最值或取值范围问题
- 格式:docx
- 大小:149.84 KB
- 文档页数:3
第14讲解三角形中周长最大值及取值范围问题【考点分析】考点一:解三角形中角的最值及范围问题①利用锐角三角形,⎪⎩⎪⎨⎧<<<<<<πππC B A 000,求出角的范围②利用余弦定理及基本不等式求角的最值:bca bc bc a cb A 222cos 2222-≥-+=考点一:解三角形中周长的最值及范围问题①利用基本不等式:()bca bc cb bc a c b A 222cos 22222--+=-+=,再利用bc c b 2≥+及a c b >+,求出c b +的取值范围②利用三角函数思想:()B A R B R C R B R c b ++=+=+sin 2sin 2sin 2sin 2,结合辅助角公式及三角函数求最值【题型目录】题型一:三角形角的最值及范围问题题型二:三角形边周长的最值问题题型三:三角形边周长的最值范围问题【典型例题】题型一:三角形角的最值及范围问题【例1】在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2sin B C A +=,则A 的最大值为()A .2π3B .π6C .π2D .π3【例2】在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos 0a B c +=,则tan C 的最大值是()A .1BCD【例3】锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos b a a C -=,则()A .2C A =B .A 的取值范围是(,)64ππC .2A C=D .2ca的取值范围是【例4】已知在锐角ABC 中,sin tan 1cos BA B=+.(1)证明:2B A =;(2)求tan tan 1tan tan B AA B-+⋅的取值范围.【题型专练】1.在锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若cos cos b b A a B +=,则()A .2AB =B .64B ππ<<C .(ab∈D .22a b bc=+2.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为()A .,3⎡⎫+∞⎪⎢⎣⎭B .4,33⎡⎤⎢⎥⎣⎦C .4,33⎛⎫⎪ ⎪⎝⎭D .433⎡⎫⎪⎢⎪⎣⎭题型二:三角形边周长的最值问题【例1】已知ABC 的内角,,A B C 的对应边分别为,,a b c ,6c =,60B =︒,则b 的最小值为()A .3B .C .D .6【例2】设ABC 边a ,b ,c 所对的角分别为A ,B ,C ,若ABC 的面积为212c ,则以下结论中正确的是()A .b aa b+取不到最小值2B .b aa b+的最大值为4C .角C 的最大值为2π3D .23b a ca b ab+-的最小值为-【例3】已知ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且()()()2sin sin 2sin sin a A B c b B C -=-+,若2AD DB =,1CD = ,求:(1)求()cos A B +的值;(2)求2b a +的最大值.【例4】△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos2A +cos2B +2sin A sin B =1+cos2C .(1)求角C ;(2)设D 为边AB 的中点,△ABC 的面积为CD 的最小值.【例5】ABC 三角形的内角,,A B C 的对边分别为,,a b c ,(2)sin (2)sin 2sin a b A b a B c C -+-=(1)求C ∠;(2)已知6c =,求ABC 周长的最大值.【题型专练】1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,满足sin 2sin sin A B C =,则c bb c+的最大值为______,此时内角A 的值为______2.在平面四边形ABCD 中,20AB AD ==,π3BAD ∠=,2π3BCD ∠=.(1)若5π12ABC ∠=,求BC 的长;(2)求四边形ABCD 周长的最大值.3.在条件:①2sin 30b A =,②3sin cos a b A a B =-,③22cos a b C c =+中任选一个,补充在下列问题中,然后解答补充完整的题目.已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,3b =,而且__________;(1)求角B 的大小;(2)求ABC 周长的最大值.4.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.5.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos 3)a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.题型三:三角形边周长的最值范围问题【例1】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c .若1c =,π3B =,则a 的取值范围为_____________;sin sin AC 的最大值为__________.【例2】设ABC 的内角A ,B ,C 的对边分别为a ,b ,.c 已知6a =,2b =,要使ABC 为钝角三角形,则c 的大小可取__________(取整数值,答案不唯一).【例3】在锐角ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且2cos 2a cC b-=.(1)求角B 的大小;(2)求ac的取值范围.【例4】平面四边形ABCD 中,75A B C ∠=∠=∠= ,AB =2,则AD 长度的取值范围________.【例5】某公园有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,现欲在边界BC 上选择一点P ,修建观赏小径PM ,PN ,其中M ,N 分别在边界AB ,AC 上,小径PM ,PN 与边界BC 的夹角都是60︒,区域PMB 和区域PNC 内部种郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM ,PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区城内修建小径MN ,当点P 在何处时,三条小径(PM ,PN ,MN )的长度之和最少?【例6】请从下面三个条件中任选一个,补充在下面的横线上,并解答.①()()()sin sin sin 0a c A C b a B +-+-=;②2cos 12cos C C C =+;③2sin sin 2sin cos B A C A -=.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若.(1)求角C ;(2)若4c =,求△ABC 周长的取值范围.【例7】在ABC 中,,a b c 为角,,A B C 所对的边,且cos cos 2B bC a c=-.(1)求角B 的值;(2)若b ,求2a c -的取值范围.【例8】在ABC 中,内角,,A B C 的对边分别为,,a b c ,且()()sin sin 2sin sin sin a A c C B b C B =-++.(1)求角A ;(2)若ABC 为锐角三角形,求)2b c a-的取值范围.【题型专练】1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2B bC a c=-,则下列说法正确的有()A .3B π=B .若sin 2sinC A =,且ABC 的面积为ABC 的最小边长为2C .若b =时,ABC 是唯一的,则a ≤D .若b =ABC 周长的范围为2.锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2cos b a a C -=,则()A .2C A =B .A 的取值范围是(,)64ππC .2A C=D .2ca的取值范围是3.已知三角形ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,且(2)cos cos 0a c B b C --=.(1)求角B ;(2)若b =2,求a c +的取值范围.4.在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且满足()22sin sin sin sin A B B A B -=+.(1)证明:2A B =.(2)求bc 的取值范围.5.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()2sin 2sin 2sin a c A c a C b B -+-=.(1)求B ;(2)若ABC 为锐角三角形,且2b =,求ABC 周长的取值范围.6.如图:某公园改建一个三角形池塘,90C ∠=︒,2AB =(百米),1BC =(百米),现准备养一批观赏鱼供游客观赏.(1)若在ABC 内部取一点P ,建造APC 连廊供游客观赏,如图①,使得点P 是等腰三角形PBC 的顶点,且2π3CPB ∠=,求连廊AP PC PB ++的长(单位为百米);(2)若分别在AB ,BC ,CA 上取点D ,E ,F ,并建行连廊,使得DEF 变成池中池,放养更名贵的鱼类供游客观赏.如图②,当DEF 为正三角形时,求DEF 的面积的最小值.7.在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin sin cos cos 3sin B C A CA a c=+,且222sin sin sin sin sin A B C A B +-=⋅,则ba c +2的取值范围是()A .B .(6,C .D .2)。
高中数学解三角形最值与范围问题探讨摘要:解三角形是高考中的重点题型,对正弦定理和余弦定理的考查比较灵活,且题型多变,多与三角形周长,面积有关,而三角形中的最值与范围问题又是一个重点。
本文主要探究解三角形中求取最值和范围问题的解法,本文给出三种解法,并对比几种方法优劣。
关键词:高考数学;解三角形;正弦定理;余弦定理;解三角形是高考中的重点题型,也是高考数学的高频考点。
解三角形对正弦定理和余弦定理的考查比较灵活,题型多变,多与三角形周长,面积有关;有时也会与平面向量,三角恒等变换,不等式等结合考查。
而三角形中的最值与范围问题又是一个重点。
处理这个最值问题解决方法主要有三种:(1)利用正弦定理和三角函数有界性:已知一边及其对角,可利用正弦定理求出2R(R为外接圆半径),再通过边角互化和代入消元的方式,将多变量的表达式转化为关于角B或角C的函数,再利用降幂公式,辅助角公式等进行化简,建立目标函数后,问题将转化为三角函数求值域(最值)问题。
(2)利用基本不等式和余弦定理:根据余弦定理并配合基本不等式可求解的最值问题。
(3)利用数形结合和极限思想:已知三角形一边及其对角可知三角形外接圆半径,在该圆上固定三角形一边,根据同弧所对的圆周角相等可知该边所对应顶点在圆上运动,根据圆的对称性和极限思想可得取值范围或最值。
下面给出例题,探讨几种方法的优劣:题型一:已知三角形一边及其对角例1:在 ABC中,有,若,求 ABC周长的取值范围。
解:推出A=法一:(利用三角函数有界性和正弦定理)周长 +2R(sinB+sinC)(B+C= )= +2(sinB+sin( ))==由于,则,则周长L=的范围 .法二:(利用基本不等式和余弦定理)解:由题意可得:L= +a+b由余弦定理 ,因为,所以则 ,而三角形中两边之和大于第三边则 ,则周长L= +a+b取值范围 .法三:(数形结合与极限思想)已知一边及其对角可得三角形外接圆半径为1,画出外接圆并在圆上固定A 角所对边BC,根据同弧所对的圆周角相等可得三角形一顶点A在圆上运动,根据圆的对称性可得,当A点运动到优弧的中点A’处时,此时三角形ABC周长最大,此时三角形ABC为等腰三角形。
微重点 平面向量的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.考点一 求参数的最值(范围)例1 (1)(2022·沈阳质检)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________. 答案 [1,4]解析 根据题意,不妨设正六边形ABCDEF 的边长为23,以O 为原点建立平面直角坐标系,如图所示,则F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3), 由CG →=λCB →+μCD →可得,m -23=-3λ-3μ,即λ+μ=-33m +2, 数形结合可知m ∈[-23,3], 则-33m +2∈[1,4],即λ+μ的取值范围为[1,4]. (2)设非零向量a ,b 的夹角为θ,若|a |=2|b |,且不等式|2a +b |≥|a +λb |对任意θ恒成立,则实数λ的取值范围为( ) A .[-1,3] B .[-1,5] C .[-7,3] D .[5,7]答案 A解析 ∵非零向量a ,b 的夹角为θ,若|a |=2|b |, a ·b =|a ||b |cos θ=2|b |2cos θ,不等式|2a +b |≥|a +λb |对任意θ恒成立, ∴(2a +b )2≥(a +λb )2,∴4a 2+4a ·b +b 2≥a 2+2λa ·b +λ2b 2, 整理可得(13-λ2)+(8-4λ)cos θ≥0恒成立, ∵cos θ∈[-1,1],∴⎩⎪⎨⎪⎧13-λ2+8-4λ≥0,13-λ2-8+4λ≥0, ∴⎩⎪⎨⎪⎧-7≤λ≤3,-1≤λ≤5,∴-1≤λ≤3. 规律方法 利用共线向量定理及推论 (1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.跟踪演练1 (2022·滨州模拟)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤13,12 C .[0,1] D .[1,2]答案 C解析 由题意,设AN →=tAM →(0≤t ≤1),如图.当t =0时,AN →=0, 所以λAB →+μAC →=0,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN →=λAB →+μAC →(λ,μ∈R ), 所以tAM →=λAB →+μAC →, 即AM →=λt AB →+μt AC →,因为M ,B ,C 三点共线,所以λt +μt =1,即λ+μ=t ∈(0,1].综上,λ+μ的取值范围是[0,1].考点二 求向量模、夹角的最值(范围)例2 (1)已知e 为单位向量,向量a 满足:(a -e )·(a -5e )=0,则|a +e |的最大值为( ) A .4 B .5 C .6 D .7 答案 C解析 可设e =(1,0),a =(x ,y ), 则(a -e )·(a -5e )=(x -1,y )·(x -5,y ) =x 2-6x +5+y 2=0, 即(x -3)2+y 2=4, 则1≤x ≤5,-2≤y ≤2, |a +e |=(x +1)2+y 2=8x -4, 当x =5时,8x -4取得最大值为6, 即|a +e |的最大值为6.(2)在平行四边形ABCD 中,AB →|AB →|+2AD →|AD →|=λAC→|AC →|,λ∈[2,2],则cos ∠BAD 的取值范围是________. 答案 ⎣⎡⎦⎤-34,-14 解析 因为AB →|AB →|+2AD →|AD →|=λAC→|AC →|,且AB →+AD →=AC →,所以|AB →|∶|AD →|∶|AC →|=1∶2∶λ, 不妨设|AB →|=1,则|AD →|=2,|AC →|=λ, 在等式AB →|AB →|+2AD →|AD →|=λAC→|AC →|两边同时平方可得5+4cos ∠BAD =λ2,则cos ∠BAD =λ2-54,因为λ∈[2,2],所以cos ∠BAD =λ2-54∈⎣⎡⎦⎤-34,-14.易错提醒 找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π]; 若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线,同理若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.跟踪演练2 (2022·马鞍山模拟)已知向量a ,b 满足|a -3b |=|a +3b |,|a +b |=4,若向量c =λa +μb (λ+μ=1,λ,μ∈R ),且a ·c =b ·c ,则|c |的最大值为( ) A .1 B .2 C .3 D .4 答案 B解析 由|a -3b |=|a +3b |得a ·b =0, 所以a ⊥b .如图,设OA →=a ,OB →=b ,|OA →|=m ,|OB →|=n , 由a ⊥b 可知OA ⊥OB , 所以|AB →|=|b -a |=|a +b |=4,即m 2+n 2=16,所以2mn ≤16,则mn ≤8,当且仅当m =n 时取得等号.设OC →=c , 由c =λa +μb (λ+μ=1), 可知A ,B ,C 三点共线,由a ·c =b ·c 可知(a -b )·c =0,所以OC ⊥AB , 由等面积法可得, 12|OA →|·|OB →|=12|AB →|·|OC →|, 得|OC →|=|OA →|·|OB →||AB →|=mn 4≤2,所以|c |的最大值为2.考点三 求数量积的最值(范围)例3 (1)(2022·福州质检)已知平面向量a ,b ,c 均为单位向量,且|a -b |=1,则(a -b )·(b -c )的最大值为( ) A.14 B.12 C .1 D.32答案 B解析 ∵|a -b |2=a 2-2a ·b +b 2 =2-2a ·b =1, ∴a ·b =12,∴(a -b )·(b -c )=a ·b -a ·c -b 2+b ·c =12-1-(a -b )·c =-12-|a -b |·|c |cos 〈a -b ,c 〉=-12-cos 〈a -b ,c 〉,∵cos 〈a -b ,c 〉∈[-1,1], ∴(a -b )·(b -c )∈⎣⎡⎦⎤-32,12, 即(a -b )·(b -c )的最大值为12.(2)(2022·广州模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点P 在BC 边上(包括端点),则AD →·AP →的取值范围是________. 答案 [-2,2]解析 如图所示,以C 为原点,BC →为x 轴正方向,过点C 垂直向上的方向为y 轴,建立平面直角坐标系.因为菱形ABCD 的边长为2,∠ABC =60°, 则B (-2,0),C (0,0),D (1,3),A (-1,3). 因为点P 在BC 边上(包括端点), 所以设P (t ,0),其中t ∈[-2,0]. 所以AD →=(2,0),AP →=(t +1,-3), 所以AD →·AP →=2t +2∈[-2,2].规律方法 向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.跟踪演练3 已知AB 是半圆O 的直径,AB =2,等腰△OCD 的顶点C ,D 在半圆弧AB ︵上运动,且∠COD =120°,点P 是半圆弧AB ︵上的动点,则PC →·PD →的取值范围为( ) A.⎣⎡⎦⎤-34,34 B.⎣⎡⎦⎤-34,1 C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,12 答案 C解析 以点O 为原点,AB 为x 轴,垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,不妨取C (1,0),则D ⎝⎛⎭⎫-12,32,设P (cos α,sin α)(α∈[0,π]), PC →·PD →=(1-cos α,-sin α)·⎝⎛⎭⎫-12-cos α,32-sin α =12-32sin α-12cos α=12-sin ⎝⎛⎭⎫α+π6. 因为α∈[0,π],所以α+π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1, 所以12-sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1,即PC →·PD →的取值范围为⎣⎡⎦⎤-12,1. 专题强化练1.(2022·山东省实验中学诊断)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( )A .4B .6C .8D .9 答案 C解析 由题意得,AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),∵A ,B ,C 三点共线,∴AB →=λAC →且λ∈R ,则⎩⎪⎨⎪⎧a -1=-λ(b +1),2λ=1,可得2a +b =1, ∴1a +2b =⎝⎛⎭⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab=8, 当且仅当b =2a =12时,等号成立.∴1a +2b的最小值为8. 2.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值为( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使OA →+OB →=OD →, 则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB → =1-(OA →+OB →)·OC →=1-OD →·OC → =1-2cos 〈OD →,OC →〉,当cos 〈OD →,OC →〉=-1时,(OC →-OA →)·(OC →-OB →)取得最大值为1+ 2.3.(2022·杭州模拟)平面向量a ,b 满足|a |=1,⎪⎪⎪⎪b -32a =1,记〈a ,b 〉=θ,则sin θ的最大值为( )A.23B.53C.12D.32 答案 A解析 因为|a |=1,⎪⎪⎪⎪b -32a =1, 所以⎪⎪⎪⎪b -32a 2=|b |2-3a ·b +94|a |2=1, |b |2-3|a |·|b |cos θ+94-1=0,即|b |2-3|b |cos θ+54=0,所以cos θ=|b |2+543|b |=|b |3+512|b |≥2536=53, 当且仅当|b |=52时,等号成立, 因为〈a ,b 〉=θ,θ∈[0,π], 所以sin θ=1-cos 2θ≤1-59=23, 即sin θ的最大值为23.4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =2,P 是线段AB 上的动点,则|PC →+4PD →|的最小值为( )A .35B .6C .25D .4答案 B解析 如图,以点B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴,建立平面直角坐标系,设AB =a ,BP =x (0≤x ≤a ),因为AD =1,BC =2,所以P (0,x ),C (2,0),D (1,a ), 所以PC →=(2,-x ),PD →=(1,a -x ), 4PD →=(4,4a -4x ),所以PC →+4PD →=(6,4a -5x ),所以|PC →+4PD →|=36+(4a -5x )2≥6,所以当4a -5x =0,即x =45a 时,|PC →+4PD →|的最小值为6.5.(多选)已知向量a ,b ,单位向量e ,若a ·e =1,b ·e =2,a ·b =3,则|a +b |的可能取值为( ) A .3 B.10 C.13 D .6答案 CD解析 设e =(1,0),a =(x 1,y 1),b =(x 2,y 2), 由a ·e =1得x 1=1, 由b ·e =2得x 2=2,由a ·b =x 1x 2+y 1y 2=3,可得y 1y 2=1, 则|a +b |=(a +b )2=(x 1+x 2)2+(y 1+y 2)2=11+y 21+y 22≥11+2y 1y 2=13,当且仅当y 1=y 2=1时取等号.6.(多选)(2022·武汉模拟)正方形ABCD 的边长为2,E 是BC 的中点,如图,点P 是以AB 为直径的半圆上任意一点,AP →=λAD →+μAE →(λ,μ∈R ),则( )A .λ的最大值为12B .μ的最大值为1 C.AP →·AD →的最大值为2 D.AP →·AE →的最大值为5+2 答案 BCD解析 如图,以AB 的中点O 为原点建立平面直角坐标系,则A (-1,0),D (-1,2),E (1,1), 连接OP ,设∠BOP =α(α∈[0,π]), 则P (cos α,sin α), AP →=(cos α+1,sin α), AD →=(0,2),AE →=(2,1), 由AP →=λAD →+μAE →,得2μ=cos α+1且2λ+μ=sin α,α∈[0,π], 所以λ=14(2sin α-cos α-1)=54sin(α-θ)-14≤5-14,故A 错误; 当α=0时,μmax =1,故B 正确; AP →·AD →=2sin α≤2,故C 正确; AP →·AE →=sin α+2cos α+2=5sin(α+φ)+2≤5+2,故D 正确.7.(2022·广东六校联考)已知菱形ABCD 的边长为2,∠BAD =60°,E 是边CD 的中点,连接AE 并延长至点F ,使得AE =2EF ,若H 为线段BC 上的动点,则FH →·AH →的取值范围为______________. 答案 ⎣⎡⎦⎤-17764,-32 解析 方法一 连接AC ,BD 交于点O ,以点O 为坐标原点,以BD 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,则A (0,3),B (-1,0),C (0,-3),D (1,0),E ⎝⎛⎭⎫12,-32. 设F (x 0,y 0),因为AE →=2EF →,所以⎝⎛⎭⎫12,-332=2⎝⎛⎭⎫x 0-12,y 0+32 =()2x 0-1,2y 0+3, 所以2x 0-1=12,2y 0+3=-332, 所以x 0=34,y 0=-534, 所以F ⎝⎛⎭⎫34,-534. 易知直线BC 的方程为y =-3x -3,设H (x ,-3x -3)(-1≤x ≤0),则AH →=(x ,-3x -23),FH →=⎝⎛⎭⎫x -34,-3x +34, 所以FH →·AH →=⎝⎛⎭⎫x -34x +⎝⎛⎭⎫3x -34(3x +23)=4x 2+92x -32, 因为-1≤x ≤0,所以FH →·AH →∈⎣⎡⎦⎤-17764,-32.方法二 设BH →=tBC →(0≤t ≤1),则AH →=AB →+BH →=AB →+tBC →=AB →+tAD →. 连接AC (图略),因为E 为CD 的中点, 所以AE →=12(AC →+AD →)=12(AB →+2AD →), AF →=AE →+EF →=32AE →=34(AB →+2AD →), 所以FH →·AH →=(AH →-AF →)·AH →=AH →2-AF →·AH →=(AB →+tAD →)2-34(AB →+2AD →)·(AB →+tAD →)=4+4t 2+4t -34(4+2t +4+8t ) =4+4t 2+4t -6-15t 2=4t 2-72t -2. 设y =4t 2-72t -2,0≤t ≤1,根据二次函数的图象与性质可知,函数y =4t 2-72t -2,0≤t ≤1的最小值在t =716处取得,为-17764,最大值在t =1处取得,为-32, 所以FH →·AH →的取值范围是⎣⎡⎦⎤-17764,-32. 8.已知向量a ,b 满足|a |=1,|b |=3,则|2a +b |+|2a -b |的最小值是________,最大值是________.答案 6 213解析 ∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |=4,且|2a +b |+|2a -b |≥|2a +b -2a +b |=2|b |=6,∴|2a +b |+|2a -b |≥6,当且仅当2a +b 与2a -b 反向时取等号.此时|2a +b |+|2a -b |的最小值为6.∵|2a +b |+|2a -b |2≤|2a +b |2+|2a -b |22 =|2a |2+|b |2=13, ∴|2a +b |+|2a -b |≤213,当且仅当|2a +b |=|2a -b |时取等号, ∴|2a +b |+|2a -b |的最大值为213.。
高中数学专题--- 最值或取值范围问题基本方法:最值或取值范围问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围;②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围; ④利用基本不等式求出参数(自变量)的取值范围;⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围. 最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.一、典型例题1. 已知抛物线2y x =和C :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.2. 已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=(O 为坐标原点).求当AB <λ的取值x范围.二、课堂练习1. 已知椭圆C :2214x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.三、课后作业1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD 面积的最小值及此时直线AD 的方程.x3. 已知F 为椭圆2214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.。
