米)就可以了。
”这时妈妈连说:“不对,不对,你再好好想想,哪会这么简单?”随后我就拿出纸和笔认真地研究起来了。
首先,我们要知道在这个题目中,行走的时间和速度是变化的,而行走的路程和出发的时间是不变的。
这时我就想:每小时行30千米,9点就到了,如果继续行到11点,就多行了(11-9)×30=60(千米)。
为什么相同的时间会多行60千米呢?因为这时的速度快了30-10=20(千米),这样就算出速度是10千米/时行走的时间了:60÷20=3(时)。
那么路程是10×3=30(千米)。
出发时间就是11-3=8(时)。
如果想要10点就到的话,就把10-8=2(时),此时的速度就是:30÷2=15(千米),也就是小华每小时行15千米。
题目终于解决好了,妈妈这时问:“你想明白了吗?”我兴高采烈的答道:“懂啦,原来行程问题变化很多,只要把路程、速度和时间三者的关系处理好就行了。
”
五(2)班徐嘉晟。