圆锥曲线专题:最值与范围问题的6种常见考法一、圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:1、几何法:通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;2、代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.二、最值问题的一般解题步骤三、参数取值范围问题1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;4、利用已知的不等关系构造不等式,从而求出参数的取值范围;5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型一距离与长度型最值范围问题【例1】已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,焦距为2,点E 在椭圆上.当线段2EF 的中垂线经过1F 时,恰有21cos EF F ∠.(1)求椭圆的标准方程;(2)直线l 与椭圆相交于A 、B 两点,且||2AB =,P 是以AB 为直径的圆上任意一点,O 为坐标原点,求||OP 的最大值.【答案】(1)2212x y +=;(2)max ||OP 【解析】(1)由焦距为2知1c =,连结1EF ,取2EF 的中点N ,线段2EF 的中垂线经过1F 时,1||22EF c ∴==,221212cos ,.1,F N EF F F N F F ∠∴∴-2122,2EF a EF EF a ∴=-∴=+=∴由所以椭圆方程为2212x y +=;(2)①当l 的斜率不存在时,AB 恰为短轴,此时||1OP =;②当l 的斜率存在时,设:l y kx m =+.联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩,得到222(21)4220k x kmx m +++-=,∴△2216880k m =-+>,122421km x x k -+=+,21222221m x x k -=+.21AB x x =-=2==,化简得2222122k m k +=+.又设M 是弦AB 的中点,121222()221my y k x x m k +=++=+∴()2222222241,,||212121km m k M OM k k k m -+⎛⎫= ⎪⎝⎭+⋅++,∴()()()222222222412141||22212221k k k OM k k k k +++=⋅=++++,令2411k t += ,则244||43(1)(3)4t OM t t t t===-++++∴||1OM =- (仅当t =,又||||||||1OP OM MP OM +=+2k =时取等号).综上:max ||OP =【变式1-1】已知抛物线21:4C y x =的焦点F 也是椭圆22222:1(0)x y C a b a b+=>>的一个焦点,1C 与2C 的公共弦长为3.(1)求椭圆2C 的方程;(2)过椭圆2C 的右焦点F 作斜率为(0)k k ≠的直线l 与椭圆2C 相交于A ,B 两点,线段AB 的中点为P ,过点P 做垂直于AB 的直线交x 轴于点D ,试求||||DP AB 的取值范围.【答案】(1)22143x y +=;(2)1(0,)4【解析】(1)抛物线21:4C y x =的焦点F 为(1,0),由题意可得2221c a b =-=①由1C 与2C 关于x 轴对称,可得1C 与2C 的公共点为2,33⎛± ⎝⎭,可得2248193a b +=②由①②解得2a =,b ,即有椭圆2C 的方程为22143x y+=;(2)设:(1)l y k x =-,0k ≠,代入椭圆方程,可得2222(34)84120k x k x k +-+-=,设1(A x ,1)y ,2(B x ,2)y ,则2122834kx x k +=+,212241234k x x k -=+,即有()312122286223434k ky y k x x k k k k -+=+-=-=++,由P 为中点,可得22243()3434k kP k k -++,,又PD 的斜率为1k -,即有222314:3434k k PD y x k k k ⎛⎫--=-- ++⎝⎭,令0y =,可得2234k x k=+,即有22034k D k ⎛⎫⎪+⎝⎭可得2334PD k ==+又AB ==2212(1)34k k +=+,即有DP AB =,由211k +>,可得21011k <<+,即有104<,则有||||DP AB 的取值范围为1(0,)4.【变式1-2】已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=;(2)8【解析】(1)设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩,所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--,所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.【变式1-3】已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B两点,求FA FB FC ⋅⋅的取值范围.【答案】(1)24x y =;(2)[)3,+∞【解析】(1)由抛物线方程得:0,2p F ⎛⎫ ⎪⎝⎭,可设过点F 且倾斜角为3π的直线为:2py =+,由222p y x py⎧=+⎪⎨⎪=⎩得:220x p --=,由抛物线焦点弦长公式可得:)12122816y y p x x p p ++=++==,解得:2p =,∴抛物线E 的方程为:24x y =.(2)由(1)知:()0,1F ,准线方程为:1y =-;设AFB θ∠=,圆C 的半径为r ,则2ACB θ∠=,FC CA CB r ===,1133sin 2224AFBSFA FB AB AB θ∴=⋅=⋅=,又2sin AB r θ=,3FA FB r ∴⋅=;由抛物线定义可知:11c CF y =+≥,即1r ≥,333FA FB FC r ∴⋅⋅=≥,即FA FB FC ⋅⋅的取值范围为[)3,+∞.题型二面积型最值范围问题20y -=与圆O 相切.(1)求椭圆C 的标准方程;(2)椭圆C 的上顶点为B ,EF 是圆O 的一条直径,EF不与坐标轴重合,直线BE 、BF 与椭圆C 的另一个交点分别为P 、Q ,求BPQ 的面积的最大值及此时PQ 所在的直线方程.【答案】(1)2219x y +=;(2)()max278BPQ S=,PQ 所在的直线方程为115y x =±+【解析】20y -=与圆O相切,则1b =,由椭圆的离心率223c e a ==,解得:29a =,椭圆的标准方程:2219x y +=;(2)由题意知直线BP ,BQ 的斜率存在且不为0,BP BQ ⊥,不妨设直线BP 的斜率为(0)k k >,则直线:1BP y kx =+.由22119y kx x y =+⎧⎪⎨+=⎪⎩,得22218911991k x k k y k -⎧=⎪⎪+⎨-⎪=⎪+⎩,或01x y =⎧⎨=⎩,所以2221819,9191k k P k k ⎛⎫-- ⎪++⎝⎭.用1k -代替k ,2229189,9k k Q k k ⎛⎫-+ ⎝+⎪⎭则21891k PB k ==+2189BQ k==+,22222111818162(1)22919(9)(19)BPQ k k k S PB BQ k k k k +=⋅=⋅=++++△342221162()162()99829982k k k k k k k k ++==++++,设1k k μ+=,则21621622764829(2)89BPQ S μμμμ∆==≤+-+.当且仅当649μμ=即183k k μ+==时取等号,所以()max278BPQ S=.即21128(()49k k kk-=+-=,1k k -=直线PQ的斜率222222291911191918181010919PQk k k k k k k k k k k k k ---+-⎛⎫++===-= ⎪⎝⎭--++PQ所在的直线方程:1y =+.【变式2-1】在平面直角坐标系xOy 中,ABC 的周长为12,AB ,AC 边的中点分别为()11,0F -和()21,0F ,点M 为BC 边的中点(1)求点M 的轨迹方程;(2)设点M 的轨迹为曲线Γ,直线1MF 与曲线Γ的另一个交点为N ,线段2MF 的中点为E ,记11NF O MF E S S S =+△△,求S 的最大值.【答案】(1)()221043x y y +=≠;(2)max 32S =【解析】(1)依题意有:112F F =,且211211262MF MF F F ++=⨯=,∴121242MF MF F F +=>=,故点M 的轨迹C 是以()11,0F -和()21,0F 为焦点,长轴长为4的椭圆,考虑到三个中点不可共线,故点M 不落在x 上,综上,所求轨迹方程:()221043x y y +=≠.(2)设()11,M x y ,()22,N x y ,显然直线1MF 不与x 轴重合,不妨设直线1MF 的方程为:1x ty =-,与椭圆()221043x y y +=≠方程联立整理得:()2234690t y ty +--=,()()22236363414410t t t ∆=++=+>,112634t y y t +=+,1129034y y t =-<+,11111122NF O S F y y O ==△,112122211112222MF E MF F S S F F y y ==⋅=△△,∴()()1112122111Δ22234NF O MF E S S S y y y y t =+=+=-=⋅=+△△令()2344u t u =+≥,则()S u ϕ====∵4u ≥,∴1104u <≤,当114u =,即0=t 时,∴max 32S =,∴当直线MN x ⊥轴时,∴max 32S =.【变式2-2】已知双曲线()222210x y a a a-=>的右焦点为()2,0F ,过右焦点F 作斜率为正的直线l ,直线l 交双曲线的右支于P ,Q 两点,分别交两条渐近线于,A B 两点,点,A P 在第一象限,O 为原点.(1)求直线l 斜率的取值范围;(2)设OAP △,OBP ,OPQ △的面积分别是OAP S △,OBP S △,OPQS ,求OPQ OAP OBPS S S ⋅△△△的范围.【答案】(1)()1,+∞;(2)).【解析】(1)因为双曲线()222210x y a a a-=>的右焦点为()2,0F ,故2c =,由222c a a =+得22a =,所以双曲线的方程为,22122x y -=,设直线l 的方程为2x ty =+,联立双曲线方程得,()222222121021420Δ0120t x y t y ty t x ty y y ⎧⎧-≠⎪-=⎪⇒-++=⇒>⇒<⎨⎨=+⎪⎪⋅<⎩⎩,解得01t <<,即直线l 的斜率范围为()11,k t=∈+∞;(2)设()11,P x y ,渐近线方程为y x =±,则P 到两条渐近线的距离1d ,2d 满足,22111212x yd d-⋅==而21221AAxy x tx ty yt⎧⎧=⎪⎪=⎪⎪-⇒⎨⎨=+⎪⎪=⎪⎪-⎩⎩,OA==21221BBxy x tx ty yt⎧⎧=⎪⎪=-⎪⎪+⇒⎨⎨=+-⎪⎪=⎪⎪+⎩⎩,OB==所以12122112221OAP OBPS S OA d OB d d dt⋅=⋅⋅⋅=-△△由()2222214202x y t y tyx ty⎧-=⇒-++=⎨=+⎩,12OPQ OFP OFQ P QS S S OF y y=+=-△△△所以,OPQOAP OBPSS S=⋅△△△,∵01t<<,∴)2OPQOAP OBPSS S∈⋅△△△.【变式2-3】已知抛物线()2:20E y px p=>的焦点为F,P为E上的一个动点,11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,且PF PQ+的最小值为54.(1)求E的方程;(2)若A点在y轴正半轴上,点B、C为E上的另外两个不同点,B点在第四象限,且AB,OC互相垂直、平分,求四边形AOBC的面积.(人教A版专题)【答案】(1)2y x=;(2)【解析】(1)作出E的准线l,方程为2px=-,作PR l⊥于R,所以PR PF=,即PR PQ+的最小值为54,因为11,2⎛⎫⎪⎝⎭Q与F在E的同一侧,所以当且仅当P,Q,R三点共线时PR PQ+取得最小值,所以5124p+=,解得0.5p=,所以E的方程为2y x=;(2)因为AB,OC互相垂直、平分,所以四边形AOBC是菱形,所以BC x⊥轴,设点()0,2A a,所以2BC a=,由抛物线对称性知()2,B a a-,()2,C a a,由AO OB =,得2a=a =所以菱形AOBC 的边AO =23h a ==,其面积为3S AO h =⋅==题型三坐标与截距型最值范围问题【例3】已知双曲线C :()222210,0x y a b a b-=>>过点(),渐近线方程为12y x =±,直线l 是双曲线C 右支的一条切线,且与C 的渐近线交于A ,B 两点.(1)求双曲线C 的方程;(2)设点A ,B 的中点为M ,求点M 到y 轴的距离的最小值.【答案】(1)2214x y -=;(2)2【解析】(1)由题设可知2281112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得21a b =⎧⎨=⎩则C :2214x y -=.(2)设点M 的横坐标为0M x >当直线l 斜率不存在时,则直线l :2x =易知点M 到y 轴的距离为2M x =﹔当直线l 斜率存在时,设l :12y kx m k ⎛⎫=+≠± ⎪⎝⎭,()11,A x y ,()22,B x y ,联立2214x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()222418440k x kmx m -+++=,()()222264164110k m k m ∆=--+=,整理得2241k m =+联立2204x y y kx m ⎧-=⎪⎨⎪=+⎩,整理得()22241840k x kmx m -++=,则122288841km km k x x k m m+=-=-=--,则12402Mx x kx m +==->,即0km <则222216444Mk x m m==+>,即2M x >∴此时点M 到y 轴的距离大于2;综上所述,点M 到y 轴的最小距离为2.【变式3-1】若直线:l y =22221(0,0)x y a b a b -=>>的一个焦点,且与双曲线的一条渐近线平行.(1)求双曲线的方程;(2)若过点B (0,b )且与x 轴不平行的直线和双曲线相交于不同的两点M ,N ,MN 的垂直平分线为m ,求直线m 与y 轴上的截距的取值范围.【答案】(1)2213x y -=;(2)(4,)+∞.【解析】(1)直线323:33l y =-过x 轴上一点(2,0),由题意可得2c =,即224a b +=,双曲线的渐近线方程为b y x a=±,由两直线平行的条件可得b a =1a b ==,即有双曲线的方程为2213x y -=.(2)设直线1(0)y kx k =+≠,代入2213x y -=,可得22(13)660k x kx ---=,设1122(,),(,)M x y N x y ,则12122266,1313k x x x x k k +==--,MN 中点为2231,1313kk k ⎛⎫ --⎝⎭,可得MN 的垂直平分线方程为221131313k y x k k k ⎛⎫-=-- ⎪--⎝⎭,令0x =,可得2413y k =-,由223624(13)0k k ∆=+->,解得232k <,又26031k <-,解得231k <,综上可得,2031k <<,即有2413k -的范围是(4,)+∞,可得直线m 与y 轴上的截距的取值范围为(4,)+∞.【变式3-2】已知动圆C 过定点(2,0)A ,且在y 轴上截得的弦长为4,圆心C 的轨迹为曲线Γ.(1)求Γ的方程:(2)过点(1,0)P 的直线l 与F 相交于,M N 两点.设PN MP λ=,若[]2,3λ∈,求l 在y 轴上截距的取值范围.【答案】(1)24y x =;(2)⎡-⎣【解析】(1)设(,)C x y ,圆C 的半径为R ,则()()22222220R x x y =+=-+-整理,得24y x=所以Γ的方程为24y x =.(2)设1122(,),(,)M x y N x y ,又(1,0)P ,由PN MP λ=,得()()22111,1,x y x y λ-=--21211(1)x x y y λλ-=-⎧∴⎨=-⎩①②由②,得12222y y λ=,∵2211224,4y x y x ==∴221x x λ=③联立①、③解得2x λ=,依题意有0λ>(2,N N ∴-或,又(1,0)P ,∴直线l 的方程为())11y x λ-=-,或())11y x λ-=--,当[2,3]k ∈时,l 在y轴上的截距为21λ-或21λ--,21=[2,3]上是递减的,21λ≤≤-,21λ-≤-≤-∴直线l 在y轴上截距的取值范围为⎡--⎣.【变式3-3】已知两个定点A 、B 的坐标分别为()1,0-和()1,0,动点P 满足AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹E 的方程;(2)设点(),0C a 为x 轴上一定点,求点C 与轨迹E 上点之间距离的最小值()d a ;(3)过点()0,1F 的直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,线段MN 的垂直平分线与x 轴交于D 点,求D 点横坐标的取值范围.【答案】(1)24y x =;(2)(),22a a d a a ⎧<⎪=⎨≥⎪⎩;(3)()3,+∞【解析】(1)设(),P x y ,()1,AP x y =+,()1,0OB =,()1,PB x y =--,()1101AP OB x y x ⋅=+⨯+⨯=+,B P =AP OB PB ⋅=,则1x +,所以2222121x x x x y ++=-++,即24y x =.(2)设轨迹E :24y x =上任一点为()00,Q x y ,所以2004y x =,所以()()222200004CQ x a y x a x =-+=-+()()20200220x a x a x =--+≥,令()()()220000220g x x a x a x =--+≥,对称轴为:2a -,当20a -<,即2a <时,()0g x 在区间[)0,∞+单调递增,所以00x =时,()0g x 取得最小值,即2min 2CQ a =,所以min CQ a =,当20a -≥,即2a ≥时,()0g x 在区间[)0,2a -单调递减,在区间[)2,a -+∞单调递增,所以02x a =-时,()0g x 取得最小值,即()22min 2244CQ a a a =--+=-,所以minCQ =,所以(),22a a d a a ⎧<⎪=⎨≥⎪⎩(3)当直线l 的斜率不存在时,此时l :0x =与轨迹E 不会有两个交点,故不满足题意;当直线l 的斜率存在时,设l :1y kx =+,()11,M x y 、()22,N x y ,代入24y x =,得2+14y y k =⨯,即2440ky y -+=,所以124y y k +=,124y y k =,121212211242y y y y x x k k k k k--+-+=+==-,因为直线l 与轨迹E 在x 轴上方部分交于M 、N 两点,所以0∆>,得16160k ->,即1k <;又M 、N 两点在x 轴上方,所以120y y +>,120y y >,即40k>,所以0k >,又1k <,所以01k <<,所以MN 中点1212,22x x y y ++⎛⎫⎪⎝⎭,即2212,kk k ⎛⎫- ⎪⎝⎭,所以垂直平分线为22121y x k k k k ⎛⎫-=--+ ⎝⎭,令0y =,得222111152248x k k k ⎛⎫=-+=-+ ⎪⎝⎭,因为01k <<,所以11k >,所以21115248x k ⎛⎫=-+ ⎪⎝⎭在11k >时单调递增,所以22111511522134848k ⎛⎫⎛⎫-+>-+= ⎪ ⎪⎝⎭⎝⎭,即3x >,所以D 点横坐标的取值范围为:()3,+∞.题型四斜率与倾斜角最值范围问题【例4】设12F F 、分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求125=4PF PF ⋅-,求点P 的坐标;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.【答案】(1)⎛ ⎝⎭;(2)2,2⎛⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭.【解析】(1)由题意知,2,1,a b c ===所以())12,F F ,设(,)(0,0)P m n m n >>,则22125(,),)34PF PF m n m n m n ⋅=-⋅-=+-=-,又2214m n +=,有222214534m n m n ⎧+=⎪⎪⎨⎪+-=-⎪⎩,解得1m n =⎧⎪⎨=⎪⎩,所以P ;(2)显然0x =不满足题意,设直线l 的方程为2y kx =+,设()()1122,,A x y B x y ,,22221(14)1612042x y k x kx y kx ⎧+=⎪⇒+++=⎨⎪=+⎩,22(16)4(41)120k k ∆=-+⨯>,解得234k >,①1212221612,4141k x x x x k k +=-=++,则212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,又AOB ∠为锐角,则cos 0AOB ∠>,即0OA OB ⋅>,12120x x y y +>,所以21212121212(1)2()4x x y y y y k x x k x x +==++++2222212(1)1624(4)40414141k k k k k k k +⋅-=-+=>+++,解得204k <<,②由①②,解得322k -<<或322k <<,所以实数k的取值范围为(2,-.【变式4-1】已知椭圆:Γ22221(0x y a b a b +=>>)的左焦点为F ,其离心率22e =,过点F垂直于x 轴的直线交椭圆Γ于P ,Q两点,PQ (1)求椭圆Γ的方程;(2)若椭圆的下顶点为B ,过点D (2,0)的直线l 与椭圆Γ相交于两个不同的点M ,N ,直线BM ,BN 的斜率分别为12,k k ,求12k k +的取值范围.【答案】(1)2212x y +=;(2)()1211,,2222k k ⎛⎫⎛+∈-∞⋃-⋃+∞⎪ ⎝⎭⎝【解析】(1)由题可知2222222c e a bPQ a a b c⎧==⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩.所以椭圆Γ的方程为:2212x y +=.(2)由题可知,直线MN 的斜率存在,则设直线MN 的方程为(2)y k x =-,11(,)M x y ,22(,)N x y .由题可知2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩,整理得2222(21)8820k x k x k +-+-=22222(8)4(21)(81)8(21)0k k k k ∆=--+-=-->,解得22k ⎛∈- ⎝⎭.由韦达定理可得2122821k x x k +=+,21228221k x x k -=+.由(1)知,点(0,1)B -设椭圆上顶点为A ,(0,1)A ∴,12DA k k ≠=-且12DB k k ≠=,∴()()1212121212211111k x k x y y k k x x x x -+-++++=+=+()()()221221228121212228212k k k x x k k k k x x k -⋅-++=+=+-+()242111212,,221212122k k k k k k ⎛⎫⎛=-==-∈+∞⋃-∞⋃ ⎪ +++⎝⎭⎝∴12k k +的取值范围为()11,,2222⎛⎫⎛-∞⋃-⋃+∞ ⎪ ⎝⎭⎝.【变式4-2】)已知椭圆1C 的方程为22143x y +=,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(1)求双曲线2C 的方程;(2)若直线:2l y kx =+与双曲线2C 恒有两个不同的交点A 和B ,且1OA OB ⋅>(其中O 为原点),求k 的取值范围.【答案】(1)2213y x -=(2)(()1,1-【解析】(1)由题,在椭圆1C 中,焦点坐标为()1,0-和()1,0;左右顶点为()2,0-和()2,0,因为双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点,所以在双曲线2C 中,设双曲线方程为22221x ya b-=,则221,4a c ==,所以2223b c a =-=,所以双曲线2C 的方程为2213y x -=(2)由(1)联立22213y kx y x =+⎧⎪⎨-=⎪⎩,消去y ,得()223470k x kx -++=①;消去x ,得()2223121230k y y k -+-+=②设()()1122,,,A x y B x y ,则12,x x 为方程①的两根,12,y y 为方程②的两根;21212227123,33k x x y y k k -+⋅=⋅=--,21212227123133k OA OB x x y y k k -+⋅=⋅+⋅=+>--,得23k >或21k <③,又因为方程①中,()22216384k k k ∆=-4⨯7-=-12+>0,得27k <④,③④联立得k的取值范围(()1,1⋃-⋃【变式4-3】已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.【答案】(1)24y x =;(2)最大值为13.【解析】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)[方法一]:轨迹方程+基本不等式法设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q 的轨迹方程为229525=-y x .设直线OQ 的方程为y kx =,则当直线OQ 与抛物线229525=-y x 相切时,其斜率k 取到最值.联立2,29,525y kx y x =⎧⎪⎨=-⎪⎩得22290525k x x -+=,其判别式222940525⎛⎫∆=--⨯= ⎪⎝⎭k ,解得13k =±,所以直线OQ 斜率的最大值为13.题型五向量型最值范围问题【例5】在平面直角坐标系xOy 中,已知双曲线221:142x y C -=与椭圆222:142x y C +=,A ,B分别为1C 的左、右顶点,点P 在双曲线1C 上,且位于第一象限.(1)直线OP 与椭圆2C 相交于第一象限内的点M ,设直线PA ,PB ,MA ,MB 的斜率分别为1k ,2k ,3k ,4k ,求1234k k k k +++的值;(2)直线AP 与椭圆2C 相交于点N (异于点A ),求AP AN ⋅的取值范围.【答案】(1)0;(2)()16,+∞【解析】(1)方法1:设直线():0OP y kx k =>,联立22142y kxx y =⎧⎪⎨-=⎪⎩,消y ,得()22124k x -=,所以20120k k >⎧⎨->⎩,解得202k <<,设()()1111,0,0P x y x y >>,则11x y ⎧=⎪⎪⎨⎪=⎪⎩,所以P ⎛⎫.联立22142y kxx y =⎧⎪⎨+=⎪⎩,消y ,得()22124k x +=,设()()2222,0,0M x y x y >>,则22x y ⎧=⎪⎪⎨⎪=⎪⎩,所以M ⎛⎫.因为()2,0A -,()2,0B ,所以211111221112821124224412k y y x y k k k x x x k k-+=+===-+---,222223422222821124224412ky y x y k k k x x x k k ++=+==--+--+,所以1234110k k k k k k ⎛⎫+++=+-= ⎪⎝⎭.方法2设()()1111,0,0P x y x y >>,()()2222,0,0M x y x y >>,因为()2,0A -,()2,0B ,所以11111221112224y y x yk k x x x +=+=-+-,22223422222224y y x yk k x x x +=+=-+-.因为点P 在双曲线1C 上,所以2211142x y -=,所以221142x y -=,所以1121x k k y +=.因为点Q 在椭圆线2C 上,所以2222142x y +=,所以222242x y -=-,所以2342x k k y +=-.因为O ,P ,M 三点共线,所以1212y y x x =,所以121234120x x k k k k y y +++=-=.(2)设直线AP 的方程为2y kx k =+,联立22224y kx k x y =+⎧⎨-=⎩,消y ,得()()22222184210k x k x k -+++=,解得12x =-,2224212k x k +=-,所以点P 的坐标为222424,1212k k k k ⎛⎫+ ⎪--⎝⎭,因为点P 位于第一象限,所以222420124012k k k k ⎧+>⎪⎪-⎨⎪>⎪-⎩,解得202k <<,联立22224y kx k x y =+⎧⎨+=⎩,消y ,得()()22222184210k x k x k +++-=,解得32x =-,2422412kx k -=+,所以点N 的坐标为222244,1212k k k k ⎛⎫- ++⎝⎭,所以()22222224161422444221212121214k k k k kAP AN AP AN k k k k k +⎛⎫⎛⎫+-⋅=⋅=--+⋅= ⎪⎪-+-+-⎝⎭⎝⎭,设21t k =+,则312t <<,所以22161616314(1)48384t tAP AN t t t t t ⋅===---+-⎛⎫-+ ⎪⎝⎭.因为函数3()4f x x x=+在区间31,2⎛⎫⎪⎝⎭上单调递增,所以当312t <<时,3748t t <+<,所以30841t t ⎛⎫<-+< ⎪⎝⎭,所以1616384t t >⎛⎫-+ ⎪⎝⎭,即16AP AN ⋅>,故AP AN ⋅的取值范围为()16,+∞.【变式5-1】已知O为坐标原点,椭圆2222:1(0)x yC a ba b+=>>的离心率为3,且经过点P.(1)求椭圆C的方程;(2)直线l与椭圆C交于A,B两点,直线OA的斜率为1k,直线OB的斜率为2k,且1213k k=-,求OA OB⋅的取值范围.【答案】(1)22193x y+=;(2)[3,0)(0,3]-.【解析】(1)由题意,223611caa b⎧=⎪⎪⎨⎪+=⎪⎩,又222a b c=+,解得3,a b==所以椭圆C为22193x y+=.(2)设()()1122,,,A x yB x y,若直线l的斜率存在,设l为y kx t=+,联立22193y kx tx y=+⎧⎪⎨+=⎪⎩,消去y得:()222136390+++-=k x ktx t,22Δ390k t=+->,则12221226133913ktx xktx xk-⎧+=⎪⎪+⎨-⎪=⎪+⎩,又12k k=121213y yx x=-,故121213=-y y x x且120x x≠,即2390-≠t,则23≠t,又1122,y kx t y kx t=+=+,所以()()()222222222121212221212122691133939313-+++++-+==+=+==---+k t tkx t kx t kt x x ty y t kkk ktx x x x x x tk,整理得222933=+≥t k,则232≥t且Δ0>恒成立.221212121212222122393333133313--⎛⎫⋅=+=-==⋅=⋅=-⎪+⎝⎭t tOA OB x x y y x x x x x xk t t,又232≥t,且23≠t,故2331[3,0)(0,3)⎛⎫-∈-⎪⎝⎭t.当直线l的斜率不存在时,2121,x x y y==-,又12k k=212113-=-yx,又2211193x y+=,解得2192x=则222111233⋅=-==OA OB x y x.综上,OA OB ⋅的取值范围为[3,0)(0,3]-.【变式5-2】已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,F 为双曲线的右焦点,直线l 过F 与双曲线的右支交于P Q ,两点,且当l 垂直于x 轴时,6PQ =;(1)求双曲线的方程;(2)过点F 且垂直于l 的直线'l 与双曲线交于M N ,两点,求MP NQ MQ NP ⋅⋅+的取值范围.【答案】(1)2213y x -=;(2)(],12-∞-【解析】(1)依题意,2c a =,当l 垂直于x 轴时,226b PQ a==,即23b a =,即223c a a -=,解得1a =,b =2213y x -=;(2)设:2PQ l x my =+,联立双曲线方程2213y x -=,得:()22311290m y my -++=,当0m =时,()()()()2,3,2,3,0,1,0,1P Q M N --,12MP NQ MQ NP ⋅+⋅=-,当0m ≠时,设()()()()11223344,,,,,,,P x y Q x y M x y N x y ,因为直线PQ 与双曲线右支相交,因此1229031y y m =<-,即m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,同理可得234293m y y m =-,依题意()()MP NQ MF FP NF FQ MF NF FP FQ =+⋅+=⋅+⋅⋅,同理可得,()()MQ NP MF FQ NF FP MF NF FP FQ =+⋅+⋅=⋅+⋅,而()212342111FP FQ MF NF m y y y y m ⎛⎫⋅+⋅=+++ ⎪⎝⎭,代入122931y y m =-,234293m y y m =-,()()()()()()222242224222919118163633133103133m m m m m FP FQ MF NF m m m m m m ++-+++⋅+⋅=+==----+--,分离参数得,2429663103m FP FQ MF NF m m ⋅+⋅=---+,因为3333m ⎛⎫⎛∈⋃ ⎪ ⎝⎭⎝⎭,当210,3m ⎛⎫∈ ⎪⎝⎭时,由22110,3m m ⎛⎫+∈+∞ ⎪⎝⎭,()22966,61310FP FQ MF NF m m ⋅+⋅=-∈-∞-⎛⎫+- ⎪⎝⎭,所以()()2,12MP NQ MQ N FP FQ MF NF P ⋅=⋅+⋅∈∞-⋅-+,综上可知,MP NQ MQ NP ⋅⋅+的取值范围为(],12-∞-.【变式5-3】已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅uu u r uuu r的最小值.【答案】(1)24x y =;(2)32【解析】(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =.因为0p >,则2p =,所以抛物线E 的方程是24x y =.(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-.因为AB BC =,则1223x x x x -=-,得()2312x x k x x -=-,①因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k =--③将②③代入①,得()2242420x k k x k+--=,即()()322212120k k x k kk-+---=,则()()32211k xk k -=+,所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k++≥,则()()3222121k k k +≥+,从而()()3222121kk k +≥+当且仅当1k =时取等号,所以AB AC 的最小值为32.题型六参数型最值范围问题【例6】已知点()()1122,,,M x y N x y 在椭圆222:1(1)xC y a a+=>上,直线,OM ON 的斜率之积是13-,且22212x x a +=.(1)求椭圆C 的方程;(2)若过点()0,2Q 的直线与椭圆C 交于点,A B ,且(1)QB t QA t =>,求t 的取值范围.【答案】(1)2213x y +=;(2)(]1,3【解析】(1)椭圆方程改写为:2222x a y a +=,点()()1122,,,M x y N x y 在椭圆上,有222211a y a x =-,222222a y a x =-,两式相乘,得:()()()222222222241142122122a a a y y a x a x x x x x --==-++,由22212x x a +=,得222212241a y y x x =,由直线,OM ON 的斜率之积是13-,得121213y y x x =-,即222212129y y x x =,∴49a =,23a =,椭圆C 的方程为:2213x y +=.(2)过点()0,2Q 的直线若斜率不存在,则有()0,1A ,()0,1B -,此时3t =;当过点()0,2Q 的直线斜率存在,设直线方程为2y kx =+,由22213y kx x y =+⎧⎪⎨+=⎪⎩,消去y ,得()22131290k x kx +++=,直线与椭圆C 交于点,A B 两点,∴()2221249(13)36360k k k ∆=-⨯⨯+=->,得21k >设()()1122,,,A x y B x y '''',(1)QB t QA t =>,21x x t '='由韦达定理12122121212(1)13913k x x t x k x x tx k ''''-⎧+==+⎪⎪+⎨⎪⋅+'='=⎪⎩,消去1x ',得()229131441t k t ⎛⎫=+ ⎪⎝⎭+,由21k >,2101k<<,∴()2311641t t <<+,由1t >,解得13t <<,综上,有13t <≤,∴t 的取值范围为(]1,3【变式6-1】已知A 、B 分别是椭圆2222:1(0)x y C a b a b+=>>的左右顶点,O 为坐标原点,=6AB ,点2,3⎛⎫⎪⎝⎭5在椭圆C 上.过点()0,3P -,且与坐标轴不垂直的直线交椭圆C 于M 、N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径的圆的外部,求直线的斜率k 的取值范围;(3)当直线的倾斜角θ为锐角时,设直线AM 、AN 分别交y 轴于点S 、T ,记PS PO λ=,PT PO μ=,求λμ+的取值范围.【答案】(1)22195x y +=;(2)227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)4,23⎛⎫ ⎪⎝⎭【解析】(1)因为=6AB ,所以=3a ;又点2,3⎛⎫ ⎪⎝⎭5在图像C 上即()22252319b⎛⎫⎪⎝⎭+=,所以b 所以椭圆C 的方程为22195x y +=;(2)由(1)可得()3,0B ,设直线3l y kx =-:,设11(,)M x y 、22(,)N x y ,由22=-3=195y kx x y ⎧⎪⎨+⎪⎩得22(59)54360k x kx +-+=,22(54)436(59)0k k ∆=-⨯⨯+>解得23k >或23k <-①∵点()3,0B 在以线段MN 为直径的圆的外部,则0BM BN ⋅>,又12212254+=5+936=5+9k x x k x x k ⎧⎪⎪⎨⎪⎪⎩②211221212(3,)(3,)(1)3(1)()180BM BN x y x y k x x k x x ⋅=--=+-+++>,解得1k <或72k >由①②得227,,1,332k ⎛⎫⎛⎫⎛⎫∈-∞-⋃⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)设直线3l y kx =-:,又直线的倾斜角θ为锐角,由(2)可知23k >,记11(,)M x y 、22(,)N x y ,所以直线AM 的方程是:()1133y y x x =++,直线AN 的方程是:()2233y y x x =++.令=0x ,解得113+3y y x =,所以点S 坐标为1130,+3y x ⎛⎫ ⎪⎝⎭;同理点T 为2230,+3y x ⎛⎫⎪⎝⎭.所以1130,3+3y PS x ⎛⎫=+ ⎪⎝⎭,2230,3+3y PT x ⎛⎫=+ ⎪⎝⎭,()0,3PO =.由PS PO λ=,PT PO μ=,可得:11333+3y x λ+=,22333+3y x μ+=,所以1212233y yx x λμ+=++++,由(2)得1225495k x x k +=+,1223695x k x =+,所以()()()1212121212122311333338229kx x k x x kx kx x x x x x x λμ--++-+-+=++=+++++()222254231189595254936369595k k k k k k k k ⎛⎫⋅+-- ⎪++⎝⎭=+⎛⎫++ ⎪++⎝⎭21012921k k k +=-⨯+++()()2110291k k +=-⨯++101291k =-⨯++,因为23k >,所以5131,0315k k +><<+,10142,2913k ⎛⎫-⨯+∈ ⎪+⎝⎭,故λμ+的范围是4,23⎛⎫⎪⎝⎭.【变式6-2】设A ,B 为双曲线C :22221x y a b-=()00a b >>,的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知4AB =,若直线AM ,AN 分别交直线1x =于P ,Q 两点,若()0D t ,为x 轴上一动点,当直线l 的倾斜角变化时,若PDQ ∠为锐角,求t 的取值范围.【答案】(1)2;(2){2t t <-或}4t >【解析】(1)由双曲线C :22221x y a b-=()00a b >>,可得:右焦点(),0F c ,将x c =代入2222:1(0,0)x y C a b a b -=>>中,2by a=±,当直线l 垂直于x 轴时,AMN 为等腰直角三角形,此时AF FM =,即2b ac a+=,整理得:220a ac b +-=,因为222b c a =-,所以2220a ac c +-=,方程两边同除以2a 得:220e e +-=,解得:2e =或1-(舍去),所以双曲线C 的离心率为2;(2)因为24AB a ==,所以2a =,因为2c e a ==,解得4c =,故22212b c a =-=,所以双曲线的方程为221412x y -=,当直线l 的斜率存在时,设直线l 的方程为:()4y k x =-,与双曲线联立得:()22223816120kxk x k -+--=,设()()1122,,,M x y N x y ,则212283k x x k +=-,212216123k x x k +=-,则()()()221212121244416y y k x x k x x x x =--=-++⎡⎤⎣⎦222221612321633k k k k k ⎛⎫+=-+ ⎪--⎝⎭22363k k -=-,因为直线l 过右焦点F 且与双曲线C 的右支交于,M N 两点,所以22121222816124,433k k x x x x k k ++=>=>--,解得:23k >,直线()11:22y AM y x x =++,则1131,2y P x ⎛⎫ ⎪+⎝⎭,同理可求得:2231,2y Q x ⎛⎫⎪+⎝⎭,所以11,213y D x P t ⎪+⎛⎫=- ⎝⎭,22,213y D x Q t ⎪+⎛⎫=- ⎝⎭,因为PDQ ∠为锐角,所以()()12221192202D y y x Q t x P D t ⋅=+-+>++,即()1122122109224y y x x x t x t +-+++>+,所以22222221203693161216433k k k k t k t k -⨯-++--+++>-所以21290t t +-->即()219t ->,解得2t <-或4t >;当直线l 的斜率不存在时,将4x =代入双曲线可得6y =±,此时不妨设()()4,6,4,6M N -,此时直线:2AM y x =+,点P 坐标为()1,3,同理可得:()1,3Q -,所以()1,3DP t =-,()1,3DQ t =--,因为PDQ ∠为锐角,所以2280DP DQ t t ⋅=-->,解得2t <-或4t >;综上所述,t 的取值范围{2t t <-或}4t >【变式6-3】22122:1y x C a b-=上的动点P 到两焦点的距离之和的最小值为22:2(0)C x py p =>的焦点与双曲线1C 的上顶点重合.(1)求抛物线2C 的方程;(2)过直线:(l y a a =为负常数)上任意一点M 向抛物线2C 引两条切线,切点分别为AB ,坐标原点O 恒在以AB 为直径的圆内,求实数a 的取值范围.【答案】(1)24x y =;(2)40a -<<.【解析】(1)由已知:双曲线焦距为,则长轴长为2,故双曲线的上顶点为(0,1),即为抛物线焦点.∴抛物线2C 的方程为24x y =;(2)设(,)M m a ,2111(,)4A x x ,2221(,)4B x x ,故直线MA 的方程为211111()42y x x x x -=-,即21142y x x x =-,所以21142a x m x =-,同理可得:22242a x m x =-,∴1x ,2x 是方程242a xm x =-的两个不同的根,则124x x a =,2212121()416OA OB x x x x a a ∴⋅=+=+,由O 恒在以AB 为直径的圆内,240a a ∴+<,即40a -<<.。
专题25 解三角形中的最值、范围问题近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一) 余弦定理变形应用:变式()()2221cos a b c bc A =+-+在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值(二)三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.(三)解三角形中处理不等关系的几种方法 1.三角形中的最值、范围问题的解题策略和步骤(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 (3)①定基本量:根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.②构建函数:根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式表示.③求最值:利用基本不等式或函数的单调性等求最值. 2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.【典型考题解析】热点一 三角形角(函数值)相关的最值(范围)问题【典例1】(2021·山西·祁县中学高三阶段练习(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( ) A .1 B .32C .43D .54【答案】C【分析】先由正弦定理化简得111tan tan C B+=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B+=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数, 故112tan tan B C≥整理得tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立,此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B CA B C B C B C B C+⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C-取最小值,故111tan tan B C-⋅的最大值为43,即当tan tan 2B C ==时,tan A 的最大值为43.故选:C .【典例2】(2021·河南·高三开学考试(文))ABC 的内角,,A B C 的对边分别为,,a b c ,若sin tan sin sin A A B C =,则cos A 的最小值为________. 【答案】23【分析】先根据题目条件和正弦定理得到2cos a A bc=,结合cos A 的余弦定理表达式,得到,,a b c 的关系,利用此关系求cos A 的最小值.【详解】由条件可知,2sin cos sin sin A A B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc +-==,化简可得2223a b c =+.所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=,当且仅当b c =时取得等号,cos A 取得最小值23. 故答案为:23【典例3】(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围. 【答案】(I )3B π=;(II )3132⎤+⎥⎝⎦ 【解析】 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【详解】 (I )[方法一]:余弦定理由2sin 3b A a =,得222233sin 4a a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin 3b A a =,结合正弦定理可得:32sin sin 3,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知3a cb+= 而ABC 为锐角三角形,所以3a cb+> 由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭ 故cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos 22A A A =-+311cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 622A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 【总结提升】求角(函数值)的最值(范围)问题一般先将边转化为角表示,再根据三角恒等变换及三角形内角和定理转化为一个角的一个三角函数表示,然后求解. 热点二 三角形边(周长)相关的最值(范围)【典例4】(2018·北京·高考真题(文))若ABC 2223)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________. 【答案】 60 (2,)+∞ 【解析】 【分析】根据题干结合三角形面积公式及余弦定理可得tan 3B =3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题. 【详解】)22231sin 2ABC S a c b ac B ∆=+-=, 22223a c b ac +-∴=cos 3B =sin 3,cos 3B B B π∴∠=,则231sin cos sin sin 311322sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,,036B A ππ∠=∴<∠<,)31tan ,3,tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,+∞. 【典例5】(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++ ()44233211m m ≥=-+⋅+, 当且仅当311m m +=+即31m =时,等号成立, 所以当ACAB取最小值时,31m =. 31.【典例6】(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例7】(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)33+ 【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果. 【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:3AC AB +≤AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为33+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b cA B C===23(sin sin )b c B C +=+23sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦233α=≤当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为33+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3b c θθ+==23236πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()23b c +=所以ABC 周长的最大值为323+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.【典例8】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 【答案】(1)π6;(2)425. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. (1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-. 所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos11cos 24cos 5285425cos cos B BB BB-+-==+-≥=. 当且仅当22cos B =222a b c +的最小值为425.【规律方法】求边(周长)的最值(范围)问题一般通过三角中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解,有时也可将角转化为边,利用均值不等式或函数最值求解. 热点三 求三角形面积的最值(范围)【典例9】(2023·山西大同·高三阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c =+,且2b =,则ABC 面积的最大值为___________. 3133【分析】利用余弦定理进行角化边后,结合基本不等式,三角形面积公式求解.【详解】由余弦定理,2cos 2b A a c =+可化为222222b c a b a c bc +-⋅=+,整理可得2224c a ac b ++==,由余弦定理2221cos 22a cb B ac +-==-,又(0,)B π∈,故23B π=,根据基本不等式22423a c ac ac ac ac =++≥+=,23a c ==取得等号,故133sin 243ABC S ac B ac ==≤,即ABC 面积的最大值为33. 故答案为:33. 【典例10】(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆22143x y +=上的三个动点,则ABC 面积最大值为_____________. 【答案】92##4.5【分析】作变换'2'3x x y y =⎧⎪⎨=⎪⎩之后椭圆变为圆,方程为224x y '+'=,A B C '''是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则ABC A B C S bS a'''=,求出A B C S ''',代入即可得出答案. 【详解】作变换'2''3x x y y y =⎧⎪⎨==⎪⎩之后椭圆变为圆,方程为224x y '+'=, A B C '''是圆的内接三角形,设A B C '''的半径为R ,设,,A B C '''所对应边长为,,a b c ''',所以 211sin 2sin 2sin sin 2sin sin sin 22A B C Sa b C R A R B C R A B C ''''''''''==⋅⋅⋅=⋅⋅'' 32sin sin sin 23A B C R ++⎛⎫≤ ⎝''⎪⎭',当且仅当3A B C π===时取等, 因为sin y x =在()0,π上为凸函数,则sin sin sin sin 33A B C A B C ''''+'+≤'++,3332222sin sin sin 3322sin 2sin 3334A B C A B C A B C SR R R R π'''++++⎛⎫'⎛⎫⎛⎫=≤==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭''''',当且仅当3A B C π===时取等, 所以圆的内接三角形面积最大时为等边三角形,因此2333343344A B C S R '''==⨯=,又因为ABC A B C S b S a '''=, ∴393322ABC A B C b SS a'''==⨯=. 故答案为:92.【典例11】(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)33(). 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCSac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCS C 的值域.【详解】 (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ--= 又因3,tan 62C C ππ<<>331338tan C << 33ABCS <<. 故ABCS的取值范围是33(【典例12】(2021·河北省曲阳县第一高级中学高三阶段练习)在ABC 中,内角,,A B C 的对边分别是,,a b c ,)sin 3cos b C a b C =-.(1)求角B 的大小;(2)若点D 满足=a AD cDC ,且||23BD =ABC 面积的最小值. 【答案】(1)π3B = (2)43【分析】(1)由正弦定理把边化为角,再结合三角恒等变换即可求解;(2)由题意得||||=a DC c AD ,进而利用三角面积可转化1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCD ABD BC BD DBC DC S BC S AB AD AB BD ABD ,从而有sin sin ∠=∠DBC ABD ,再由面积公式与基本不等式求解即可(1)因为()sin 3cos b C a b C =-,所以()sin sin 3sin sin cos B C A B C =-. 因为sin sin()sin cos cos sin A B C B C B C =+=+,所以sin sin 3(sin cos cos sin sin cos )3cos sin =+-=B C B C B C B C B C . 因为sin 0C ≠, 所以tan 3B =. 又因为0πB <<, 所以π3B =.(2)因为=a AD cDC , 所以点D 在线段AC 上,且||||=a DC c AD . 因为1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCDABDBC BD DBC DC S BC S AB AD AB BD ABD , 所以sin sin ∠=∠DBC ABD , 即BD 为ABC ∠的角平分线. 由(1)得π3B =, 所以π6ABD CBD ∠=∠=. 由ABC ABD BCD S S S =+△△△,得1π1π1πsin sin sin 232626ac a BD c BD =⋅+⋅,即2()4=+≥ac a c ac ,得16≥ac ,当且仅当a c =时,等号成立,11sin 16sin 432323=≥⨯=△ABC S ac ππ.故ABC 面积的最小值为43. 【规律方法】求三角形面积的最值(范围)的两种思路(1)将三角形面积表示为边或角的函数,再根据条件求范围.(2)若已知三角形的一个内角(不妨设为A),及其对边,则可根据余弦定理,利用基本不等式求bc 的最值从而求出三角形面积的最值.【精选精练】一、单选题1.(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得.【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B , 又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭,所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b ac ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D2.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( ) A .16 B .3C .64 D .643【答案】B【分析】利用正弦定理及诱导公式可得23A π=,然后利用三角形面积公式及基本不等式即得. 【详解】∵(2)cos cos 0b c A a C ++=, ∴2sin cos sin cos sin cos 0B A C A A C ++=, 即()2sin cos sin 2sin cos sin 0B A C A B A B ++=+=, 又()0,B π∈,sin 0B >,∴2cos 10A +=,即1cos 2A =-,又()0,A π∈,∴23A π=, 由题可知ABCABDACDS SS=+,4=AD ,所以1211sin4sin 4sin 232323bc c b πππ=⨯+⨯,即()4bc b c =+, 又()48bc b c bc =+≥,即64bc ≥, 当且仅当b c =取等号,所以1213sin 641632322ABCSbc π=≥⨯⨯=. 故选:B.3.(2022·河南·郑州四中高三阶段练习(理))在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12C .18D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值. 【详解】设2AB AC m ==,2BC n =,由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:22222111()2434222S BC AC BC n m n n n =⨯-=⨯⨯-=- 222243(43)62n n n n +-=-≤⨯=,当且仅当22n =时等号成立. 则ABC 面积的最大值为6. 故选:A.4.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒ ,∠ABC 的平分线交AC 于点D ,且BD =1,则4a c + 的最小值为( ) A .8 B .9 C .10 D .7【答案】B【分析】根据三角形面积可得到111a c +=,将4a c +变为11(4)()a c a c++,展开后利用基本不等式,即可求得答案.【详解】由题意得111sin120sin 60sin60222ac a c =+ ,即ac a c =+ ,得111a c+=,得 114(4)()a c a c a c +=++45c a a c =++≥425459c aa c⋅+=+=, 当且仅当4c aa c=,即23c a ==时,取等号, 故选:B . 二、多选题5.(2020·全国·高三专题练习)如图,ABC 的内角,,A B C 所对的边分别为),,3cos cos 2sin a b c a C c A b B +=,且3CAB π∠=.若D 是ABC 外一点,1,3DC AD ==,则下列说法中正确的是( )A .ABC 的内角3B π= B .ABC 的内角3C π=C .四边形ABCD 533 D .四边形ABCD 面积无最大值 【答案】AB【分析】根据正弦定理进行边化角求角B ,从而判断选项A ,B 正确;把四边形ABCD 的面积表示成ADC ∠的三角函数,从而根据三角函数求最值 【详解】因为()3cos cos 2sin a C c A b B +=,所以由正弦定理,得()23sin cos sin cos 2sin A C C A B +=,所以()23sin 2sin A C B +=,又因为A B C π++=,所以()sin sin A C B +=,所以23sin 2sin B B = 因为sin 0,B ≠所以3sin 2B =, 又因为3CAB π∠=,所以20,3B π⎛⎫∈ ⎪⎝⎭, 所以3B π=,所以3C A B ππ=--=,因此A ,B 正确;四边形ABCD 面积等于231sin 42ABC ACDS SAC AD DC ADC +=+⋅⋅∠()22312cos sin 42AD DC AD DC ADC AD DC ADC =⨯+-⋅⋅∠+⋅⋅∠ ()31916cos 3sin 42ADC ADC =⨯+-⋅∠+⨯∠ 533sin 23ADC π⎛⎫=+∠- ⎪⎝⎭, 所以当32ADC ππ∠-=即sin 13ADC π⎛⎫∠-= ⎪⎝⎭时,ABCACDSS+取最大值5332+, 所以四边形ABCD 面积的最大值为5332+, 因此C ,D 错误 故选:AB6.(2022·云南·高三阶段练习)如图,在长方体1111ABCD A B C D -中,4AB AD ==,13AA =,点M 满足12A M MA =,点P 在底面ABCD 的边界及其内部运动,且满足4AMP π∠≤,则下列结论正确的是( )A .点P 所在区域面积为4πB .线段1PC 17C .有且仅有一个点P 使得1MP PC ⊥D .四面体11P A CD -的体积取值范围为[6,8]【答案】AD【分析】A 选项,由1MA AP ==时,MP 与底面ABCD 的所成角4πθ=求解判断; B 选项,若PC 取最小值时,则线段1PC 长度最小,由A ,P ,C 三点共线求解判断; C 选项,由点P 与点F 重合,由点P 与点E 重合,利用余弦定理求解判断;,D 选项,由点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,当P与点F 重合时,此时点P 到平面11A CD 的距离最小求解判断. 【详解】如图所示:A 选项,当1MA AP ==时,MP 与底面ABCD 的所成角4πθ=,故点P 所在区域为以A 为圆心,1为半径的圆在正方形ABCD 内部部分(包含边界弧长),即圆的14,面积为211144π⨯=π,A 正确;B 选项,当PC 取最小值时,线段1PC 长度最小,由三角形两边之和大于第三边可知:当A ,P ,C 三点共线时,PC 取得最小值,即min ||421PC =-,则221min (421)34282PC =-+=-,B 错误; C 选项,不妨点P 与点F 重合,此时2221134PC FB BC C C =++=,由余弦定理得:1cos MFC ∠=22211123436022234MF C F C M MF C F +-+-==⋅⨯⨯,则12MFC π∠=,同理可得:12MEC π∠=,故多于一个点P 使得1MP PC ⊥,C 错误;D 选项,当点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,最大距离341255AH ⨯==,此时四面体11P A CD -的体积为11111124583325A CD S AH ⋅=⨯⨯⨯⨯=△,当P 与点F 重合时,此时点P 到平面11A CD 的距离最小,最小距离为FK ,因为BFK BAH ∽△△,所以34FK AH =,所以最小体积为3864⨯=,故四面体11P A CD -的体积取值范围为[]6,8 ,D 正确, 故选:AD . 三、填空题7.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin 2B Cb a B +=,2a =△ABC 周长的最大值为________.【答案】32【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.由余弦定理22222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故22b c +≤,当且仅当2b c ==时取等号. 故△ABC 周长的最大值为a b c ++的最大值为22232+=. 故答案为:328.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.【答案】33434-【分析】根据余弦定理结合同角三角函数的关系可得sin C ,进而表达出ABCS ,结合基本不等式求解ABCS的最值,进而求得cos C 即可.【详解】由余弦定理,()222222243cos 222a b a b a b c b C ab ab a+-++-===-,又()0,C π∈,故2222349sin 1cos 122b a b C C a a -⎛⎫=-=--=⎪⎝⎭,故 2222114949sin 2224ABCa b b a b Sab C ab a --===. 又222416a b c +==,故()2222416496425564254420ABCb b b b b b b S----===222564258405b b +-≤=,当且仅当22256425b b =-,即425b =时取等号. 此时2322721642525a =-⨯=,即4175a =. 故ABC 的面积取得最大值时,42333345cos 23441725b C a ⨯=-=-=-⨯. 故答案为:33434-【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9.(2021·河南·高三开学考试(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin tan sin sin A A B C =,则sin A 的最大值为________,此时cos B =________. 【答案】5366【分析】由已知条件结合正余弦定理可得2223b c a +=,再利用余弦定理结合基本不等式可求出cos A 的最小值,从而可求出sin A 的最大值,则可求出cos2B ,再利用二倍角公式可求出cos B . 【详解】由条件可知,2sin cos sin sin AA B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc+-==,则2223a b c =+. 所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=, 当且仅当b c =时取得等号,cos A 取得最小值23. 因为()0,A π∈, 所以25sin 1cos 3A A =-≤,当且仅当b c =时取得等号, 故sin A 的最大值为53. 此时B C =,所以2cos2cos()cos 3B A A π=-=-=-,所以222cos 13B -=-,因为角B 为锐角, 所以6cos 6B =. 故答案为:53,66 10.(2022·全国·高三专题练习)ABC 的外接圆半径为1,角A B C ,,的对边分别为a b c ,,,若cos cos 3a B b A +=0CA CB ⋅<,则C ∠=________;32a b +的最大值为_________【答案】23π27 【分析】由余弦定理求得c ,由向量数量积可得C 为锐角,再由正弦定理结合外接圆半径可求得C ,用正弦定理把32a b +表示为A 的三角函数,利用两角和与差的正弦公式变形化函数为一个角的一个三角函数形式,然后利用正弦函数性质得最大值.【详解】222222cos cos 322a c b c b a a B b A a b c ac cb+-+-+=⋅+⋅==,又22sin c R C ==,所以3sin 2C =, 0CA CB ⋅<,所以C 是钝角,所以23C π=, 由2sin sin a bA B==得2sin a A =,2sin b B =, 326sin 4sin 6sin 4sin()3a b A B A A π+=+=+-316sin 4(cos sin )4sin 23cos 22A A A A A =+-=+2327(sin cos )77A A =+, 设2cos 7ϕ=,3sin 7ϕ=(ϕ为锐角),则3227sin()a b A ϕ+=+,由23C π=得03A π<<,31sin 27ϕ=>,ϕ为锐角,则62ππϕ<<, 所以2A πϕ=-时,32a b +取得最大值27.故答案为:23π;27. 四、解答题11.(2022·湖北·襄阳五中高三阶段练习)在ABC 中,4tan ,3CAB D ∠=为BC 上一点,32=AD(1)若D 为BC 的中点,32BC =ABC 的面积;(2)若45DAB ∠=︒,求ABC 的面积的最小值. 【答案】(1)9 (2)92【分析】(1)根据中线向量公式可得,b c 关系,结合余弦定理可求452bc =,从而可求面积. (2)根据不同三角形的面积关系可得34355b c bc +=,利用基本不等式可求bc 的最小值,从而可求面积的最小值. (1)因为D 为BC 的中点,所以()12AD AB AC =+, ()222124AD AB AC AB AC ∴=++⋅. 记角,,A B C 的对边分别为,,a b c , 因为4tan 3A =,故A 为锐角,所以43sin ,cos 55CAB CAB ∠∠==, 则221318245c b bc ⎛⎫=++⋅ ⎪⎝⎭. 又由余弦定理得:2231825c b bc =+-⋅两式联立解得:452bc =,所以11454sin 92225ABCS bc CAB ∠==⨯⨯=. (2)445,tan 3DAB A ∠==,()41113tan tan ,sin 475213CAD CAB DAB CAD ∠∠∠∠-∴=-===+, 1132sin 32sin 22ABCCAD BADSSSb CADc DAB ∠∠=+=⋅+⋅ 1sin 2bc CAB ∠=, 即34355b c bc +=, 即34345323,5554b c bc b c bc +=≥⋅≥(当且仅当153,22b c ==时取得最小值)所以114549sin 22452ABCSbc CAB ∠=≥⨯⨯=.12.(2022·广东广州·高三开学考试)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值. 【答案】(1)证明见解析 (2)43【分析】(1)由已知及余弦定理可推出2cos b a b C =-,利用正弦定理边化角结合两角和差的正弦公式化简可得()sin sin B C B =-,即可证明结论; (2)利用(1)的结论将4cos a b b B +边化角,结合三角恒等变换可得43=4cos cos cos a b B b B B++,由基本不等式可求得答案. (1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+, 故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C =+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<, ∵()πB C B C +-=<,∴B C B =-,故2C B =. (2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B+-+++===334cos 24cos 43cos cos B B B B =+≥⋅=, 当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立, 所以当π6B =时,4cos a bb B+的最小值为43.13.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,tan tan 33B C ++=(1)求角A ;(2)若4a =,求b c +的取值范围. 【答案】(1)π3A = (2)(43,8⎤⎦【分析】(1)利用两角和的正切公式及诱导公式计算可得;(2)利用正弦定理将边化角,再转化为关于B 的三角函数,根据B 的取值范围及正弦函数的性质计算可得. (1)解:因为tan tan 33tan tan B C B C++=,所以tan tan 33tan tan B C B C ++=,所以tan tan 3(tan tan 1)B C B C +=-,从而tan tan 31tan tan B CB C +=--, 即tan()3B C +=-,所以tan 3A =,因为(0,π)A ∈,所以π3A =. (2)解:因为4a =,π3A =,由正弦定理,有83sin sin sin 3b c a B C A ===所以83sin 3b B =,83832π833143sin sin cos sin 4cos sin 3333223c C B B B B B ⎛⎫⎛⎫==-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以π43sin 4cos 8sin 6b c B B B ⎛⎫+=+=+ ⎪⎝⎭,又因为ABC 为锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<,所以ππ2π363B <+<,所以3πsin 126B ⎛⎫<+≤ ⎪⎝⎭,从而b c +的取值范围为(43,8⎤⎦. 14.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若23a =ABC 面积的最大值.【答案】(1)3π; (2)33.【分析】(1)由正弦定理化角为边,再利用余弦定理及特殊角的三角函数即得;(2)由余弦定理表示出,a b 关系,再由基本不等式得出ab 的最大值,从而可得面积最大值;或利用正弦定理边角互化,然后利用三角恒等变换及三角函数的性质即得. (1)在ABC 中,由题意及正弦定理得()()a c b a c b bc +--+=, 整理得222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===, 因为0A π<<, 所以3A π=;(2)方法一:由(1)知,3A π=,又23a =,所以22122b c bc bc bc bc =+--=,所以12bc ,当且仅当23b c ==时,等号成立, 所以()max 113sin 1233222ABC Sbc A ==⨯⨯=; 方法二:由(1)知,3A π=,又23a =,所以由正弦定理,知234sin sin sin sin3a b c A B C π====, 所以4sin ,4sin b B c C ==, 所以13sin 8sin sin 43sin sin 22ABCSbc A B C B C ==⨯=, 又因为23B C π+=, 所以23143sin sin 43sin sin 43sin cos sin 322B C B B B B B π⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭31cos223sin222B B ⎛⎫-=+= ⎪ ⎪⎝⎭23sin 236B π⎛⎫-+ ⎪⎝⎭,因为23B C π+=,所以270,23666B B ππππ<<-<-<,所以当262B ππ-=,即3B π=时,ABC 的面积取得最大值,最大值为33.15.(2022·上海·模拟预测)在如图所示的五边形中,620AD BC AB ===,,O 为AB 中点,曲线CMD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称;(1)若点P 与点C 重合,求POB ∠的大小; (2)求五边形MQABP 面积S 的最大值, 【答案】(1)33arcsin 14(2)2874【分析】(1)利用余弦定理求出OC ,再利用正弦定理即可得出答案; (2)根据题意可得,QOMPOMAOQBOPS SSS==,则()2AOQQOMMQABP S SS=+五边形,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,根据三角形的面积公式结合三角函数的性质即可得出答案.(1)解:若点P 与点C 重合,连接OC ,10,6,120OB BC BP ABC ===∠=︒,在OBP 中,2222cos 1003660196OC OB BP OB BP OBP =+-⋅∠=++=, 所以14OC =, 因为sin sin BC OCPOB OBP=∠∠,所以36sin 332sin 1414BC OBPPOB OC ⨯⋅∠∠===, 所以33arcsin14POB ∠=;(2)解:连接,,,QA PB OQ OP ,因为曲线CMD 上任一点到O 距离相等, 所以14OP OQ OM OC ====, 因为P ,Q 关于OM 对称, 所以,QOMPOMAOQBOPSSSS==,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,则()2AOQQOMMQABP S SS=+五边形112sin sin 222OQ OA OQ OM παα⎡⎤⎛⎫=⋅⋅-+⋅ ⎪⎢⎥⎝⎭⎣⎦196sin 140cos αα=+()2874sin αϕ=+,其中5tan 7ϕ=, 当()sin 1αϕ+=时,MQABP S 五边形取得最大值2874, 所以五边形MQABP 面积S 的最大值为2874.16.(2022·广东·广州市真光中学高三开学考试)在平面四边形ABCD 中,30CBD ∠=,4BC =,23BD = (1)若ABD △为等边三角形,求ACD △的面积. (2)若60BAD ∠=,求AC 的最大值. 【答案】(1)3 (2)232+【分析】(1)利用余弦定理求出CD 的长,结合勾股定理可知90BDC ∠=,进而可求得ADC ∠的大小,利用三角形的面积公式可求得ACD △的面积;(2)设()0120ADB αα∠=<<,利用正弦定理可得出AD ,利用余弦定理可得出2AC 关于α的表达式,利用三角恒等变换结合正弦型函数的基本性质可求得AC 的最大值. (1)解:在BCD △中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅⋅∠. 即231612242342CD =+-⨯⨯⨯=,所以2CD =, 所以222BD CD BC +=,因此90BDC ∠=,因为ABD △为等边三角形,所以60ADB ∠=,23AD BD ==,所以150ADC ∠=.所以111sin 2323222ACD S AD CD ADC =⋅⋅⋅∠=⨯⨯⨯=△.(2)解:设()0120ADB αα∠=<<,则120ABD α∠=-, 在ABD △中,由正弦定理得sin sin AD BDABD BAD=∠∠,即()23sin60sin 120AD α=-,所以()4sin 120AD α=-. 在ACD △中,由余弦定理,得2222cos AC AD CD AD CD ADC =+-⋅⋅∠, ()()()224sin 120424sin 1202cos 90AC ααα⎡⎤=-+-⨯-⨯⨯+⎣⎦ 231314cos sin 16cos sin sin 483sin2162222αααααα⎡⎤⎛⎫⎛⎫=++++=+⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 0120α<<,则02240α<<,故当290α=时,即当45α=时,2AC 取到最大值8316+,即AC 的最大值为232+.17.(2023·河北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4b =,在 ①()(sin sin )(sin sin )b c B C A C a +-=-,②cos2()3cos 1A C B ++= 两个条件中任选一个完成以下问题: (1)求B ;(2)若D 在AC 上,且BD AC ⊥,求BD 的最大值. 【答案】(1)π3B = (2)23【分析】(1)选①,利用正弦定理得到222a c b ac +-=,再利用余弦定理求出π3B =;选②:利用诱导公式和二倍角公式得到1cos 2B =,从而求出π3B =;(2)法一:利用余弦定理得到2216a c ac =+-,利用基本不等式求出16ac ≤,求出面积的最大值,从而求出BD 的最大值;法二:利用正弦定理ABC 外接圆的直径,进而利用正弦定理表示面积,利用三角函数的有界性求出面积最大值,进而求出BD 的最大值. (1)若选①,由正弦定理得,()()()b c b c a c a +-=- 即222b c a ac -=-,即222a c b ac +-= ∴2221cos 222a cb ac B ac ac +-===, ∵(0,π)B ∈,∴π3B =, 若选②,∵cos 2()3cos cos 2(π)3cos cos 23cos 1A C B B B B B ++=-+=+=, ∴22cos 13cos 1B B -+=,即22cos 3cos 20B B +-=, 即cos 2B =-(舍)或1cos 2B =, ∵(0,π)B ∈,∴π3B =, (2)∵BD AC ⊥,BD 为AC 边上的高,当面积最大时,高取得最大值 法一:由余弦定理得,22222162cos b a c ac B a c ac ==+-=+-, 由重要不等式得162ac ac ac ≥-=, 当且仅当a c =时取等, 所以1sin 432ABC S ac B =≤△ 所以AC 边上的高的最大值为432312b = 法二:由正弦定理得ABC 外接圆的直径为832sin 3b R B ==, 利用正弦定理表示面积得:118383sin sin sin sin 2233ABC S ac B A C B ==⋅△ 1838332π1632πsin sin sin sin 2332333A A A A ⎛⎫⎛⎫=⋅⋅⋅-=- ⎪ ⎪⎝⎭⎝⎭。
三角函数ω的取值范围及解三角形中的范围与最值问题命题预测三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.高频考法(1)ω取值与范围问题(2)面积与周长的最值与范围问题(3)长度的范围与最值问题01ω取值与范围问题1、f (x )=A sin (ωx +φ)在f (x )=A sin (ωx +φ)区间(a ,b )内没有零点⇒b -a ≤T2k π≤aω+ϕ<π+k πk π<bω+ϕ≤π+k π⇒b -a ≤T2a ≥k π-ϕωb ≤π+k π-ϕω同理,f (x )=A sin (ωx +φ)在区间[a ,b ]内没有零点⇒b -a ≤T2k π<aω+ϕ<π+k πk π<bω+ϕ<π+k π ⇒b -a <T2a >k π-ϕωb <π+k π-ϕω2、f (x )=A sin (ωx +φ)在区间(a ,b )内有3个零点⇒T <b -a ≤2T k π≤aω+ϕ<π+k π3π+k π<bω+ϕ≤4π+k π⇒T <b -a ≤2T k π-φω≤a <(k +1)π-φω(k +3)π-φω<b ≤(k +4)π-φω同理f (x )=A sin (ωx +φ)在区间[a ,b ]内有2个零点⇒T2≤b -a <3T2k π<aω+ϕ≤π+k π2π+k π≤bω+ϕ<3π+k π ⇒T 2≤b -a <3T2k π-φω<a ≤k π+π-φω(k +2)π-φω≤b <(k +3)π-φω 3、f (x )=A sin (ωx +φ)在区间(a ,b )内有n 个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω≤a<kπ+π-φω(k+n)π-φω<b≤(k+n+1)π-φω同理f(x)=A sin(ωx+φ)在区间[a,b]内有n个零点⇒(n-1)T2≤b-a<(n+1)T2kπ-φω<a≤kπ+π-φω(k+n)π-φω≤b<(k+n+1)π-φω4、已知一条对称轴和一个对称中心,由于对称轴和对称中心的水平距离为2n+14T,则2n+14T=(2n+1)π2ω=b-a .5、已知单调区间(a,b),则a-b≤T 2.1(2024·江苏南通·二模)已知函数y=3sinωx+cosωx(ω>0)在区间-π4,2π3上单调递增,则ω的最大值为()A.14B.12C.1211D.83【答案】B【解析】因为y=3sinωx+cosωx=2sinωx+π6,又ω>0,由-π2+2kπ≤ωx+π6≤π2+2kπ,k∈Z,得到-2π3+2kπω≤x≤π3+2kπω,k∈Z,所以函数y=3sinωx+cosωx的单调增区间为-2π3+2kπω,π3+2kπω(k∈Z),依题有-π4,2π3⊆-2π3+2kπω,π3+2kπω(k∈Z),则2π3≤π3ω-2π3ω≤-π4,得到0<ω≤12,故选:B.2(2024·四川泸州·三模)已知函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,则ω的取值范围是()A.83,11 3B.83,113C.53,83D.53,83【答案】B【解析】因为0≤x≤π,所以-2π3≤ωx-2π3≤ωπ-2π3,因为函数f x =sinωx-2π3(ω>0)在0,π 有且仅有三个零点,结合正弦函数的图象可知2π≤ωπ-2π3<3π,解得83≤ω<113,故选:B.3(2024·四川德阳·二模)已知函数f x =sinωx+φ(ω>0,φ∈R)在区间7π12,5π6上单调,且满足f7π12=-f3π4 .给出下列结论,其中正确结论的个数是()①f2π3=0;②若f5π6-x=f x ,则函数f x 的最小正周期为π;③关于x的方程f x =1在区间0,2π上最多有3个不相等的实数解;④若函数f x 在区间2π3,13π6上恰有5个零点,则ω的取值范围为83,103.A.1B.2C.3D.4【答案】C【解析】①因为f7π12=-f3π4 且7π12+3π42=2π3,所以f2π3=0.①正确.②因为f5π6-x=f(x)所以f(x)的对称轴为x=5π62=5π12,2π3-5π12=π4=T4⇒T=π.②正确.③在一个周期内f x =1只有一个实数解,函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3.当T=2π3时,f x =sin3x,f x =1在区间0,2π上实数解最多为π6,5π6,3π2共3个.③正确.④函数f x 在区间2π3,13π6上恰有5个零点,2T<13π6-2π3≤5T2⇒2⋅2πω<13π6-2π3≤52⋅2πω,解得83<ω≤103;又因为函数f x 在区间7π12,5π6上单调且f2π3 =0,T≥45π6-2π3=2π3,即2πω≥2π3⇒ω≤3,所以ω∈83,3.④错误故选:C4(2024·江苏泰州·模拟预测)设函数f x =2sinωx-π6-1ω>0在π,2π上至少有两个不同零点,则实数ω的取值范围是()A.32,+∞ B.32,73 ∪52,+∞ C.136,3 ∪196,+∞ D.12,+∞ 【答案】A【解析】令2sin ωx -π6 -1=0得sin ωx -π6 =12,因为ω>0,所以ωx -π6>-π6,令sin z =12,解得z =π6+2k π,k ∈Z 或z =5π6+2k 1π,k 1∈Z ,从小到大将sin z =12的正根写出如下:π6,5π6,13π6,17π6,25π6,29π6⋯⋯,因为x ∈π,2π ,所以ωx -π6∈ωπ-π6,2ωπ-π6,当ωπ-π6∈0,π6 ,即ω∈16,13 时,2ωπ-π6≥5π6,解得ω≥12,此时无解,当ωπ-π6∈π6,5π6 ,即ω∈13,1 时,2ωπ-π6≥13π6,解得ω≥76,此时无解,当ωπ-π6∈5π6,13π6 ,即ω∈1,73 时,2ωπ-π6≥17π6,解得ω≥32,故ω∈32,73,当ωπ-π6∈13π6,17π6 ,即ω∈73,3 时,2ωπ-π6≥25π6,解得ω≥136,故ω∈73,3,当ω≥3时,2ωπ-π6-ωπ-π6=ωπ≥3π,此时f x 在π,2π 上至少有两个不同零点,综上,ω的取值范围是32,+∞ .故选:A02面积与周长的最值与范围问题正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.1(2024·青海·模拟预测)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2a cos 2B +2b cos A cos B =c .(1)求B ;(2)若b =4,△ABC 的面积为S .周长为L ,求SL的最大值.【解析】(1)由正弦定理可得,2sin A cos 2B +2sin B cos A cos B =sin C ,所以2sin A cos 2B +2sin B cos A cos B =sin A cos B +cos A sin B ,所以sin A cos B (2cos B -1)+cos A sin B (2cos B -1)=0,即(2cos B -1)sin (A +B )=0,由0<A +B <π,可知sin (A +B )≠0,所以2cos B -1=0,即cos B =12,由0<B <π,知B =π3.(2)由余弦定理,得b 2=a 2+c 2-2ac cos B ,即16=a 2+c 2-ac ,所以16=a +c 2-3ac ,即ac =13a +c 2-16 ,因为S =12ac sin B =34ac ,L =a +b +c ,所以S L =3ac 4a +c +4=3a +c 2-1612a +c +4,所以S L=312a +c -4 ,又ac ≤a +c 24(当且仅当a =c 时取等号),所以16=a +c 2-3ac ≥a +c24(当且仅当a =c =4时取等号),所以a +c ≤8(当且仅当a =c =4时取等号),所以S L=312a +c -4 ≤312×8-4 =33(当且仅当a =c =4时取等号),即S L的最大值为33.2(2024·陕西汉中·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,请从下列条件中选择一个条件作答:(注:如果选择条件①和条件②分别作答,按第一个解答计分.)①记△ABC 的面积为S ,且3AB ⋅AC =2S ;②已知a sin B =b cos A -π6 .(1)求角A 的大小;(2)若△ABC 为锐角三角形,且a =6,求△ABC 周长的取值范围.【解析】(1)选条件①,由3AB ⋅AC =2S ,得3bc cos A =2×12bc sin A ,整理得tan A =3,而0<A <π,所以A =π3.选条件②,由a sin B =b cos A -π6 及正弦定理,得sin A sin B =sin B cos A -π6,而sin B >0,则sin A =cos A -π6 =32cos A +12sin A ,整理得tan A =3,而0<A <π,所以A =π3.(2)由(1)知A =π3,由正弦定理得b sin B =c sin C =a sin A =6sin π3=22,因此b +c =22sin B +22sin C =22sin B +sin π3+B =2232sin B +32cos B=26sin B +π6由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,解得π6<B <π2,因此π3<B +π6<2π3,则32<sin B +π6≤1,于是32<b +c ≤26,32+6<a +b +c ≤36,所以△ABC 周长的取值范围是(32+6,36].3(2024·宁夏银川·二模)已知平面四边形ABCD 中,∠A +∠C =180°,BC =3.(1)若AB =6,AD =3,CD =4,求BD ;(2)若∠ABC =120°,△ABC 的面积为932,求四边形ABCD 周长的取值范围.【解析】(1)在△ABD 中,由余弦定理得cos ∠A =32+62-BD 22×3×6,在△BCD 中,由余弦定理得cos ∠C =32+42-BD 22×3×4,因为∠A +∠C =180°,所以cos ∠A +cos ∠C =0,即32+62-BD 22×3×6+32+42-BD 22×3×4=0,解得BD =33.(2)由已知S △ABC =12×3×AB ×32=932,得AB =6,在△ABC 中,∠ABC =120°,由余弦定理得AC 2=32+62-2×3×6×cos120°=63,则AC =37,设AD=x,CD=y,(x,>0,y>0),在△ACD中,由余弦定理得372=x2+y2-2xy⋅cos60°=x+y2-3xy,则x+y2=63+3xy≤63+3×x+y22,得x+y24≤63,所以x+y≤67,当且仅当x=y=37时取等号,又x+y>AC=37,所以四边形ABCD周长的取值范围为37+9,67+9.4(2024·四川德阳·二模)△ABC的内角A,B,C的对边分别为a,b,c,已知sin B=23cos2A+C 2.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.【解析】(1)因为△ABC中,sin B=23cos2A+C2,即2sinB2cos B2=23cos2π-B2=23sin2B2,而0<B<π,∴sin B2>0,故cos B2=3sin B2,故tan B2=33,又0<B<π,∴0<B2<π2,则B2=π6,∴B=π3;(2)由(1)以及题设可得S△ABC=12ac sin B=34a;由正弦定理得a=c sin Asin C=c sin2π3-Csin C=c sin2π3cos C-cos2π3sin Csin C=32cos C+12sin Csin C=32tan C+12,因为△ABC为锐角三角形,0<A<π2,0<C<π2,则0<2π3-C<π2,∴π6<C<π2,则tan C>33,∴0<1tan C<3,则12<32tan C+12<2,即12<a<2,则38<S△ABC<32,即△ABC面积的取值范围为38,32 .03长度的范围与最值问题对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.1(2024·贵州遵义·一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知3b-a sin C= 3a cos C.(1)求A;(2)若△ABC为锐角三角形,c=2,求b的取值范围.【解析】(1)在△ABC中,由3b-a sin C=3a cos C及正弦定理,得3sin B-sin A sin C=3sin A cos C,则3sin A cos C+sin A sin C=3sin(A+C)=3sin A cos C+3cos A sin C,即sin A sin C=3cos A sin C,而sin C>0,于是tan A=3,又0<A<π,所以A=π3.(2)由(1)知,A=π3,由正弦定理得b=c sin Bsin C=2sin2π3-Csin C=3cos C+sin Csin C=3tan C+1,由△ABC为锐角三角形,得0<C<π20<2π3-C<π2,解得π6<C<π2,则tan C>13,∴1tan C<3,则1<b<4,所以b的取值范围是1<b<4.2(2024·宁夏固原·一模)在锐角△ABC中,内角A,B,C的对边分别是a,b,c,且2sin B sin C+cos2C= 1+cos2A-cos2B.(1)求证:B+C=2A;(2)求c-ba的取值范围.【解析】(1)因为2sin B sin C+cos2C=1+cos2A-cos2B,所以2sin B sin C+1-2sin2C=1+1-2sin2A-1+2sin2B,则sin B sin C-sin2C=-sin2A+sin2B,由正弦定理可得bc-c2=-a2+b2,即bc=b2+c2-a2,所以cos A=b2+c2-a22bc=bc2bc=12,又A∈0,π2,故A=π3,由A+B+C=π,故B+C=π-A=2π3=2A;(2)由(1)得sin A=32,cos A=12,因为sin B=sin A+C=sin A cos C+cos A sin C=32cos C+12sin C,所以由正弦定理得c-ba=sin C-sin Bsin A=23sin C-32cos C-12sin C=2312sin C-32cos C=23sin C-π3,又锐角△ABC中,有0<C<π20<π-π3-B<π2,解得π6<C<π2,所以-π6<C-π3<π6,则-12<sin C-π3<12,所以-33<23sin C-π3<33,即-33<23sin C-π3<33,故c-ba的取值范围为-33,33.3(2024·河北衡水·一模)在△ABC中,内角A,B,C所对的边分别是a,b,c,三角形面积为S,若D为AC边上一点,满足AB⊥BD,BD=2,且a2=-233S+ab cos C.(1)求角B;(2)求2AD +1CD的取值范围.【解析】(1)∵a2=-233S+ab cos C,∴a2=-33ab sin C+ab cos C,即a=-33b sin C+b cos C,由正弦定理得,sin A=-33sin B sin C+sin B cos C,∴sin B+C=-33sin B sin C+sin B cos C,∴cos B sin C=-33sin B sin C,∵sin C≠0,∴tan B=-3,由0<B<π,得B=2π3.(2)由(1)知,B=2π3,因为AB⊥BD,所以∠ABD=π2,∠DBC=π6,在△BCD中,由正弦定理得DCsin∠DBC=BDsin C,即DC=2sinπ6sin C=1sin C,在Rt△ABD中,AD=BDsin A=2sin A,∴2 AD +1CD=22sin A+11sin C=sin A+sin C,∵∠ABC=2π3,∴A+C=π3,∴2 AD +1CD=sin A+sin C=sinπ3-C+sin C=sinπ3cos C-cosπ3sin C+sin C=sin C+π3,∵0<C<π3,∴C+π3∈π3,2π3,∴sin C+π3∈32,1,所以2AD+1CD的取值范围为32,1.4(2024·陕西安康·模拟预测)已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,其中a=8,ac=1+sin2A-sin2Csin2B,且a≠c.(1)求证:B=2C;(2)已知点M在线段AC上,且∠ABM=∠CBM,求BM的取值范围.【解析】(1)因为ac=1+sin2A-sin2Csin2B,即a-cc=sin2A-sin2Csin2B,由正弦定理可得a-cc=a2-c2b2=a+ca-cb2,又a≠c,即a-c≠0,所以1c=a+cb2,整理得b2=c2+ac,由余弦定理得b2=a2+c2-2ac cos B,整理得c=a-2c cos B,由正弦定理得sin C=sin A-2sin C cos B,故sin C=sin B+C-2sin C cos B,即sin C=sin B cos C+sin C cos B-2sin C cos B,整理得sin C=sin B-C,又因为△ABC为锐角三角形,则C∈0,π2,B∈0,π2,可得B-C∈-π2,π2,所以C=B-C,即B=2C.(2)因为点M在线段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又B=2C,所以∠C=∠CBM,则∠BMC=π-C-∠CBM=π-2C,在△MCB中,由正弦定理得BCsin∠BMC=BMsin C,所以BM=BC sin Csin∠BMC=8sin Csin2C=8sin C2sin C cos C=4cos C,因为△ABC为锐角三角形,且B=2C,所以0<C<π20<2C<π20<π-3C<π2,解得π6<C<π4.故22<cos C<32,所以833<BM<42.因此线段BM 长度的取值范围833,42.1在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,A =60°,则b 的取值范围是()A.0,6B.0,23C.3,23D.3,6【答案】C【解析】由正弦定理得a sin A =b sin B ,即b =a sin B sin A =3sin B sin60°=23sin B ,又△ABC 为锐角三角形,C =180°-A -B =120°-B ,又0°<B ,C <90°,则0°<120°-B <90°,解得30°<B <90°,而当30°<x <90°时,y =sin x 单调递增,故sin B ∈12,1,所以b =23sin B ∈3,23 .故选:C2已知函数f (x )=sin (ωx +φ)(ω>0),现有如下说法:①若φ=π3,函数f (x )在π6,π3 上有最小值,无最大值,且f π6 =f π3,则ω=5;②若直线x =π4为函数f (x )图象的一条对称轴,5π3,0 为函数f (x )图象的一个对称中心,且f (x )在π4,5π6 上单调递减,则ω的最大值为1817;③若f (x )=12在x ∈π4,3π4 上至少有2个解,至多有3个解,则ω∈4,163;则正确的个数为()A.0 B.1C.2D.3【答案】C【解析】对于①,因为x =π6+π32=π4时,f x 有最小值,所以sin ωπ4+π3=-1,所以ωπ4+π3=2kπ+3π2k∈Z,得到ω=8k+143k∈Z,因为f x 在区间π6,π3上有最小值,无最大值,所以π3-π4≤πω,即ω≤12,令k=0,得ω=143,故①错误;对于②,根据题意,有ωπ4+φ=2k1π+π2k1∈Z5ωπ3+φ=k2πk2∈ZT2=πω≥5π6-π4=7π12,得出ω=-12(2k1-k2)+617,k1,k2∈Z0<ω≤127,即ω=-12k+617,k∈Z0<ω≤127,得到ω=617或1817,故②正确;对于③,令ωx+φ=2kπ+π6k∈Z或ωx+φ=2kπ+5π6k∈Z,则x=-φ+2kπω+π6ωk∈Z或x=-φ+2kπω+5π6ωk∈Z,故需要上述相邻三个根的距离不超过π2,相邻四个根(距离较小的四个)的距离超过π2,即2πω≤π2,8π3ω>π2,,解得ω∈4,16 3,故③正确,故选:C.3设函数f x =sin2ωx-cos2ωx+23sinωx cosωxω>0,当x∈0,π2时,方程f x =2有且只有两个不相等的实数解,则ω的取值范围是()A.73,13 3B.73,133C.83,143D.83,143【答案】C【解析】由已知易知f x =3sin2ωx-cos2ωx=2sin2ωx-π6,当x∈0,π2时2ωx-π6∈-π6,πω-π6,所以要满足题意有5π2≤πω-π6<9π2⇒ω∈83,143.故选:C4将函数f x =sinωx-cosωx(ω>0)的图象向左平移π4个单位长度后,再把横坐标缩短为原来的一半,得到函数g x 的图象.若点π2,0是g x 图象的一个对称中心,则ω的最小值是()A.45B.12C.15D.56【答案】C【解析】由题意可得f x =222sinωx-22cosωx=2sinωx-π4,所以将f x 的图象向左平移π4个单位长度后,得到函数h x =2sin ωx +π4 -π4=2sin ωx +ωπ4-π4的图象,再把所得图象上点的横坐标缩短为原来的一半,得到函数g x =2sin 2ωx +ωπ4-π4的图象,因为点π2,0 是g x 图象的一个对称中心,所以πω+ωπ4-π4=k π,k ∈Z ,解得ω=45k +15,k ∈Z ,又ω>0,所以ω的最小值为15.故选:C5已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A6(多选题)△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,S 为△ABC 的面积,且a =2,AB ⋅AC=23S ,下列选项正确的是()A.A =π6B.若b =2,则△ABC 只有一解C.若△ABC 为锐角三角形,则b 取值范围是23,4D.若D 为BC 边上的中点,则AD 的最大值为2+3【答案】ABD【解析】对于A ,因为AB ⋅AC =23S ,所以bc cos A =23×12bc sin A ,则tan A =33,因为A ∈0,π ,所以A =π6,故A 正确;对于B ,因为b =2=a ,则B =A =π6,C =2π3,故△ABC 只有一解,故B 正确;对于C ,若△ABC 为锐角三角形,则B ∈0,π2 ,C ∈0,π2,则0<B <π20<π-π6-B <π2,则π3<B <π2,即sin B ∈32,1,由正弦定理可知:b =a sin Bsin A=4sin B ∈23,4 ,故C 错误;对于D ,若D 为BC 边上的中点,则AD =12AB +AC,所以AD 2=14AB 2+2AB ⋅AC +AC 2=14b 2+c 2+3bc由余弦定理知a 2=b 2+c 2-2bc cos A =b 2+c 2-3bc =4,得b 2+c 2=3bc +4,又b 2+c 2=3bc +4≥2bc ,所以bc ≤42-3=43+8,当且仅当b =c =2+6时取得等号,所以AD 2=14b 2+c 2+3bc =144+23bc ≤144+23×43+8 =7+43,即AD ≤7+43=2+3,故D 正确.故选:ABD .7已知函数f x =12+3sin ωx cos ωx -cos 2ωx ω>0 ,若f x 的图象在0,π 上有且仅有两条对称轴,则ω的取值范围是.【答案】56,43【解析】因为f x =12+3sin ωx cos ωx -cos 2ωx =32sin2ωx -12cos2ωx =sin 2ωx -π6,因为f x 的图象在0,π 上有且仅有两条对称轴,所以3π2≤2ωπ-π6<5π2,解得56≤ω<43,所以ω的取值范围是56,43 .故答案为:56,43.8已知函数f x =sin ωx ω>0 ,若∃x 1,x 2∈π3,π,f x 1 =-1,f x 2 =1,则实数ω的取值范围是.【答案】ω=32或ω≥52【解析】设θ=ωx,x∈π3,π,则θ∈π3ω,πω,所以问题转化为y=sinθ在θ∈π3ω,πω上存在最大值和最小值,由正弦函数图象可得,π3ω≤kπ+π2kπ+π2+π≤πω,解得k+32≤ω≤3k+32,所以k≥0,k∈Z,当k=0时,32≤ω≤32,∴ω=32;当k=1时,52≤k≤92,当k=2时,72≤ω≤152,当k=3时,92≤ω≤212,当k=n,n∈N*时,n+32≤ω≤3n+32,当k=n+1时,n+52≤ω≤3n+92,而n+52-3n+32=-2n+1<0,即n+52<3n+32,所以k∈N*时,所有情况的ω范围的并集为ω≥52;综上,实数ω的取值范围是ω=32或ω≥52.故答案为:ω=32或ω≥52.9已知函数f x =sinωx+φω>0满足f x ≥fπ12,且f x 在区间-π3,π3上恰有两个最值,则实数ω的取值范围为.【答案】125,4【解析】因为f x ≥fπ12,所以fπ12 =sinπ12ω+φ=-1,所以π12ω+φ=2kπ+3π2,k∈Z,即φ=2kπ-π12ω+3π2,k∈Z,所以f x =sinωx+2kπ-π12ω+3π2 =-cosωx-π12.当-π3≤x≤π3时,-5πω12≤ωx-π12≤πω4ω>0.因为f x 在区间-π3,π3上恰有两个最值,且-5πω12>πω4 ,所以ω>0-2π<-5πω12≤-π0<πω4<π,解得125≤ω<4.故答案为:125,4.10已知函数f (x )=-sin ωx -π4 (ω>0)在区间π3,π 上单调递减,则ω的取值范围是.【答案】0,34【解析】当x ∈π3,π时, ωπ3-π4<ωx -π4<ωπ-π4,又y =-sin x 的单调递减区间为2k π-π2,2k π+π2(k ∈Z ),所以ωπ3-π4≥2k π-π2ωπ-π4≤2k π+π2(k ∈Z ),解得6k -34≤ω≤2k +34(k ∈Z ),且2k +34≥6k -34(k ∈Z ),解得k ≤38,又ω>0,所以k =0,所以ω的取值范围为0,34.故答案为:0,3411若函数f x =cos ωx -π6ω>0 在区间π3,2π3内单调递减,则ω的最大值为.【答案】74【解析】由题得:12T ≥2π3-π3⇒0<ω≤3,令t =ωx -π6⇒t ∈πω3-π6,2πω3-π6,则y =cos t 在t ∈πω3-π6,2πω3-π6单调递减,故πω3-π6≥2k π2πω3-π6≤2k π+π⇒6k +12≤ω≤3k +74,由0<ω≤3,故ω∈12,74,所以ω的最大值为74,故答案为:74.12已知函数f (x )=4sin ωx ,g (x )=4cos ωx -π3+b (ω>0),且∀x 1,x 2∈R ,|f (x 1)-g (x 2)|≤8,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,与函数g (x )的图象相邻的三个交点依次为A ,B ,C ,且BA ⋅BC<0,则ω的取值范围是.【答案】0,2π8【解析】依题意,函数f (x )的值域为[-4,4],g (x )的值域为[b -4,b +4],由∀x 1,x 2∈R ,f (x 1)-g (x 2) ≤8,得|(b -4)-4|≤8,且|(b +4)-(-4)|≤8,解得b =0,g (x )=4cos ωx -π3 =4sin ωx +π6 ,将f (x )=4sin ωx 的图象向右平移π3ω个单位长度后,得h (x )=4sin ωx -π3ω =4sin ωx -π3,在同一坐标系内作出函数y =g (x ),y =h (x )的图象,观察图象知,|AC |=2πω,取AC 中点D ,连接BD ,由对称性知|AB |=|BC |,BD ⊥AC ,由BA ⋅BC <0,得∠ABC >π2,即∠ABD >π4,|AD |>|BD |,由h (x )=g (x ),得sin ωx -π3 =sin ωx +π6 ,则ωx -π3+ωx+π6=π+2k π,k ∈Z ,解得ωx =712π+k π,k ∈Z ,于是y =4sin 712π+k π-π3=±22,则|BD |=42,因此πω>42,解得0<ω<2π8,所以ω的取值范围是0,2π8.故答案为:0,2π813在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =2,则a +4c 的最小值为.【答案】18【解析】如图所示,则△ABC 的面积为12ac sin 2π3=12a ⋅2sin π3+12c ⋅2sin π3,则ac =2a +2c ,所以1a +1c =12,显然a ,c >0,故a +4c =(a +4c )1a +1c ×2=2×5+4c a +a c ≥25+24c a ⋅a c=18,当且仅当4ca =a c 1a +1c =12,即a =6c =3时取等号.所以a +4c 的最小值为18.故答案为:18.14在锐角△ABC 中,角A 、B 、C 所对边的边长分别为a 、b 、c ,且2b sin A -3a =0.(1)求角B;(2)求sin A+sin C的取值范围.【解析】(1)∵2b sin A-3a=0,∴2sin A sin B-3sin A=0,又∵A∈0,π2,∴sin A≠0,∴sin B=32,B∈0,π2,∴B=π3.(2)由(1)可知,B=π3,且△ABC为锐角三角形,所以0<A<π20<C=2π3-A<π2,∴A∈π6,π2,则sin A+sin C=sin A+sin2π3-A=32sin A+32cos A=3sin A+π6,因为π3<A+π6<2π3,∴sin A+sin C∈32,3.15在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2b sin A-3a=0.(1)求角B的大小;(2)求cos A+cos C的取值范围.【解析】(1)因为2b sin A-3a=0,由正弦定理边化角得:2sin B sin A-3sin A=0,所以2sin B-3sin A=0,由于在△ABC中,sin A≠0,所以2sin B-3=0,即sin B=32,又0<B<π2,所以B=π3.(2)由(1)可知B=π3,所以A+C=2π3,所以cos A+cos C=cos A+cos2π3-A=cos A+cos2π3cos A+sin2π3sin A=cos A-12cos A+32sin A=12cos A+32sin A=sin A+π6由于在锐角△ABC中,0<2π3-A<π2 0<A<π2,所以π6<A<π2,所以π3<A+π6<2π3,所以sinπ3<sin A+π6≤sinπ2,所以32<sin A+π6≤1,所以cos A+cos C的取值范围为32,1.16已知锐角△ABC的三内角A,B,C的对边分别是a,b,c,且b2+c2-(b⋅cos C+c⋅cos B)2=bc,(1)求角A的大小;(2)如果该三角形外接圆的半径为3,求bc的取值范围.【解析】(1)∵b2+c2-b cos C+c cos B2=bc,由余弦定理可得b2+c2-b⋅a2+b2-c22ab+c⋅a2+c2-b22ac2=bc,化简整理得b2+c2-a2=bc,又b2+c2-a2=2bc cos A,∴cos A=12,又0<A<π2,所以A=π3.(2)因为三角形外接圆半径为R=3,所以b=23sin B,c=23sin C,∴bc=12sin B sin C,由(1)得B+C=2π3,所以bc=12sin B sin C=12sin B sin2π3-B=12sin B32cos B+12sin B=63sin B cos B+6sin2B=33sin2B+31-cos2B=632sin2B-12cos2B+3 =6sin2B-π6+3,因为△ABC是锐角三角形,且B+C=2π3,所以π6<B<π2,∴π6<2B-π6<5π6,∴12<sin2B-π6≤1,∴6<6sin2B-π6+3≤9,即6<bc≤9.所以bc的取值范围为6,9.17在△ABC中,角A、B、C的对边分别为a、b、c,cos2B-sin2B=-1 2.(1)求角B,并计算sin B+π6的值;(2)若b=3,且△ABC是锐角三角形,求a+2c的最大值.【解析】(1)由cos2B+sin2B=1cos2B-sin2B=-12,得cos2B=14,则cos B=±12,又0<B<π,所以B=π3或2π3.当B=π3时,sin B+π6=sinπ2=1;当B=2π3时,sin B+π6=sin5π6=12.(2)若△ABC为锐角三角形,则B=π3,有0<C<π20<A=2π3-C<π2,解得π6<C<π2.由正弦定理,得asin A=csin C=bsin B=332=2,则a=2sin A,c=2sin C,所以a+2c=2sin A+4sin C=2sin2π3-C+4sin C=232cos C+12sin C+4sin C=5sin C+3cos C=27sin(C+φ),其中tanφ=35,又tanφ=35<33=tanπ6,所以0<φ<π6,则π3<C+φ<2π3,故当C+φ=π2时,sin(C+φ)取到最大值1,所以a+2c的最大值为27.18在△ABC中,D为BC边上一点,DC=CA=1,且△ACD面积是△ABD面积的2倍.(1)若AB=2AD,求AB的长;(2)求sin∠ADBsin B的取值范围.【解析】(1)设BC边上的高为AE,垂足为E,因为△ACD面积是△ABD面积的2倍,所以有S△ACDS△ABD=12CD⋅AE12BD⋅AE=2⇒BD=12⇒BC=32,设AB=2AD=x⇒AD=22x,由余弦定理可知:cos C=AC2+BC2-AB22AC⋅BC =AC2+DC2-AD22AC⋅DC⇒1+94-x22×1×32=1+1-12x22×1×1,解得x=1或x=-1舍去,即AB=1;(2)由(1)可知BD=12,BC=32,设∠ADC=θ,由DC=CA⇒∠DAC=∠ADC=θ⇒C=π-2θ且θ∈0,π2,由余弦定理可得:AD=12+12-2×1×1⋅cosπ-2θ=2+2cos2θ=2+22cos2θ-1=2cosθ,AB=12+32 2-2×1×32⋅cosπ-2θ=134+3cos2θ=134+32cos2θ-1=6cos2θ+1 4,在△ABD中,因为θ∈0,π2,所以由正弦定理可知:ABsin∠ADB =ADsin B⇒sin∠ADBsin B=ABAD=6cos2θ+142cosθ=14×24cos2θ+1cos2θ=14×24+1cos2θ,因为θ∈0,π2,所以cos θ∈0,1 ⇒cos 2θ∈0,1 ⇒1cos 2θ>1⇒24+1cos 2θ>25⇒24+1cos 2θ>5,于是有sin ∠ADB sin B >54,因此sin ∠ADB sin B 的取值范围为54,+∞ ..19记锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin B sin C +cos2C =1+cos2A -cos2B .(1)证明:B +C =2A ;(2)求c b的取值范围.【解析】(1)证明:由2sin B sin C +cos2C =1+cos2A -cos2B ,得2sin B sin C +1-2sin 2C =1+1-2sin 2A -1+2sin 2B ,即sin B sin C -sin 2C =-sin 2A +sin 2B ,由正弦定理可得bc -c 2=-a 2+b 2,即a 2=b 2+c 2-bc ,由余弦定理可得a 2=b 2+c 2-2bc cos A ,故cos A =12,又A ∈0,π2 ,故A =π3,由A +B +C =π,故B +C =π-A =2π3=2A ;(2)由正弦定理可得:c b=sin C sin B =sin π-A -B sin B =sin π3+B sin B =12sin B +32cos B sin B =12+32tan B ,又锐角△ABC 中,有0<B <π2,0<π-π3-B <π2,解得π6<B <π2,即tan B ∈33,+∞,即1tan B ∈0,3 ,故c b=12+32tan B ∈12,2 .20记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +b +c a +b -c =3,且△ABC 的面积为334.(1)求角C ;(2)若AD =2DB ,求CD 的最小值.【解析】(1)∵a +b +c a +b -c =3,∴3=(a +b )2-c 2=a 2+b 2-c 2+2ab 结合余弦定理得3=2ab cos C +2ab =2ab 1+cos C ,∴ab =321+cos C ,∵S △ABC =12ab sin C =334,∴sin C 1+cos C =3,即2sin C 2cos C 2cos 2C 2=tan C 2=3,又∵C 2∈0,π2 ,∴C 2=π3,故C =2π3;(2)由(1)知:C =2π3,ab =321+cos C=3,∵AD =2DB ,∴CD =13CA +23CB ,∴CD 2=13CA +23CB 2=19b 2+49a 2+49ab cos C =19b 2+49a 2-23,又19b 2+49a 2-23≥219b 2⋅49a 2-23=2×23-23=23,当且仅当b =2a =6时,CD 长取最小值,此时CD =23=63,∴CD 长的最小值为63.21已知函数f x =12-sin 2ωx +32sin2ωx ω>0 的最小正周期为4π.(1)求f x 在0,π 上的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a -c cos B =b ⋅cos C ,求f A 的取值范围.【解析】(1)f x =12-sin 2ωx +32sin2ωx =12-1-cos2ωx 2+32sin2ωx =32sin2ωx +12cos2ωx =sin 2ωx +π6.因为T =2π2ω=4π,所以ω=14,故f x =sin 12x +π6.由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z ,解得4k π-4π3≤x ≤4k π+2π3,k ∈Z ,当k =0时,-4π3≤x ≤2π3,又x ∈0,π ,所以f x 在0,π 上的单调递增区间为0,2π3.(2)由2a -c cos B =b ⋅cos C ,得(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B =sin B cos C +cos B sin C =sin B +C =sin A .因为sin A ≠0,所以cos B =12,又B ∈0,π ,所以B =π3,又三角形为锐角三角形,则0<A <π20<2π3-A <π2,则π6<A <π2,所以π4<A 2+π6<5π12,又f A =sin A 2+π6,sin 5π12=sin π4+π6 =sin π4cos π6+cos π4sin π6=2+64,则22<sin A 2+π6 <2+64,所以f A 的取值范围为22,2+64.22已知在△ABC 中,1-cos A 2-sin A =0,(1)求A ;(2)若点D 是边BC 上一点,BD =2DC ,△ABC 的面积为3,求AD 的最小值.【解析】(1)因为1-cos A 2-sin A =0,所以sin 2A 2=sin A , 因为0<A 2<π2,sin A 2>0,则sin A 2=2sin A 2cos A 2,故cos A 2=12, 所以A 2=π3,A =2π3,(2)因为BD =2DC ,则BD =2DC ,所以AD -AB =2AC -AD ,故AD =13AB +23AC , 因为△ABC 的面积为3,所以12bc sin A =3,所以bc =4|AD |2=13AB +23AC 2=19c 2+49b 2+49AB ⋅AC =19c 2+49b 2-29bc ≥49bc -29bc =89上式当且仅当c =2b ,即c =22,b =2时取得“=”号,所以AD 的最小值是223.23在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足2sin A +C cos A -sin C cos A =sin A cos C .(1)求角A ;(2)若点D 在线段BC 上,且满足BD =3DC ,AD =3,求△ABC 面积的最大值.【解析】(1)由题意得2sin B cos A -sin C cos A =sin A cos C ,即2sin B cos A =sin A cos C +sin C cos A =sin B ,∵sin B ≠0,∴2cos A =1,∴cos A =12,又0<A <π,∴A =π3;(2)解法一:令DC =t ,则BD =3t ,∵cos ∠ADC =-cos ∠ADB ,∴AD 2+DC 2-AC 22AD ⋅DC =-AD 2+BD 2-AB 22AD ⋅BD ,即9+t 2-b 26t =-9+9t 2-c 218t ,∴12t 2=-36+3b 2+c 2①,又∵cos ∠BAC =12=b 2+c 2-16t 22bc ,∴16t 2=b 2+c 2-bc ②,∵联立①②,得144-3bc =9b 2+c 2≥6bc (当且仅当c =3b 时取等号),即bc ≤16,∴S △ABC =12bc sin ∠BAC =34bc ≤43,∴△ABC 面积的最大值为43.解法二:依题意AD =14AB+34AC,∴AD 2=14AB+34AC 2=116AB 2+9AC 2+6AB ⋅AC,即9=116AB 2+9AC 2+6AB AC cos π3=116AB 2+9AC 2+3AB AC,∵AB 2+9AC 2≥6AB AC (当且仅当AB =3AC 时取等号),∴AB AC ≤16,∴S △ABC =12AB ACsin ∠BAC ≤34×16=43,∴△ABC 面积的最大值为43.24已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量m =a +b ,c ,n =sin A -sin C ,sin A -sin B ,且m ⎳n .(1)求B ;(2)求b 2a 2+c 2的最小值.【解析】(1)因为m ⎳n ,所以a +b sin A -sin B =c sin A -sin C ,由正弦定理可得a +b a -b =c a -c 即a 2-b 2=ac -c 2,故a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =12,而B 为三角形内角,故B =π3.(2)结合(1)可得:b2a2+c2=a2+c2-aca2+c2=1-aca2+c2,1-aca2+c2≥1-ac2ac=1-12=12,当且仅当a=c时等号成立,故b2a2+c2的最小值为12.25已知△ABC为钝角三角形,它的三个内角A、B、C所对的边分别为a、b、c,且sin2C=sin2B+sinπ3+Bcosπ6+B,a<c,b<c.(1)求tan(A+B)的值;(2)若△ABC的面积为123,求c的最小值.【解析】(1)因为sin2C=sin2B+sinπ3+Bcosπ6+B=sin2B+12sinπ2+2B+sinπ6=sin2B+12cos2B+12=sin2B+121-2sin2B+14=34,因为sin C>0,所以sin C=3 2,由△ABC为钝角三角形且a<c,b<c知,C为钝角,所以cos C=-12,即tan C=-3,所以tan(A+B)=tanπ-C=-tan C=3.(2)因为S△ABC=12ab sin C=34ab=123,所以ab=48,由余弦定理,c2=a2+b2-2ab cos C=a2+b2+ab≥3ab=144,当且仅当a=b=43时,等号成立,此时c2的最小值为144,所以c的最小值为12.。
解三角形中的最值与范围问题4大题型解三角形中的最值与范围问题是近几年高考数学的热点,这类试题主要考查学生数形结合、等价转化、数学运算和逻辑推理的能力。
一般为中等难度,但题目相对综合,涉及知识较多,可通过三角恒等变换、构造函数或构造基本不等式等方法加以解决。
一、三角形中的最值范围问题处理方法1、利用基本不等式求最值-化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值-化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B .()1C .(]1,3D .(]2,3【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【变式2-1】(2023·云南昆明·已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x x ωωω=-,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC周长的取值范围.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos 2cos f x x x x x =-⋅-∈R .(1)求函数()f x 的值域;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =-,a =求△ABC 的面积S 的最大值.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,AD =,2CD =,BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a b c+的取值范围.6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+ ⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.参考答案【题型1与角或三角值有关的问题】【例1】(2023春·江西赣州·高三统考阶段练习)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知1a =,且cos cos 1b A B -=22sin B A +的取值范围是()A.()1+B.()1C .(]1,3D .(]2,3【答案】B【解析】∵cos cos 1b A B -=,即:cos cos 1b A B =+,1a =,∴cos (cos 1)b A B a =+,∴由正弦定理得:sin cos (cos 1)sin B A B A =+,即:sin cos sin cos sin B A A B A =+,∴sin()sin B A A -=,∴B A A -=或πB A A -+=,解得:2B A =或B π=(舍),又∵△ABC 为锐角三角形,则ππ3C A B A =--=-,∴ππ0022ππ00222ππ00π322A A B A C ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇒<<⎨⎨⎪⎪⎪⎪<<<-<⎪⎪⎩⎩,解得:ππ64A <<,2π2sin 21cos 22sin(2)16B A A A A +=+-=-+,又∵ππ64A <<,∴πππ2663A <-<,∴1πsin(2262A <-<,∴π22sin(2)116A <-+<,22sin B A +的取值范围1).故选:B.【变式1-1】(2023·四川泸州·统考二模)在ABC 中,2,2BC AB AC ==,D 为BC 的中点,则tan ADC ∠的最大值为______.【答案】43【解析】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系,可知22x x +>且22x x -<,解得223x <<,在ABD △中,由余弦定理,得()2212cos 2AD x ADB AD +-∠=,在ACD 中,由余弦定理,得221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()cos cos πcos ADB ADC ADC ∠=-∠=-∠,所以()222212122AD x AD x AD AD+-+-=-,解得22512AD x =-,则2242251132cos 54512122x x x ADC x x -+-∠=⨯-⨯-223x <<,令2512x t -=,则1,99t ⎛⎫∈ ⎪⎝⎭,()2215x t =+,()4242125x t t =++,则232131313cos 2221010105t t ADC t t t t t ++∠==⨯++≥⨯⋅+=,当且仅当1t t =,即1t =时,等号成立,此时25112x -=,解得25x =因为3cos 05ADC ∠≥>,所以π0,2ADC ⎛⎫∠∈ ⎪⎝⎭.因为cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,tan y x =在π0,2⎛⎫ ⎪⎝⎭单调递增,所以当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时24sin 1cos 5ADC ADC ∠-∠=,则4tan 3ADC ∠=,所以tan ADC ∠的最大值为43.【变式1-2】(2023·福建福州·统考二模)记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .已知2222b a c -=.(1)求tan tan BA的值:(2)求C 的最大值.【答案】(1)tan 3tan B A=-;(2)π6【解析】(1)由余弦定理可得2222cos b c a ac B =+-,代入2222b a c -=,得到()22222cos 2c a ac B a c +--=,化简得22cos 0c ac B +=,即2cos 0c a B +=.由正弦定理可得sin 2sin cos 0C A B +=,即()sin 2sin cos 0A B A B ++=,展开得sin cos cos sin 2sin cos 0A B A B A B ++=,即3sin cos cos sin A B A B =-,所以tan 3tan BA=-.(2)由2222b a c -=得2222b ac -=,故222cos 2a b c C ab +-=222222b a a b ab-+-=2233444a b a b ab b a +==+≥=当且仅当223b a =,即b =时等号成立.因为()0,πC ∈,所以π6C ≤,所以C 的最大值为π6.【变式1-3】(2023春·辽宁本溪·高三校考阶段练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.【答案】(1)证明见解析;(2)98【解析】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.【变式1-4】(2023春·湖北武汉·高三华中师大一附中校考阶段练习)在锐角ABC中,角,,A B C 所对的边分别是,,a b c ,满足()2c b b a =+.(1)求证:2C B =;(2)求113sin tan tan C B C-+的取值范围.【答案】(1)证明见解析;(2),46⎛⎫⎪ ⎪⎝⎭【解析】(1)由22c b ab =+及余弦定理2222cos c a b ab C =+-,得()2cos 1a b C =+,由正弦定理得:()sin sin 2cos 1A B C =+,又πA B C ++=,()sin sin sin cos cos sin 2sin cos sin A B C B C B C B C B ∴=+=+⋅=+,cos sin sin cos sin B C B C B ∴-=,()sin sin C B B ∴-=,,,A B C 都是锐角,C B B ∴-=,即2C B =.(2)令113sin tan tan y C B C =-+cos cos 3sin sin sin B C C B C =-+sin cos cos sin 3sin sin sin C B C BC B C -⋅=+⋅()sin 3sin sin sin C B C B C-=+⋅,由(1)2C B =得13sin sin y C C=+,在锐角三角形ABC 中,π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩,即()π02π022π02B C C B C π⎧<-+<⎪⎪⎪<=<⎨⎪⎪<<⎪⎩,解得ππ32<<C,sin C ⎫∴∈⎪⎪⎝⎭,令sin ,12t C ⎛⎫=∈ ⎪ ⎪⎝⎭,()13,2y f t t t t ⎛⎫∴==+∈ ⎪ ⎪⎝⎭,又函数()13y f t t t ==+在2⎛⎫ ⎪ ⎪⎝⎭上单调递增,()4y f t ⎫∴=∈⎪⎪⎝⎭,故113sin tan tan C B C -+的取值范围是46⎛⎫ ⎪ ⎪⎝⎭.【题型2求周长的最值与范围问题】【例2】(2023春·四川成都·高三四川省成都市玉林中学校考阶段练习)在ABC 中,sin cos c B C =.(1)求C ∠;(2)若6a b +=,求ABC 周长的最小值.【答案】(1)π3C =;(2)9【解析】(1)因为sin cos c B C =,所以由正弦定理得sin sin cos C B B C =,又因为()0,πB ∈,sin 0B ≠,所以sin C C =,即有tan C =又因为()0,πC ∈,所以π3C =.(2)因为π3C =,6a b +=,所以由余弦定理可得222222cos ()236336392a b c a b ab C a b ab ab ab +⎛⎫=+-=+--=-≥-⨯= ⎪⎝⎭,当3a b ==时,等号成立,所以3c ≥,故ABC 周长的最小值9.【变式2-1】(2023·云南昆明·高三昆明一中校考阶段练习)已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且)222sin 2a c b A bc+-=.(1)求B 的大小;(2)若△ABC 为钝角三角形,且b =,求△ABC 的周长的取值范围.【答案】(1)π3;(2)(+【解析】(1)根据余弦定理可知,222cos 2a c b B ac+-=,所以2cos sin 2ac B A bc =,即cos sin cos sin sin sin B A BA A b B=⇔,则tan B =()0,πB ∈,所以π3B =;(2)设π2π,23A ⎛⎫∠∈ ⎪⎝⎭,根据正弦定理可知2πsin sin sin sin 3a cb A C B ====,所以2sin a A =,2π2sin 2sin 3c C A ⎛⎫==- ⎪⎝⎭,所以周长2π2sin 2sin 3a b c A A ⎛⎫++=+-+ ⎪⎝⎭12sin 2sin 2A A A ⎫=++⎪⎪⎝⎭3sin A A =++π6A ⎛⎫=+ ⎪⎝⎭,因为π2π,23A ⎛⎫∈ ⎪⎝⎭,,πππ25636A ⎛⎫+∈ ⎪⎝⎭,所以1sin 622πA ⎛⎫⎛⎫+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以π36A ⎛⎫<+++ ⎪⎝⎭,所以ABC的周长为(+.【变式2-2】(2023·全国·高三专题练习)已知函数21()cos ())cos()2f x x x ωωω=,其中0ω>,且函数()f x 的两个相邻零点间的距离为π2,(1)求ω的值及函数()f x 的对称轴方程;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若()1,f A a =-=求ABC 周长的取值范围.【答案】(1)1ω=,对称轴方程为:()ππ26k x k =+∈Z ;;(2)2.【解析】(1)211cos(2))1()cos ())cos()2222x x f x x x x ωωωωω+=-=+-,()πsin 26f x x ω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的两个相邻零点间的距离为π2,所以函数()f x 的最小正周期为2ππ2⨯=,因为0ω>,所以2ππ12ωω=⇒=,即()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令()()ππππ2πZ Z 6226k x k k x k +=+∈⇒=+∈,所以对称轴为()ππ26k x k =+∈Z ;(2)由πsin 6(12)1A f A ⎛⎫+=- ⇒⎪⎝⎭=-,因为(0,π)A ∈,所以ππ13ππ3π2π2(,)2666623A A A +∈⇒+=⇒=,因为a22sin ,2sin sin sin sin a b c b B c CA B C ===⇒==,π2sin 2sin 2sin 2sin 3B C B B ⎛⎫+=+- ⎪⎝⎭,1π2sin sin 2sin 223B B B B B B ⎛⎫⎛⎫+-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为π(0,)3B ∈,所以ππ2π(,)333B +∈,因此ππsin ,1]2sin (2323B B ⎛⎫⎛⎫+∈⇒+++ ⎪ ⎪⎝⎭⎝⎭,所以ABC周长的取值范围为2.【变式2-3】(2023·湖南·模拟预测)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC 的面积为S ,且22sin sin 2sin sin C ASa b sinA B C+=+()().(1)求C 的值;(2)若a ABC 周长的取值范围.【答案】(1)3π;(2)()∞+.【解析】(1)在ABC 中,由三角形面积公式得:1sin 2S bc A =,由正弦定理得:()2212sin sin 2cabc A a b A b c⎛⎫⨯+=+ ⎪⎝⎭,整理得:222a b c ab +-=,由余弦定理得:2221cos 22a b c C ab +-==,又0C π<<,故3C π=.(2)因为a 3C π=,由正弦定理得32sin c A=,23cos 3sin 2sin A A b A A π⎛⎫- ⎪⎝⎭===即ABC的周长()31cos 33cos 2sin 2sin 2sin A A l a b c A A A +=++=+=26cos 32224sincos 2tan222AA AA =++,因为203A π⎛⎫∈ ⎪⎝⎭,,则023Aπ⎛⎫∈ ⎪⎝⎭,,故0tan 2A<所以322tan2A +>ABC的周长的取值范围是∞).【变式2-4】(2023春·河北邢台·高三邢台市第二中学校考阶段练习)在四边形ABCD 中,,,,A B C D 四点共圆,5AB =,3BC =,3cos 5ABC ∠=-.(1)若sin 5ACD ∠=,求AD 的长;(2)求四边形ABCD 周长的最大值.【答案】(1(2)8+【解析】(1)因为,,,A B C D 四点共圆,所以πABC ADC ∠+∠=,因为3cos 5ABC ∠=-,所以3cos cos 5ADC ABC ∠=-∠=,因为()0,πADC ∠∈,故sin 54ADC ∠==,在ABC 中,由余弦定理得:22232cos 25930525AC AB BC AB BC ABC ⎛⎫=+-⋅∠=+-⨯-= ⎪⎝⎭,故AC =在ADC △中,由正弦定理得:sin sin AD ACACD ADC=∠∠,5=,解得:AD(2)由(1)知:AC=3cos5ADC∠=,在ADC△中,由余弦定理得:22222523cos225AD CD AC AD CDADCAD CD AD CD+-+-∠===⋅⋅,整理得:226525AD CD AD CD+=⋅+,故()216525AD CD AD CD+-=⋅,其中22AD CDAD CD+⎛⎫⋅≤ ⎪⎝⎭,故()()221645255AD CD AD CD AD CD+-=⋅≤+,解得:AD CD+≤AD CD=故四边形ABCD周长的最大值为8AB BC AD CD+++≤+【题型3求面积的最值与范围问题】【例3】(2023·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知函数()()()2πcos2cosf x x x x x=-⋅-∈R.(1)求函数()f x的值域;(2)在△ABC中,角A,B,C的对边分别为a,b,c,若()2f A=-,a=求△ABC的面积S的最大值.【答案】(1)[]3,1-;(2【解析】(1)()1cos2πcos2sin2cos212sin2126xf x x x x x x+⎛⎫=⋅-⋅--=--⎪⎝⎭,∴()f x的值域为[]3,1-.(2)()π2sin2126f A A⎛⎫=--=-⎝⎭,即π1sin262A⎛⎫-=-⎪⎝⎭,由()0,πA∈,得ππ11π2<666A-<-∴π7π2=66A-,即2π3A=,又222222π32cos33a b c bc b c bc bc==+-=++≥,即1bc≤,∴11sin 12224ABC S bc A =≤⨯ ,∴()max 4ABC S =,当且仅当1b c ==时取得.【变式3-1】(2023·浙江嘉兴·统考模拟预测)已知ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足sin 2tan 11cos 2tan 1B C B C +=+-.(1)求角A 的大小;(2)设AD 是BC 边上的高,且2AD =,求ABC 面积的最小值.【答案】(1)π4;(2)4【解析】(1)法一:左边2sin 22sin cos sin 1cos 22cos cos B B B BB B B===+,右边sin 1tan 1sin cos cos sin tan 1sin cos 1cos CC C CC C C C CC+++===---,由题意得sin sin cos sin sin sin cos cos sin cos cos cos sin cos B C CB C B C B C B C B C C+=⇒-=+-()()()sin cos 0tan 1B C B C B C ⇒+++=⇒+=-,即tan 1A =,又因为0πA <<,所以π4A =.法二:左边2sin 22sin cos tan 1cos 22cos B B BB B B===+,右边πtan tantan 1ππ4tan tan πtan 1441tan tan4C C C C C C ++⎛⎫⎛⎫==--+=-- ⎪ ⎪-⎝⎭⎝⎭-,由题意得ππππ44B C k B C k =--+⇒+=-+,又因为0πB C <+<,所以3ππ44B C A +=⇒=.(2)由11π2sin 2244ABC S a bc a bc =⨯=⇒=△,由余弦定理得222222π2cos 4a b c bc a b c =+-⇒=+,2222222211288b c b c b c b c bc ⇒=+⇒+=+≥,(82bc ⇒≥,当且仅当b c =时取“等号”,而1πsin24ABC S bc ==△,故()(min 824ABC S =-=△【变式3-2】(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【答案】(1)π3C =;(2).【解析】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =,所以π3C =.(2)在ABC 中,由余弦定理2222cos c a b ab C =+-得:221a b ab =+-,因此12ab ab ≥-,即01ab <≤,当且仅当a b =时取等号,又11sin (0,22ABC S ab C ===∈△,所以ABC 面积的取值范围是4.【变式3-3】(2023·全国·模拟预测)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ()sin sin 4sin C B a C =-.(1)求A ;(2)若O 是ABC 的内心,2a =,且224b c +>,求OBC △面积的最大值.【答案】(1)π3或2π3;(2【解析】(1)()sin sin 4sin C B a C =-,4sin s sin sin in C B a B C =,)sin sin sin sin 4sin sin sin B C C B A B C +=,sin 2sin sin sin B C A B C =,因为sin sin 0B C ≠,所以sin2A =,因为()0,πA ∈,所以π3A =或2π3A =(2)因为2a =,且224b c +>,所以由余弦定理得222224cos 022b c a b c A bc bc+-+-==>,所以A 为锐角,由(1)知π3A =.因为O 是ABC 的内心,所以()()112ππππ223BOC ABC ACB A ∠=-∠+∠=--=,在OBC △中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅∠,所以2222242cos3OB OC OB OC OB OC OB OC π=+-⋅=++⋅23OB OC OB OC OB OC ≥⋅+⋅=⋅,当且仅当33OB OC ==时等号成立,所以43OB OC ⋅≤,所以1142π3sin sin 2233OBC S OB OC BOC =⋅∠≤⨯=△所以OBC △33【变式3-4】(2023·江苏南通·校联考模拟预测)如图,在平面四边形ABCD 中,1AB =,3AD =,2CD =,2BC =(1)若BC CD ⊥,求sin ADC ∠;(2)记ABD △与BCD △的面积分别记为1S 和2S ,求2212S S +的最大值.【答案】(163;(2)218【解析】(1)∵BC CD ⊥,∴426BD =+=22cos 326362ADB ∠=⋅⋅,1in 3s ADB ∠=,3sin 3BDC ∠=,6cos 36BDC ∠==∴sin sin()sin cos cos sin ADC BDC ADB BDC ADB BDC ADB∠∠∠=+=∠∠+∠∠13===;(2)设BAD ∠=α,BCD β∠=,∴23142BD αβ=+-=+-,∴2βα-=,∴1βα=,①22222212131sin 1sin sin 2sin 24S S αβαβ⎫⎛⎫+=⨯+⋅⨯=+⎪ ⎪⎭⎝⎭()222233sin 21cos sin 2144αβα⎡⎤⎢⎥=+-=+-⎢⎥⎣⎦2223535321cos cos cos 222228ααααα⎛⎫⎛=--+=-++=-++ ⎪ ⎪ ⎝⎭⎝⎭,当且仅当cos 6α=-,cos 8β=时取最大值218;综上,sin 3ADC ∠=,2212S S +的最大值是218.【题型4与边有关的最值与范围问题】【例4】(2023·江西南昌·统考一模)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,若1,60a B == ,则b 的取值范围为______.【答案】2⎛ ⎝【解析】在ABC 中,由正弦定理得sin sin sin a b cA B C ==,所以1sin sin 60b A = ,即2sin b A=,因为锐角ABC ,所以090,090A C <<<< ,即090,012090A A <<<-<,解得3090A <<,所以1sin 12A <<,所以112sin A<<,<2b ⎛∈ ⎝.【变式4-1】(2023春·湖南·高三校联考阶段练习)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,()()cos sin cos a B C B a A -=-.(1)求角A ;(2)若ABC22b a b+的取值范围.【答案】(1)3π;(2)⎡⎣【解析】(1)因为()()cos sin cos a B C B a A -=-,可得()cos cos sin cos a B C a A B A -+=,则()()cos cos sin cos a B C a B C B A --+=,所以()cos cos sin sin cos cos sin sin 2cos a B C a B C a B C B C B A +--=,即sin sin sin cos a B C B A =,由正弦定理得sin sin sin sin sin cos A B C C B A =,显然sin 0C >,sin 0B >,所以sin A A ,所以tan A =()0,πA ∈,所以π3A =.(2)因为sin sin a b A B==πsin sin 3a bB ==所以3a =,b B =,所以2223sin 2sin 4sin b a a b B B b b B B +⎫=+=++⎭,因为ABC 为锐角三角形且2π3B C +=,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,所以ππ62B <<,即1sin ,12B ⎛⎫∈ ⎪⎝⎭,令()34f x x x =+,1,12x ⎛⎫∈ ⎪⎝⎭,由对勾函数性质知函数()34f x x x =+在122⎛ ⎝⎭上单调递减,在,12⎫⎪⎪⎝⎭上单调递增,且122f ⎛⎫= ⎪⎝⎭,f =⎝⎭()714f =,所以())2f x ∈,即)3sin 24sin B B +∈,所以3sin 6,4sin B B ⎫⎡+∈⎪⎣⎭,即22b a b+的取值范围为⎡⎣.【变式4-2】(2023·广东江门·统考一模)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,且1tan B ,1sin A ,1tan C依次组成等差数列.(1)求2a bc的值;(2)若b c >,求222b c a+的取值范围.【答案】(1)2;(2)(【解析】(1)由条件得:211sin tan tan A B C =+cos cos sin sin B C B C =+sin cos cos sin sin sin C B C B B C +=()sin sin sin C B B C+=sin sin sin A B C =,所以2sin 2sin sin A B C =,由正弦定理得:22a bc =,所以22a bc=.(2)b c >及22a bc =,则B C >,角C 一定为锐角,又ABC 为锐角三角形,所以cos 0cos 0A B >⎧⎨>⎩由余弦定理得:2222222222222220020222020022b c a b c bcb c bc bc bc bc c b a c b bc c b ac ac ⎧⎧+-+->>⎪⎪⎧+->⎪⎪⇒⇒⎨⎨⎨+->+-+-⎩⎪⎪>>⎪⎪⎩⎩,所以2220bc c b +->,即212b b c c ⎛⎫⎛⎫<+ ⎪ ⎝⎭⎝⎭,解得:11b c <<又1bc >,所以(1,1b c∈+.又22222122b c b c b c a bc c b ++⎛⎫==+ ⎪⎝⎭,令(1,1b x c =∈+,则()222112b c f x x a x +⎛⎫==+ ⎪⎝⎭,()()()2211111022x x f x xx +-⎛⎫'=-=> ⎪⎝⎭,所以()f x在(1,1上递增,又()11f =,(1f =所以222b c a+的取值范围是(.【变式4-3】(2023·江苏南通·统考模拟预测)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =4,且1cos 2b Cc a +=.(1)求B ;(2)若D 在AC 上,且BD ⊥AC ,求BD 的最大值.【答案】(1)π3;(2)【解析】(1)方法一:()11cos ,sin cos sin sin sin 22b Cc a B C C A B C +=∴+==+ ,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以()11sin sin cos ,0,π,sin 0,cos ,22C C B C C B =∈∴>∴= ()π0,π,3B B ∈∴=.方法二:在ABC 中,由正弦定理得:()1sin cos sin sin 2B C C A B C +==+,所以1sin cos sin sin cos cos sin 2B C C B C B C +=+,所以1sin cos sin 2C B C =.因为()0,πC ∈,所以sin 0C ≠,所以1cos 2B =,因为()π0,π,3B B ∈=.(2)方法一:222222cos 2b a c ac B a c ac ac ac ac =+-=+-≥-=,16ac ∴≤当且仅当4a c ==时取“”=,1sin 112sin ,22228ac Bac B BD b BD ac =⋅=≤max BD ∴=方法二:在ABC 中,由余弦定理得:222222cos 162(b a c ac B a c ac ac ac =+-⇒=+-≥-当且仅当a c =取“=”)所以16ac ≤,所以ABC 的面积1sin24ABC S ac B ac ==≤ 122ABC S b BD BD BD =⨯=≤⇒≤ 【变式4-4】(2023·新疆·统考一模)在ABC 中,,,a b c 分别为内角,,A B C 的对边,22sin c ab C =.(1)若sin cos sin sin 2C B B A +=,求tan C 的值;(2)求ab的最大值.【答案】(1)1;(21【解析】(1)由sin cos sin2C B B A +=cos sin C B A B =-,cos )sin C B B C B =+-,)cos sin cos cos sin sin C B B C B C B =+-cos sin B C B =,因为sin 0B ≠,1C =,即cos2C =,由()0,πC ∈得π4C =,故tan 1C =.(2)由22sin ab C c =结合余弦定理得2222cos 2sin a ab C ab b C c =+-=,则()22π2sin cos sin 4a b ab C C C ⎛⎫+=+=+ ⎪⎝⎭,于是221sin 4a a a C b b b π⎛⎫+=⨯+≤ ⎪⎝⎭,即2210a ab b -+≤.11ab≤≤,故当π4C =时,ab1.(建议用时:60分钟)1.(2023·甘肃武威·统考一模)在ABC 中,32,,AB AC BC ==>,则cos A 的范围是()A .51,6⎛⎫- ⎪⎝⎭B .111,12⎛⎫- ⎪⎝⎭C .5,16⎛⎫ ⎪⎝⎭D .11,112⎛⎫ ⎪⎝⎭【答案】B【解析】222213cos212AB AC BC BC A AB AC +--==⋅,因为BC >11cos 12A <.又()0,πA ∈,所以cos A 的范围是111,12⎛⎫- ⎪⎝⎭.故选:B 2.(2023秋·浙江宁波·高三期末)在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin2A Cb B C a ++=,且ABC 的面积为,则ABC 周长的最小值为()A .B .C .D .6+【答案】C【解析】因为πsin sin2Bb A a -=,根据正弦定理及诱导公式得sin sin sin cos2B B A A ⋅=⋅,()0,πA ∈ ,sin 0A ∴≠,sin cos2B B ∴=,即2sin cos cos 222BB B=,()0,πB ∈ ,则π0,22B ⎛⎫∈ ⎪⎝⎭,则cos 02B ≠解得1sin22B =,所以ππ263B B =⇒=,所以1sin 24S ac B ===,所以8,ac a c =+≥,当且仅当a c ==时等号成立,根据余弦定理得b =,即b =,设ABC 的周长为C ,所以()ABC C a c a c =++=+ ,设,a c t t +=≥,则()f t t =根据复合函数单调性及增函数加增函数为增函数的结论得:()f t 在)⎡+∞⎣上为单调增函数,故()(minf t f ==,故()min ABC C = ,当且仅当a b c ===时取等.故选:C.3.(2023·江西赣州·统考一模)已知锐角ABC 的内角A B C 、、的对应边依次记为a b c、、,且满足2cos c b b A -=,则()()2sin 2cos C B A B ++-的取值范围为__________.【答案】32,2⎛⎫ ⎪ ⎪⎝⎭【解析】因为2cos c b b A -=,所以sin sin 2sin cos C B B A -=,即()sin sin 2sin cos A B B B A +-=,展开整理得()sin sin A B B -=,因为锐角ABC 中,ππππ,0,,,,2222A B A B A B ⎛⎫⎛⎫∈+>-∈- ⎪ ⎪⎝⎭⎝⎭,所以A B B -=,即2A B =,由π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,得π6π4B <<,()()22πsin cos sin 2cos sin2cos21214C B A B A B B B B ⎛⎫++-=+=++=++ ⎪⎝⎭,因为π6π4B <<,所以7ππ3π21244B <+<,π<sin 224B ⎛⎫+ ⎪⎝⎭,所以()()2sin 2cos C B A B ++-的范围为32⎛⎫ ⎪ ⎪⎝⎭.4.(2023·陕西西安·统考一模)已知在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,满足2cos 2b A a c +=,且b =,则ABC 周长的取值范围为______________.【答案】【解析】在ABC 中,由2cos 2b A a c +=及正弦定理得:2sin cos sin 2sin B A A C +=,而π()C A B =-+,于是2sin cos sin 2sin()2sin cos 2cos sin B A A A B A B A B +=+=+,有sin 2sin cos A A B =,而0πA <<,sin 0A >,因此1cos 2B =,由余弦定理得2222cos b a c ac B =+-,即有222222112()3()3()()24a c a c ac a c ac a c a c +=+-=+-≥+-=+,当且仅当a c =时取等号,从而a c +≤,而a c b +>=,则a b c <++≤所以ABC周长的取值范围为.5.(2023·全国·校联考一模)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22c ac b +=.(1)证明:2B C =;(2)求a bc+的取值范围.【答案】(1)证明见解析;(2)(1,5).【解析】(1)∵22c ac b +=,∴22c b ac -=-,∴由余弦定理得:2222cos 222a c b a ac a cB ac ac c+---===,即:2cos c B a c ⋅=-,由正弦定理得:2sin cos sin sin C B A C ⋅=-,∴2sin cos sin()sin sin cos sin cos sin C B B C C B C C B C ⋅=+-=+-,整理得:sin cos sin cos sin 0B C C B C --=,即:sin()sin B C C -=,又∵(0,π)B C ∈、,∴B C C -=,即:2B C =.(2)∵2B C =,∴π3A C =-,又∵sin22sin cos C C C =⋅,2sin 3sin(2)sin cos 2cos sin 2sin cos 22sin cos C C C C C C C C C C C=+=⋅+⋅=⋅+⋅,sin 0C ≠,∴由正弦定理得:sin sin sin(π3)sin2sin3sin2sin sin sin a b A B C C C Cc C C C++-++===22sin cos22sin cos 2sin cos cos22cos 2cos sin C C C C C CC C CC⋅+⋅+⋅==++2222cos 12cos 2cos 4cos 2cos 1C C C C C =-++=+-,又∵0π0π3ππ0π02π 030π0π A C B C C C C <<<-<⎧⎧⎪⎪<<⇒<<⇒<<⎨⎨⎪⎪<<<<⎩⎩,∴1cos 12C <<,令cos t C =,则2421a bt t c+=+-,112t <<,∵2421y t t =+-对称轴为14t =-,∴2421y t t =+-在1(,1)2上单调递增,当12t =时,11421142y =⨯+⨯-=;当1t =时,4215y =+-=,∴15a bc+<<,即:a b c +的范围为(1,5).6.(2023春·湖南长沙·高三雅礼中学校考阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin tan cos C B A B -=.(1)求A ;(2)若2a =,求2c b -的取值范围.【答案】(1)π3A =;(2)()2,4-【解析】(1)由题意知,sin 2sin sin cos cos AC B B A-=⨯,所以2cos sin cos sin sin cos A C A B A B -=,则()2cos sin sin cos cos sin sin sin A C A B A B A B C =+=+=,又()0,πC ∈,所以sin 0C ≠,所以1cos 2A =,又()0,πA ∈,所以π3A =.(2)由(1)得sin 2sin sin cos cos AC B B A-=⨯,由正弦定理得cos 2cos a B c b A -=,又2a =,π3A =,所以24cos c b B -=.因为2π0,3B ⎛⎫∈ ⎪⎝⎭,所以1cos ,12B ⎛⎫∈- ⎪⎝⎭,所以()4cos 2,4B ∈-,故()22,4c b -∈-,即2c b -的取值范围为()2,4-.7.(2023·河南·校联考模拟预测)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 是2a 与πsin6C ⎛⎫+⎪⎝⎭的等比中项.(1)求A ﹔(2)若ABC 是锐角三角形,且2c =,求sin a B 的取值范围.【答案】(1)π3;(2)⎝【解析】(1是2a 与πsin 6C ⎛⎫+ ⎪⎝⎭的等比中项,所以2π2sin 6a C b c ⎛⎫+==+ ⎪⎝⎭,由正弦定理及两角和的正弦公式,得12sin cos sin sin 2A C C B C ⎫⋅+=+⎪⎪⎝⎭.因为πA B C ++=,所以()sin sin cos sin sin sin cos cos sin sin A C A C A C C A C A C C +=++=++,()sin cos 1sin A C A C =+.因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π1sin 62A ⎛⎫-= ⎪⎝⎭.又()0,πA ∈,所以ππ5π,666A ⎛⎫-∈- ⎪⎝⎭,所以ππ66A -=,即π3A =.(2)由正弦定理,得2πsin sin sin 3ab B C ==,所以2π3sin sin C a B b C⎛⎫- ⎪⎝⎭==132tan C⎛=+ ⎝.因为ABC 是锐角三角形,所以2ππ0,32π0,2C C ⎧<-<⎪⎪⎨⎪<<⎪⎩所以ππ62C <<,所以tan 3C >,所以sin a B的取值范围是⎝.8.(2023·全国·高三专题练习)在①)cos sin a b C c B -=,②22cos a c b C -=,③()()()a b a b a c c -+=-这三个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A B C ,,的对边分别是a b c ,,,且满足_______,b =(1)若4a c +=,求ABC 的面积;(2)求ABC 周长l 的取值范围.【答案】(1(2)(【解析】(1)若选条件①)cos sin a b C c B -=及正弦定理,)sin sin cos sin sin A B C C B-=()sin sin cos sin sin B C B C C B +-=⎤⎦,化简得sin sin sin B C C B =,因为0πC <<,所以sin 0C ≠,所以tan B =,因为0πB <<,所以π3B =.若选条件②,由22cos a c b C -=及正弦定理,得2sin sin 2sin cos A C B C -=,即()2sin sin 2sin cos B C C B C +-=,化简得2cos sin sin B C C =,因为0πC <<,所以sin 0C ≠,所以1cos 2B =,因为0πB <<,所以π3B =.若选条件③,由)()()a b a b a c c +-=-化简得,222a c b ac +-=,由余弦定理得222cos 2a c b B ac+-=,即1cos 2B =,因为0πB <<,所以π3B =,所以三个条件,都能得到π3B =.由余弦定理得()22222cos 22cos b a c ac B a c ac ac B =+-=+--,即21124222ac ac =--⨯,解得43ac =,所以ABC的面积114πsin sin 22333S ac B ==⨯⨯=.(2)因为π3b B ==,由正弦定理得4sin sin sin a c b A C B ===,因为2ππ3A C B +=-=,所以()2π1π4sin sin 4sin sin cos 3226a c A C A A A A A ⎫⎡⎤⎛⎫⎛⎫+=+=+-=+=+⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎭,因为2π03A <<,所以ππ5ππ1sin 166662A A ⎛⎫⎛⎤<+<+∈ ⎪ ⎥⎝⎭⎝⎦,,,所以(a c +∈,即(a b c ++∈,所以ABC 周长l 的取值范围为(.9.(2023春·山西·高三校联考阶段练习)求△ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,已知3A π=,且△ABC 的周长为6.(1)证明:()124bc b c +=+;(2)求△ABC 面积的最大值.【答案】(1)证明见解析;(2【解析】(1)在△ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即2222()3a b c bc b c bc =+-=+-,又因为6a b c ++=,所以22[6()]()3b c b c bc -+=+-,整理可得:124()b c bc -+=-,所以()124bc b c +=+得证.(2)由(1)可知:()124bc b c +=+,所以124bc +≥⨯,当且仅当b c =时取等号,6≥2≤,因为6b c +<2≤,则4bc ≤,所以1sin 424ABC S bc A =≤= ,故△ABC.10.(2023·四川凉山·统考一模)在锐角ABC 中,角A ,B ,C 所对的边分别为,,,sin cos a b c b c A a C -=.(1)求A ;(2)若2b =,求ABC 面积的取值范围.【答案】(1)π4A =;(2)()1,2【解析】(1)因为sin cos b c A a C -=,由正弦定理得sin sin sin sin cos B C A A C -=,。
【向量专题】2.向量中最值(取值范围)问题解题策略
向量题目在高考题中除了最常见的简单运算外,还有另外一种有些难度的题目,即向量题目中的最值问题(取值范围问题),类似于其他专题,最值问题中千年不变的常见方法有利用三角函数有界性和不等式法,这次课除了这两种方法外再给出两种方法,常见的解决向量最值问题的方法有如下四种:、
向量专题中两类向量不等式。
(常被忽略)利用三角函数有界性来解,但是需要注意一下,三角函数有界性是在运算中出现正余弦的形式,所以当题目中出现了三角坐标时,又或者题目中出现了圆,椭圆,半圆的时候,如果需要设其上点的坐标,最好设成三角函数坐标的形式。
利用基本不等式解决最值问题。
利用几何图形法解决最值问题,特别需要注意在给定形状三角形内的情况。
向量中的最值来自曹老师的高中数学课00:00 29:46 注意接下来的转化:
用到了任意性注意这个结论:
---------------------------------------------------------------------------------------------------------------。
三角形中的最值或范围问题在解三角形时,往往会遇到求边、角、周长、面积等问题的最值或范围,我们只需综合运用正余弦定理、三角恒等变换、面积公式,结合基本不等式与三角函数等知识求解即可.一、角的范围或最值[解析]:因为2b ac =,又由余弦定理知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,所以03B π<≤,又7sin cos )44412B B B B ππππ+=+<+<且,)4B π+∈,即sin cos B B +的取值范围是.[解析]:由BA BC ⋅=,得1cos sin 2ca B ac B =,即cos B B =, 又22cos sin 1B B +=,所以3cos 4B =. 221cos 21cos 2sin sin 22A C A C --+=+=1cos[()()]2A C A C -++-+1cos[()()]2A C A C -+--=cos()cos()1A C A C +-+=cos cos()1B A C -+=3cos()14A C -+.因为0A B π<<-,0C B π<<-,所以B A C B ππ-<-<-, 所以当A C =时,max cos()1A C -=,当A C B π-=-或A C B π-=-时,min 3cos()cos 4A CB -=-=-,所以737cos()11644A C <-+≤, 即22sin sin A C +的取值范围是77(,]164.点评:求角的范围问题一般是转化为利用三角函数的范围来求.二、边的范围或最值【例2】:在锐角△ABC 中,A=2B ,则cb的取值范围是 .[解析]:由0222A B C A B πππ<=<<=--<且0,得64B ππ<<,所以2sin sin 3sin 2cos cos 2sin 4cos 1sin sin sin c C B B B B B B b B B B+====-,又23cos (,)22B ∈所以24cos 1(1,2)cB b=-∈. 【变式】:在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且BC 边上的高为a 63,则cb bc + 的最大值是( )A.8B. 6C.23D.4[解析]:由已知得,在△ABC 中,A bc a a sin 216321=⋅, 即A bc a sin 322=,又由余弦定理得A bc c b a cos 2222-+=,即222cos 2c b A bc a +=+,所以4)6sin(4cos 2sin 32cos 2sin 3222≤+=+=+=+=+πA A A bc A bc A bc bc c b c b b c . 故选D.点评:把边的问题转化为角的问题,化多元为一元,体现了解题的通性通法.下面这道高考题只需运用正弦定理即可,能想到方法就很简单,想不到就太难了,不愧是高考题!【好题欣赏】:(2015·新课标I )在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .[解析]: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =, 由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2; 平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=, 由正弦定理知o osin 30sin 75BF BC=,解得62BF =-, 所以AB 的取值范围为(62,6+2)-.三、周长的范围或最值【例3】: 已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos 3sin 0a C a C b c +--=. (1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.[解析]:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+, 即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得,1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理22222231492cos()3()()()344b c bc b c bc b c b c b c π=+-=+-≥+-+=+ 当且仅当b =c =7时等号成立,∴2()449b c +≤⨯,又∵b +c >7,∴7<b +c ≤14, 从而△ABC 的周长的取值范围是(14,21].【变式】: 在△ABC 中,角A,B,C 的对边分别为a,b,c ,且cos cos 2cos a C c A b B +=. (1)求B 的大小.(2)若b=5,求△ABC 周长的取值范围.[解析]:(1)因为cos cos 2cos a C c A b B +=,由正弦定理得sin cos sin cos 2sin cos A C C A B B +=,所以sin()2sin cos A C B B +=,于是1cos ,23B B π==.(2)由正弦定理10sin sin sin 3a b c A B C ===, 所以101010210sin 5sin 5sin()sin 510sin()363333a b c A C A A A ππ++=++=+-+=++又由02A π<<得2663A πππ<+<, 所以510sin()(10,15]6a b c A π++=++∈.点评:例4是运用余弦定理结合基本不等式求周长的范围,而变式是运用正弦定理结合三角函数求周长的范围,各有千秋,好好体会.四、面积的范围与最值【例4】:在△ABC 中,22223a b c ab +=+,若△ABC 的外接圆半径为322,则△ABC 的面积的最大值为 .[解析]:由22223a b c ab +=+及余弦定理得2221cos 23a b c C ab +-==,所以22sin 3C =,又由于2sin 4c R C ==,所以2222cos c a b ab C =+-,即2221623ab a b ab +=+≥,所以12ab ≤,又由于12sin 4223S ab C ab ==≤, 故当且仅当23a b ==时,ABC 的面积取最大值42.【变式】: 如图,在等腰直角三角形OPQ 中,∠POQ =90°,22=OP ,点M 在线段PQ 上. (1)若5OM =,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时, △OMN 的面积最小?并求出面积的最小值.[分析]:第(2)题求△OMN 的面积最小值,前面的要求也很明确:以∠POM 为自变量,因此,本题主要是如何将△OMN 的面积表示为∠POM 的函数关系式,进而利用函数最值求解.其中,利用正弦定理将OM 和ON 的长表示为∠POM 的函数是关键.[解析]:(1)在OMP ∆中,45OPM ∠=︒,OM =OP =, 由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=, 解得1MP =或3MP =. (2)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠,所以()sin 45sin 45OP OM α︒=︒+, 同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMNS OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒=⎣⎦====因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值. 即30POM ∠=︒时,△OMN 的面积的最小值为8-点评:面积问题是边长与角问题的综合,在例5中,知道角的具体值,就考虑边的变化,利用余弦定理结合基本不等式来求,而在变式中,不知道角的具体值,就考虑角的变化,利用三角函数范围求解.巩固训练:[解析]:设,,AB c AC b BC a ===,由余弦定理的推论222cos 2a c b B ac+-=,所以2223a c ac b +-==, 因为由正弦定理得2233sin sin sin ====BbC c A a ,所以C c sin 2=,A a sin 2=, 所以)sin 2(sin 2sin 22sin 22A C A R C R a c +=⨯+=+⎪⎭⎫ ⎝⎛-+=)32sin(2sin 2C C π ()α+=+=C C C sin 72)cos 3sin 2(272≤,(其中23tan =α), 另解:本题也可以用换元法设2c a m +=,代入上式得227530a am m -+-=,因为28430m =-≥,故m ≤当m =,此时a c ==符合题意,因此最大值为.[解析]:(1)由余弦定理知:2221cos 22b c a A bc +-==,∴3A π∠=; (2)由正弦定理得:2sin sin sin b c aB C A====,∴2sin b B =,2sin c C =, ∴22224(sin sin )b c B C +=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=-+-=B B C B 322cos 22cos 24)2cos 12cos 1(2π⎪⎭⎫⎝⎛---=B B 234cos 22cos 24π)62sin(242sin 32cos 4π-+=+-=B B B ,又∵203B π<<0,∴72666B πππ-<-<,∴12sin(2)26B π-<-≤, ∴2236b c <+≤.3.己知在锐角三角形中,角A ,B ,C 所对的边分别为a ,b ,c ,且222tan abC a b c =+-,(1)求角C 大小;(2)当c=1时,求ab 的取值范围.[解析]:(1)由已知及余弦定理,得sin 1,sin ,cos 2cos 2C ab C C ab C ==因为C 为锐角,所以 30=C , (2)由正弦定理,得121sin sin sin 2a b c A B C ====, 2sin ,2sin 2sin(30).a A b B A ∴===+︒4sin sin 4sin sin()6ab A B A A π==+2314sin (sin cos )23sin 2sin cos 22A A A A A A =+=+3sin 23cos2A A =+-32sin(2)3A π=+- 由090,015090A A ︒<<︒⎧⎨︒<︒-<︒⎩得6090.A ︒<<︒60260120,A ∴︒<-︒<︒3sin(2)123A π<-≤ 2332ab ∴<≤+.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.[解析]:(1)由正弦定理sin sin sin a b cA B C==可将2sin (2)sin (2)sin a A b c B c b C =+++变形为22(2)(2)a b c b c b c =+++, 整理可得222a b c bc =++,222b c a bc ∴+-=-,2221cos 222b c a bc A bc bc +--∴===-,0180A <<,∴120A =;(2) 由正弦定理得334sin sin ==C c B b , ∴[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B -+= )60sin(334cos 23sin 21334+=⎪⎪⎭⎫ ⎝⎛+=B B B ,∵ 120=A ,∴() 60,0∈B ,∴() 120,6060∈+B ,∴⎥⎦⎤ ⎝⎛∈+1,23)60sin( B ,∴⎥⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b , ∴周长⎥⎦⎤⎝⎛+∈++3342,4c b a[解析]:由2a =且 (2)(sin sin )()sin b A B c b C +-=-, 即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=, ∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤故答案为3.6. 在一个六角形体育馆的一角MAN 内,用长为a 的围栏设置一个运动器材存储区域(如图所示),已知0120A ∠=,B 是墙角线AM 上的一点,C 是墙角线AN 上的一点. (1)若BC=a=20,求存储区域面积的最大值;(2)若AB+AC=10,在折线MBCN 内选一点D,使BD+DC=20,求四边形存储区域DBAC 的最大面积.[解析]:(1)设AB x =,AC y =,0,0x y >>. 由22200202cos12022cos120x y xy xy xy =+-≥-,得22020202022cos1204sin 60xy ≤=-, ∴22020002000112020cos 60201003sin1202sin 60cos 60224sin 604sin 604tan 60S xy =≤⨯⨯===即四边形DBAC 面积的最大值为10033,当且仅当x y =时取到. (2)由20=+DC DB ,知点D 在以B,C 为焦点的椭圆上,∵32523101021=⨯⨯⨯=∆ABC S , ∴要使四边形DBAC 面积最大,只需△DBC 的面积最大,此时点D 到BC 的距离最大,即D 为椭圆短轴顶点,由310=BC ,得短半轴长5=b ,()325531021max =⨯⨯=∆BCD S ,因此,四边形ACDB 的面积的最大值为350.7.已知3()3f x x x m =-+,在区间[0,2]上任取三个数a,b,c,均存在以()()(),,f a f b f c 为边长的三角形,则m 的取值范围是( )出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.[解析]:由0)1)(1(333)('2=-+=-=x x x x f 得到1,121-==x x (舍去), ∵函数的定义域为[0,2],∴函数在(0,1)上0)('<x f ,在(1,2)上0)('>x f , ∴函数)(x f 在区间(0,1)单调递减,在区间(1,2)单调递增, 则,)0(,2)2()(,2)1()(max min m f m f x f m f x f =+==-== 由题意知,02)1(>-=m f ①;)2()1()1(f f f >+,即m m +>+-224②;由①②得6>m 为所求,故选B.。
【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题. 【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论。
例1.已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________ 【答案】222例2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【答案】C【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13C .43D .34【答案】CMNA BGQ考点:向量共线,基本不等式求最值【变式演练2】已知点A(1, 1),B(4,0),C(2,2).平面区域D由所有满足AP AB ACλμ=+(1≤≤a,1≤≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为.【答案】4考点:1、平面向量的线性运算;2、基本不等式. 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 . 6【解析】试题分析:对),(R AD AB AP ∈+=μλμλ两边平方可得()()22AP AB AD λμ=+可化为222222APAB AB AD ADλλμμ=+⋅⋅+,据已知条件可得22122λμ=+≥,即λμ≤,又()22212223λλμ=++=+≤,则λ+≤. 考点:向量的数量积运算;基本不等式方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论。
微专题三 最值与范围问题突破点一 距离与面积的最值(范围)【例1】 已知椭圆C :x 2a 2+y 23=1(a >3)的右焦点F 到左顶点的距离为3. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线与椭圆C 交于A ,B 两点(A ,B 不在x 轴上),若OE→=OA →+OB →,延长AO 交椭圆于点G ,求四边形AGBE 的面积S 的最大值. 解 (1)由已知得b 2=3,a +c =3,a 2=b 2+c 2. 联立以上3个式子,可得a 2=4, 所以椭圆C 的方程为x 24+y 23=1.(2)法一 因为过F (1,0)的直线与椭圆C 交于A ,B 两点(A ,B 不在x 轴上),所以设l 的方程为x =ty +1,由⎩⎪⎨⎪⎧x =ty +1,x 24+y 23=1,得(3t 2+4)y 2+6ty -9=0,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=-6t3t 2+4,y 1y 2=-93t 2+4.因为OE→=OA →+OB →,所以四边形AOBE 为平行四边形, 所以S =S ▱AOBE +S △OGB =3S △AOB =32|y 1-y 2| =32(y 1+y 2)2-4y 1y 2=18t 2+13t 2+4.令t 2+1=m ,则m ≥1,S =18m 3m 2+1=183m +1m.由函数的单调性易得当m =1,即t =0时,S max =92. 法二 由OE→=OA →+OB →知四边形AOBE 为平行四边形.所以S =S ▱AOBE +S △OGB =3S △AOB .当直线AB 的斜率不存在时,S =3S △AOB =92.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),k ≠0. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)y 2+6ky -9k 2=0.设A (x 1,y 1),B (x 2,y 2),得⎩⎪⎨⎪⎧y 1+y 2=-6k4k 2+3,y 1y 2=-9k 24k 2+3, 所以S =3S △AOB =32|y 1-y 2|=32(y 1+y 2)2-4y 1y 2=18k 4+k 24k 2+3.令4k 2+3=m ,则m >3,S =92-3×1m 2-2m +1<92.综上可知,四边形AGBE 的面积S 的最大值S max =92.探究提高 1.本题求四边形AGBE 面积的最值,首先分割,借助三角形面积转化为函数的最值问题;求解最值应用了两个技巧:一是换元,运用函数的性质;二是利用已知或隐含的不等关系构造不等式求解.2.若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.【训练1】 (2021·全国乙卷)已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4. (1)求p 的值;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.解 (1)由题意知M (0,-4),F ⎝ ⎛⎭⎪⎫0,p 2,圆M 的半径r =1,所以|MF |-r =4,即p 2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y ,由题意可知直线AB 的斜率存在,设A ⎝ ⎛⎭⎪⎫x 1,x 214,B ⎝ ⎛⎭⎪⎫x 2,x 224,直线AB 的方程为y=kx +b ,联立得⎩⎨⎧y =kx +b ,x 2=4y ,消去y 得x 2-4kx -4b =0,则Δ=16k 2+16b >0 (※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x 12,在点A处的切线方程为y -x 214=x 12(x -x 1),即y =x 12x -x 214.同理得抛物线在点B 处的切线方程为y =x 22x -x 224,联立得⎩⎪⎨⎪⎧y =x 12x -x 214,y =x 22x -x 224,则⎩⎪⎨⎪⎧x =x 1+x 22=2k ,y =x 1x 24=-b ,即P (2k ,-b ).因为点P 在圆M 上, 所以4k 2+(4-b )2=1 ①, 且-1≤2k ≤1,-1≤4-b ≤1, 所以-12≤k ≤12,3≤b ≤5,满足(※)式.设点P 到直线AB 的距离为d ,则d =|2k 2+2b |1+k 2,所以S △P AB =12|AB |·d =4(k 2+b )3.由①得,k 2=1-(4-b )24=-b 2+8b -154,令t =k 2+b ,则t =-b 2+12b -154,且3≤b ≤5.因为t =-b 2+12b -154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max=5,此时k =0,所以△P AB 面积的最大值为20 5. 突破点二 斜率与某些参数(式子)的范围(最值)【例2】 (2021·长沙联考)在平面直角坐标系xOy 中,设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是e ,定义直线y =±be 为椭圆的“类准线”,已知椭圆C 的“类准线”方程为y =±43,长轴长为8. (1)求椭圆C 的标准方程;(2)O 为坐标原点,A 为椭圆C 的右顶点,直线l 交椭圆C 于E ,F 两不同点(点E ,F 与点A 不重合),且满足AE ⊥AF ,若点P 满足2OP →=OE →+OF →,求直线AP 的斜率的取值范围.解 (1)由题意得b e =abc =43,2a =8,a 2=b 2+c 2, 联立以上3个式子,可得a 2=16,b 2=12,c 2=4. 所以椭圆C 的标准方程为x 216+y 212=1. (2)由(1)得A (4,0).易知直线l 不与x 轴平行. 当直线l ⊥x 轴时,不妨设点E 在点F 上方. 因为AE ⊥AF ,所以直线AE 的倾斜角为135°, 所以直线AE 的方程为y =-x +4. 由⎩⎪⎨⎪⎧y =-x +4,x 216+y 212=1,得7x 2-32x +16=0,解得x =47或x =4(舍去),所以x E =x F =47(x E ,x F 分别为点E ,F 的横坐标). 由2OP →=OE →+OF →得P ⎝ ⎛⎭⎪⎫47,0,直线AP 的斜率为0.当直线l 不垂直于x 轴时,设E (x 1,y 1),F (x 2,y 2),直线l :y =kx +t (t ≠-4k ,k ≠0).由⎩⎪⎨⎪⎧y =kx +t ,x 216+y 212=1消去y 并整理,得(3+4k 2)x 2+8ktx +4t 2-48=0. 则Δ=(8kt )2-4(3+4k 2)(4t 2-48)>0, 即16k 2-t 2+12>0,(*)x 1+x 2=-8kt 3+4k 2,x 1x 2=4t 2-483+4k 2.因为AE ⊥AF ,所以AE →·AF →=(x 1-4)(x 2-4)+y 1y 2 =(x 1-4)(x 2-4)+(kx 1+t )(kx 2+t ) =(1+k 2)x 1x 2+(kt -4)(x 1+x 2)+16+t 2 =7t 2+32kt +16k 23+4k 2=0,即7t 2+32kt +16k 2=0,所以(7t +4k )(t +4k )=0,解得t =-4k7且t 满足(*)式.所以2OP →=OE →+OF →=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫-8kt 3+4k 2,6t 3+4k 2, 所以P ⎝ ⎛⎭⎪⎫-4kt 3+4k 2,3t 3+4k 2.则直线AP 的斜率k AP =3t 3+4k 2-4kt 3+4k 2-4=-3t 16k 2+4kt +12=k 8k 2+7=18k +7k . 当k <0时,8k +7k ≤-28k ·7k =-414,此时-1456≤k AP <0;当k >0时,8k +7k ≥28k ·7k =414,此时0<k AP ≤1456.综上可得,直线AP 的斜率的取值范围为⎣⎢⎡⎦⎥⎤-1456,1456.探究提高 1.本题的易错点有两处:一是忘记讨论直线l ⊥x 轴时的情形,从而遗漏了k AP =0这个取值;二是利用基本不等式求解8k +7k 的取值范围时,直接根据k >0求解其最小值,得到0<k AP ≤1456,遗漏了对k <0的讨论.2.圆锥曲线中求解含双变量的式子的取值范围的方法:几何条件定代换,目标关系式求范围.求k AP 的取值范围,分三步完成:第一步,消参,将直线l 的方程与椭圆C 的方程联立,由条件“AE ⊥AF ”得到关于k ,t 的等量关系t =-4k7(此时需要检验判别式Δ>0);第二步,将等量关系t =-4k7代入目标关系式,化简得k AP =18k +7k;第三步,通过对k 的分类讨论,求出斜率k AP 的取值范围. 【训练2】 已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x 0,y 0)⎝ ⎛⎭⎪⎫-12<x 0<32. (1)求直线AP 斜率的取值范围;(2)Q 是以AB 为直径的圆上一点,且AP →·BQ →=0,求AP →·PQ →的最大值. 解 (1)设直线AP 的斜率为k ,则k =x 20-14x 0+12=x 0-12,且-12<x 0<32, 则-1<x 0-12<1.所以直线AP 斜率的取值范围是(-1,1). (2)由题意可知,AP→与AQ →同向共线,BQ ⊥AQ , 联立直线AP 与BQ 的方程得 ⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|AP |=1+k 2⎝ ⎛⎭⎪⎫x 0+12=1+k 2·(k +1),|PQ |=1+k 2(x Q -x 0)=-(k -1)(k +1)2k 2+1,所以AP →·PQ →=|AP →|·|PQ →|=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,在⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,AP →·PQ→取得最大值2716.突破点三 范围(最值)的探索性问题【例3】 (2021·天津模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,P 是椭圆C 上的一个动点.当P 是C 的上顶点时,△F 1PF 2的面积为 3.(1)求椭圆C 的标准方程;(2)设斜率存在的直线PF 2与C 的另一个交点为Q ,是否存在点T (t ,0),使得|TP |=|TQ |?若存在,求出t 的取值范围;若不存在,请说明理由. 解 (1)设椭圆C 的半焦距为c .因为S △F 1PF 2=12×2c ×b =3,所以bc = 3. 又e =c a =12,a 2=b 2+c 2,所以a =2,b =3,c =1. 所以椭圆C 的标准方程为x 24+y 23=1. (2)假设存在点T (t ,0),使得|TP |=|TQ |.由直线PQ 过F 2(1,0),设直线PQ 的方程为y =k (x -1),P (x 1,y 1),Q (x 2,y 2),PQ 的中点为N (x 0,y 0). 当k =0时,t =0,符合题意. 当k ≠0时,由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0,Δ=(-8k 2)2-4(4k 2+3)(4k 2-12)=144k 2+144>0,x 1+x 2=8k 24k 2+3.所以x 0=x 1+x 22=4k 24k 2+3,y 0=k (x 0-1)=-3k4k 2+3,即N ⎝ ⎛⎭⎪⎫4k24k 2+3,-3k 4k 2+3. 连接TN ,因为|TP |=|TQ |,所以TN ⊥PQ , 则k TN ·k =-1(k TN 为直线TN 的斜率). 所以3k 4k 2+3t -4k 24k 2+3·k =-1,即t =k 24k 2+3=14+3k 2.因为4+3k 2>4,所以t ∈⎝ ⎛⎭⎪⎫0,14.综上可得,t 的取值范围为⎣⎢⎡⎭⎪⎫0,14.探究提高 1.探索性问题的求解步骤:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则,元素(点、直线、曲线或参数)不存在. 2.本题的求解体现了数形结合思想在解答圆锥曲线问题中的应用.解题关键是如何将题设条件中的几何关系“|TP |=|TQ |”转化成代数关系“k TN ·k =-1”,由此建立t 关于k 的函数关系式,进而求出t 的取值范围.【训练3】 已知椭圆方程为y 24+x 23=1,若抛物线x 2=2py (p >0)的焦点是椭圆的一个焦点.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于A ,B 两点,分别在点A ,B 处作抛物线的切线,两条切线交于P 点,则△P AB 的面积是否存在最小值?若存在,求出这个最小值及此时对应的直线l 的方程;若不存在,请说明理由. 解 (1)由椭圆y 24+x 23=1,知a 2=4,b 2=3. 所以c =a 2-b 2=4-3=1.又抛物线x 2=2py (p >0)的焦点是椭圆的一个焦点, 所以p2=1,则p =2. 于是抛物线的方程为x 2=4y .(2)△P AB 的面积存在最小值,理由如下: 由抛物线方程x 2=4y 知,F (0,1).易知直线l 的斜率存在,则设直线l 的方程为y =kx +1. 由⎩⎨⎧y =kx +1,x 2=4y 消去y 并整理,得x 2-4kx -4=0, 且Δ=(-4k )2-4(-4)=16k 2+16>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 对y =x 24求导,得y ′=x 2,所以直线AP 的斜率k AP =x 12.则直线AP 的方程为y -y 1=x 12(x -x 1),即y =x 12x -14x 21.同理得直线BP 的方程为y =x 22x -14x 22. 设点P (x 0,y 0),联立直线AP 与BP 的方程, 得⎩⎪⎨⎪⎧x 0=x 1+x 22=2k ,y 0=x 1x 24=-1,即P (2k ,-1).|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·(4k )2+16=4(1+k 2),点P 到直线AB 的距离d =|2k 2+2|1+k 2=21+k 2, 所以△P AB 的面积S =12×4(1+k 2)×21+k 2=4(1+k 2)32≥4,当且仅当k =0时等号成立.故△P AB 的面积存在最小值4,此时直线l 的方程为y =1.1.(2021·全国乙卷)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ →=9QF →,求直线OQ 斜率的最大值.解 (1)由抛物线的定义可知,焦点F 到准线的距离为p ,故p =2, 所以C 的方程为y 2=4x .(2)由(1)知F (1,0),设P (x 1,y 1),Q (x 2,y 2), 则PQ →=(x 2-x 1,y 2-y 1),QF →=(1-x 2,-y 2). 因为PQ →=9QF →,所以⎩⎨⎧x 2-x 1=9(1-x 2),y 2-y 1=-9y 2,得⎩⎨⎧x 1=10x 2-9,y 1=10y 2,∵点P 在抛物线C 上,所以y 21=4x 1,则(10y 2)2=4(10x 2-9),化简得y 22=25x 2-925, 则点Q 的轨迹方程为y 2=25x -925.设直线OQ 的方程为y =kx ,易知当直线OQ 与曲线y 2=25x -925相切时,斜率可以取最大.联立y =kx 与y 2=25x -925并化简,得k 2x 2-25x +925=0, 令Δ=⎝ ⎛⎭⎪⎫-252-4k 2·925=0,解得k =±13, 所以直线OQ 斜率的最大值为13.2.已知椭圆C :x 25+y 2=1的左、右焦点分别为F 1,F 2,点M ,N 在椭圆C 上.(1)若线段MN 的中点坐标为⎝ ⎛⎭⎪⎫2,13,求直线MN 的斜率;(2)若M ,N ,O 三点共线,直线NF 1与椭圆C 交于N ,P 两点,求△PMN 面积的最大值.解 (1)设M (x 1,y 1),N (x 2,y 2),则x 215+y 21=1,x 225+y 22=1,两式相减,可得(x 1+x 2)(x 1-x 2)5+(y 1+y 2)(y 1-y 2)=0, 则4(x 1-x 2)5+2(y 1-y 2)3=0, 解得y 1-y 2x 1-x 2=-65,即直线MN 的斜率为-65. (2)显然直线NF 1的斜率不为0,设直线NF 1:x =my -2,N (x 1,y 1),P (x 2,y 2),联立⎩⎪⎨⎪⎧x =my -2,x 25+y 2=1,消去x 整理得(m 2+5)y 2-4my -1=0,显然Δ=20(m 2+1)>0,故y 1+y 2=4m m 2+5,y 1y 2=-1m 2+5, 故△PMN 的面积S △PMN =2S △OPN=2×12·|OF 1|·|y 1-y 2|=45·m 2+1m 2+5, 令m 2+1=t ,其中t ≥1.S △PMN =45t t 2+4=45t +4t ≤452t ·4t =5, 当且仅当t =2,即m =±3时等号成立,故△PMN 面积的最大值为 5.3.已知椭圆E :y 2a 2+x 2=1(a >1)的离心率为32,圆A :x 2+(y -a )2=r 2(r >0)与椭圆E相交于B ,C 两点.(1)求AB →·AC→的最小值; (2)若F 1,F 2分别是椭圆E 的上、下焦点,经过点F 1的直线l 与椭圆E 交于M ,N 两点,O 为坐标原点,则△OF 2N 与△OF 2M 的面积之和是否存在最大值?若存在,求出这个最大值及此时直线l 的方程;若不存在,请说明理由.解 (1)由e =c a =a 2-1a =32,得a =2.所以椭圆E 的标准方程为y 24+x 2=1,则圆心A 的坐标为(0,2).设B (x 0,y 0),由对称性得C (-x 0,y 0),且y 204+x 20=1,所以AB →·AC →=(x 0,y 0-2)·(-x 0,y 0-2) =(y 0-2)2-x 20=(y 0-2)2-⎝⎛⎭⎪⎫1-y 204 =54y 20-4y 0+3=54⎝ ⎛⎭⎪⎫y 0-852-15. 由题意知-2<y 0<2,所以当y 0=85时,AB →·AC →取得最小值,最小值为-15. (2)由题意知F 1(0,3),F 2(0,-3),直线l 的斜率一定存在. 设l :y =kx +3,M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +3,y 24+x 2=1,消去y 并整理得(4+k 2)x 2+23kx -1=0, Δ=(23k )2+4(4+k 2)=16k 2+16>0,则x 1+x 2=-23k 4+k 2,x 1x 2=-14+k 2. 所以△OF 2N 与△OF 2M 的面积之和 S =12×3|x 2-x 1|=32×(x 1+x 2)2-4x 1x 2=32×⎝ ⎛⎭⎪⎫-23k 4+k 22-4⎝ ⎛⎭⎪⎫-14+k 2 =32×16k 2+16(4+k 2)2=23×1+k 2(4+k 2)2. 令t =1+k 2,则t ≥1,所以S =23×t (t +3)2=23×1t +9t +6≤23×112=23×123=1,当且仅当t=9t,即t=3,k=±2时等号成立.所以当k=±2时,△OF2N与△OF2M的面积之和取得最大值,且最大值为1,此时直线l的方程为2x-y+3=0或2x+y-3=0.。
解三角形专题练:周长最值与范围问题(含答案解析)求周长的最值或取值范围的问题,通常有两种途径,其一是运用余弦定理结合基本不等式求解,其二是运用正弦定理、辅助角公式结合三角函数求解.一、知识点1.基本不等式:ab b a 2≥+;2.正弦定理:Cc B b A a sin sin sin ==,余弦定理:A bc c b a cos 2222-+=等;3.和差公式:()βαβαβα±=±sin sin cos cos sin ;()βαβαβα cos cos cos cos cos =±4.二倍角公式:αααcos sin 22sin =,ααα22sin cos 2cos -=,ααα2tan 1tan 22tan -=.5.辅助角公式:),sin(cos sin )(22ϕ++=+=x b a x b x a x f (其中ab =ϕtan ).二、典型例题【例1】:△ABC 的内角A,B,C 的对边分别为a,b,c 且满足a=2,cos (2)cos a B c b A =-.(1)求角A 的大小;(2)求△ABC 周长的范围.【解析】:(1)解法一:由已知,得cos cos 2cos a B b A c A +=.由正弦定理,得sin cos sin cos 2sin cos A B B A C A +=.即sin()2sin cos A B C A +=,因为sin()sin A B C +=.所以sin 2sin cos C C A =.因为sin 0C ≠,所以1cos 2A =,因为0A π<<,所以3A π=.解法二:结合余弦定理222222(2)22a c b b c a a c b ac bc +-+-⨯=-⨯,即222b c a bc +-=.所以2221cos 22b c a A bc +-==.因为0A π<<,所以3A π=.(2)解法一:由余弦定理2222cos a b c bc A =+-,得224bc b c +=+,即2()34b c bc +=+.因为22⎪⎭⎫⎝⎛+≤c b bc ,所以()()44322++≤+c b c b .即4≤+c b (当且仅当2b c ==时等号成立).又因为a c b >+,所以64≤++<c b a .解法二:sin sin sin a b c A B C ==,且2a =,3A π=,所以43sin 3b B =,433c C =,所以22sin )2[sin sin()]24sin()3336a b c B C B B B ππ++=++=++-=++,因为203B π<<,所以64≤++<c b a ,【例2】:已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos sin 0a C C b c +--=.(1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.【解析】:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+,即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理()()()()222222414333cos249c b c b c b bc c b bc c b +=+-+≥-+=-+=π,当且仅当b =c =7时等号成立,所以2()449b c +≤⨯,又因为b +c >a,所以7<b +c ≤14,从而△ABC 的周长的取值范围是(14,21].三、巩固练习1.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++.(Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.2.已知△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足sin (sin )A B B C +=.(1)求角A 的大小;(2)若a=3,求△ABC 周长的取值范围.3.锐角△ABC 中,角A,B,C 所对的边分别为a,b,c ,且(cos )0c a B B -+=.(1)求角A 的大小;(2)若a =ABC 周长的取值范围.4.在△ABC 中,角A,B,C 的对边分别为a,b,c ,b=4,()sin ()(sin sin )a c A b c B C -=-+.(1)求角B ;(2)求△ABC 周长的最大值.5.在△ABC 中,角A,B,C 的对边分别为a,b,c ,且2,3==a A π.(1)求△ABC 的周长的取值范围;(2)求22c b +的取值范围.6.如图,在四边形ABCD 中,CD =BC =,7cos14CBD ∠=-.(1)求BDC ∠;(2)若3A π∠=,求△ABD 周长的最大值.7.(2020·理2)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.8.已知a ,b ,c 分别为锐角△ABC 的三个内角A ,B ,C 的对边,若a =2,且)sin (sin sin 2sin C A A B +=,求△ABC 的周长的取值范围.9.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =- ,(1,cos cos )n a C c A =+,且//m n.(1)求角C 的大小;(2)若c =,求ABC ∆的周长的取值范围.10.在△ABC 中,角A,B,C 的对边分别为a,b,c ,请在①(2)cos cos 0a c B b A ++=;②22cos cos sin (sin sin )A B C C A -=+中选择一个作为已知条件,解答下列问题.我选择__________.(1)求角B 的大小;(2)若3b =,求△ABC 周长的取值范围.11.在△ABC 中,角A 、B 、C 所对的边分别为c b a 、、,且满足A b B a cos 3sin =.(1)求角A 的大小;(2)若4=a ,求△ABC 周长的最大值.12.已知在△ABC 2)12sin2C A B +=+.(1)求角C 的大小;(2)若BAC ∠与ABC ∠的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.13.(2021•上海浦东新区三模)已知函数f (x )=A sin (ωx +φ)(ω>0,20πϕ<<)的部分图象如图所示.(1)求函数f (x )的解析式;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若22=⎪⎭⎫⎝⎛A f ,a =2,求△ABC 周长的取值范围.四、答案与解析1.【解析】:(1)由正弦定理sin sin sin a b cA B C ==,由2sin (2)sin (2)sin a A b c B c b C =+++⇒22(2)(2)a b c b c b c =+++,整理得222a b c bc =++,即bc a c b -=-+222,所以2122cos 222-=-=-+=bc bc bc a c b A ,因为1800<<A ,所以120=A ;(2)由正弦定理得334sin sin ==C c B b ,所以[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B-+=)60sin(334cos 23sin 21334 +=⎪⎪⎭⎫ ⎝⎛+=B B B ,因为120=A ,所以()60,0∈B ⇒()120,6060∈+B ,⇒⎥⎦⎤⎝⎛∈+1,23)60sin(B ⇒⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b ,所以周长⎥⎦⎤⎝⎛+∈++3342,4c b a .2.【解析】:(1)由A B C π++=,得sin sin()C A B =+,代入已知条件得:sin sin cos cos sin A B A B A B A B +=⇒sin sin sin A B A B =,因为0sin ≠B,由此得tan A =,因为π<<A 0,所以3π=A .(2)由上可知:23B C π+=,所以B C -=32π.由正弦定理得:32sin sin 3a R A π===所以232(sin sin )sin()]sin )6sin()326b c R B C B B B B B ππ+=+=+-=+=+,因为由203B π<<得:16sin 21≤⎪⎭⎫ ⎝⎛+<πB ,所以63≤+<c b ,且3a =,故△ABC 周长的取值范围为(6,9].3.【解析】:(1)因为锐角△ABC 中(cos )0c a B B -+=,所以由正弦定理可得sin sin (cos )0C A B B -+=,所以sin sin cos sin C A B A B ∴-=,所以sin()sin cos sin A B A B A B ∴+-=,所以3sin cos sin cos sin cos sin sin 3A B A B A B A B ∴+-=,即3sin cos sin 3A B A B =,约掉sin A 变形可得sin tan cos B B B ==,3A π=;(2)因为3=a ,3A π=,所以32π=+C B ,所以由正弦定理可得sin 2sin sin a B b B A ==,sin 2sin sin a Cc C A==,所以△ABC 周长为2sin 2sin a b c B C ++=++22sin 2sin()3B B π=++-312sin 2(sin )22B B B =++2sin sin B B B =+3sin B B =+1cos )22B B =+)6B π=++,因为320π<<B ⇒5666B πππ<+<⇒16sin 21≤⎪⎭⎫ ⎝⎛+<πB ⇒326sin 323≤⎪⎭⎫ ⎝⎛+<πB ,所以336sin 32332≤⎪⎭⎫ ⎝⎛++<πB ,所以△ABC 周长的取值范围为.4.【解析】:(1)由正弦定理知,sin sin sin a b cA B C==,因为()()()C B c b A c a sin sin sin +-=-,所以()()()c b c b a c a +-=-,整理得222a c b ac +-=,由余弦定理知,2221cos 222a cb ac B ac ac +-===,因为()π,0∈B ,所以3π=B .(2)由(1)知,3B π=,所以32π=+C A ,由正弦定理知,4sin sin sin sin 3a cb A C B π====A a sin 38=,c C =,所以()⎪⎪⎭⎫ ⎝⎛++=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=+=+A A A A A C A c a sin 21cos 23sin 3832sin sin 38sin sin 38π3(sin ))8sin(266A A A A ππ=+=+=+,因为⎪⎭⎫ ⎝⎛∈32,0πA ,所以⎪⎭⎫ ⎝⎛∈+65,66πππA ,当62A ππ+=,即3A π=时,a c +取得最大值8,所以1248=+≤++c b a ,故△ABC 周长的最大值为12.5.【解析】:(1)由正弦定理得,k A a C c B b =====334232sin sin sin ,易得:C B C k c B k b -===π32,sin ,sin ,所以⎪⎭⎫ ⎝⎛+=+=+6sin 4)sin (sin πC C B k c b 由⎪⎭⎫ ⎝⎛∈π32,0C ,得⎪⎭⎫⎝⎛∈+65,66πππC ,则有:]4,2(∈+c b 又2=a ,则].6,4(∈++=∆c b a l ABC (2)()⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-=+=+)62sin(211sin )32(sin sin sin 222222222ππC k C C k C B k c b 由⎪⎭⎫ ⎝⎛∈π32,0C ,得⎪⎭⎫ ⎝⎛-∈-67,662πππC ,则]21,41(62sin 21-∈⎪⎭⎫ ⎝⎛-πC ,所以23,43(62sin 211∈⎪⎭⎫ ⎝⎛-+πC 又3162=k ,则].8,4(22∈+c b 6.【解析】:(1)在BCD ∆中,7cos 14CBD ∠=-,所以321sin 14CBD ∠===,由正弦定理得sin sin CD BCCBD BDC=∠∠,所以321sin 114sin 2BC CBD BDC CD ⋅∠∠===,又因为CBD ∠为钝角,所以BDC ∠为锐角,故6BDC π∠=;(2)在BCD ∆中,由余弦定理得2222cos214BC BD CD CBD BC BD +-∠===-⋅,解得4BD =或5BD =-(舍去),在△ABD 中,3A π∠=,设AB x =,AD y =,由余弦定理得22222161cos 222AB AD BD x y A AB AD xy +-+-===⋅⇒2216x y xy +-=⇒2()163x y xy +-=,又0x >,0y >,利用基本不等式得()()4331622y x xy y x +≤=-+,即()642≤+y x ,当且仅当4x y ==时,等号成立,所以x y +的最大值为8,所以AB AD BD ++的最大值为8412+=,所以△ABD 周长的最大值为12.7.【解析】:(1)由正弦定理可得:222BC AC AB AC AB --=⋅,所以2221cos 22AC AB BC A AC AB +-∴==-⋅,因为()0,A π∈ ,所以23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.因为22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),所以()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),所以△ABC 周长3L AC AB BC =++≤+ABC 周长的最大值为3+.8.【解析】:因为a =2,且)sin (sin sin 2sin C A A B +=,所以由正弦定理可得b 2=a 2+ac ,由余弦定理可得bac bc ac c bc a b c A 222cos 2222+=+=-+=,同理可得:b ac B 2cos -=,即⎩⎨⎧=-=+Ba a c Ab ac cos 2cos 2,消去c ,可得B a A b a cos 2cos 22-=,由正弦定理可得B A A B A cos sin 2cos sin 2sin 2-=,即)sin(2sin 2A B A -=,可得B =2A ,由正弦定理B b A a sin sin =,可得AbA 2sin sin 2=,可得A b cos 4=,因为△ABC 为锐角三角形,且π=++C B A ,所以220π<<A ⇒46ππ<<A ⇒23cos 22<<A ⇒3222<<b .又因为a =2,即b 2=4+2c ,所以△ABC 的周长为b b b b c b a +=-++=++2221242,由二次函数性质可得,△ABC 的周长的取值范围为:(326,224++).9.【解析】:(1)由//m n得22cos 2cos cos a C c A C b +=-,由正弦定理sin sin sin a b cA B C==,得2cos (sin cos sin cos )sin C A C C A B +=-,即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=;(2)解法一:在△ABC 中,因为c =,23C π∠=,由余弦定理得2223c a b ab =++=,即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b <+≤,则2a b c <++≤+,即ABC ∆的周长的取值范围为(.解法二:由正弦定理知:2233sin sin sin ====CcB b A a ,则A a sin 2=,B b sin 2=3sin 2sin 2++=∆B A l ABC 332sin 2sin 23)sin(2sin 2+⎪⎭⎫ ⎝⎛++=+++=πA A C A A 33sin 23cos 3sin +⎪⎭⎫ ⎝⎛+=++=πA A A 因为0,3A π⎛⎫∈ ⎪⎝⎭,则2,333A πππ⎛⎫+∈ ⎪⎝⎭,故sin ,132A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭因此()32,32+=∆ABC l .10.【解析】:(1)若选①,已知(2)cos cos 0a c B b A ++=.则:(sin 2sin )cos sin cos 0A C B B A ++=,整理得:sin cos cos sin 2sin cos 0A B A B C B ++=,解得:1cos 2B =-,又0B π<<,所以23B π=.若选②,因为()A C C B A sin sin sin cos cos 22+=-.所以()C A C B A sin sin sin sin 1sin 1222+=---,所以C A B C A sin sin sin sin sin 222-=-+,所以ac b c a -=-+222,所以212cos 222-=-+=ac b c a B ,又0B π<<,所以32π=B .(2)解法一:因为23B π=,3b =,所以由余弦定理知,()()()2222222432cos 29c a c a c a ac c a B ac c a b +=⎪⎭⎫ ⎝⎛+-+≥-+=-+==,当且仅当3==c a 时,等号成立,所以32≤+c a ,又因为b c a >+,所以3326+≤++<c b a .解法二:因为sin sin sin a b c A B C ===,所以A a sin 32=,c C =,则△ABC 的周长()33sin sin 323sin sin 32+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=++=++=A A C A c b a lπ1sin )32A A A =+-+)33A π=++,因为30π<<A ,2333A πππ<+<,所以13sin 23≤⎪⎭⎫ ⎝⎛+<πA ,即33233sin 326+≤+⎪⎭⎫ ⎝⎛+<πA ,所以△ABC 周长的取值范围是(6,3]+.11.【解析】:(1)依正弦定理Bb A a sin sin =可将A b B a cos 3sin =化为A B B A cos sin 3sin sin =又因为在△ABC 中,0sin >B ,所以A A cos 3sin =,即3tan =A ,因为π<<A 0,所以3π=A .(2)因为△ABC 的周长c b c b a ++=++=4,所以当c b +最大时,△ABC 的周长最大.解法一:因为bc c b A bc c b a 3)(cos 2162222-+=-+==,所以316)(2-+=c b bc 4)(2c b bc +≤且,所以()()431622c b c b +≤-+,所以()642≤+c b ,所以8≤+c b (当且仅当4==c b 时等号成立)所以△ABC 周长的最大值12.解法二:因为sin sin sin 332a b c A B C ====,所以()83832sin sin sin sin 8sin 3336b c B C B B B ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,20,3B π⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭故当且仅当3B π=时,b c +取到最大值8所以△ABC 周长的最大值1212.【解析】:(1)因为2)12sin 2C A B +=+,且A B C π++=,11cos 2cos C C C =+-=-cos 2C C +=⇒26sin 2=⎪⎭⎫ ⎝⎛+πC .因为()π,0∈C ⇒⎪⎭⎫ ⎝⎛∈+67,66πππC ⇒26ππ=+C ,即3C π=.(2)因为△ABC 的外接圆半径为2,所以由正弦定理知,4223sin sin =⨯==∠πAB ACB AB ,所以32=AB ,因为3π=∠ACB ,所以32π=∠+∠BAC ABC ,因为BAC ∠与ABC ∠的内角平分线交于点Ⅰ,所以3π=∠+∠BAI ABI ,所以32π=∠ABI ,设ABI θ∠=,则3BAI πθ∠=-,且03πθ<<,在△ABI中,由正弦定理得,42sin sin sin()sin 33BI AI AB AIB ππθθ====∠-,所以⎪⎭⎫ ⎝⎛-=θπ3sin 4BI ,θsin 4=AI ,所以△ABI的周长为314sin()4sin 4(cos sin )4sin 322πθθθθθ+-+=-+2sin 4sin(3πθθθ=+=++,因为30πθ<<,所以2333πππθ<+<,所以当32ππθ+=,即6πθ=时,△ABI的周长取得最大值为4+,故△ABI的周长的最大值为4+.13.【解析】:(1)根据函数的图象,函数的周期πππ=⎪⎭⎫ ⎝⎛-⨯=12512112T ,故ω=2.由于点⎪⎭⎫ ⎝⎛0,125π满足函数的图象,所以01252sin =⎪⎭⎫ ⎝⎛+⨯ϕπA ,由于20πϕ<<,所以6πϕ=.由于点(0,1)在函数的图象上,所以A =2.故函数⎪⎭⎫ ⎝⎛+=62sin 2)(πx x f .(2)由于26sin 2)2(=⎪⎭⎫ ⎝⎛+=πA A f ,所以3π=A .由正弦定理:34sin sin ==A a B b ,整理得B b sin 34=,同理⎪⎭⎫ ⎝⎛-==B C c 32sin 34sin 34π,由于⎪⎭⎫ ⎝⎛∈32,0πB ,所以⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛-++=++=∆6sin 4232sin 34sin 342ππB B B c b a l ABC ,由于⎪⎭⎫ ⎝⎛∈32,0πB ⇒⎪⎭⎫ ⎝⎛∈+65,66πππB ⇒⎥⎦⎤ ⎝⎛∈⎪⎭⎫ ⎝⎛+1,216sin πB .所以:l △ABC ∈(4,6].。
经典好题:参数方程中的取值范围与最值问题1.已知曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),点P 是曲线C 上的动点.(1)求曲线C 的普通方程;(2)已知点Q 是直线:2(0)l y x m m =+>上的动点,若P Q 、之间的距离PQ 最小m 的值.解:(1)Q 曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数)可得cos sin y αα==⎩,故()()2222sin cos 1y αα+=+= ∴曲线C 的普通方程:2212x y +=(2)Q 点P 是曲线C 上的动点, 由曲线C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α是参数),可设点),sin Pαα又Q Q 是直线:2(0)l y x m m =+>上的动点, 要保证P Q 、之间的距离PQ 取最小值,只需保证点),sin P αα到直线:2(0)l y x m m =+>距离最小设),sin Pαα到直线:20l x y m -+=距离为d根据点到直线距离公式可得:d==tan ϕ=Q 0m >∴()sin 1αϕ-=时d取最小值,=8m =或2m =-(舍)∴8m =点评:考查了参数方程化为直角方程和直线与椭圆动点距离最值问题,解题关键是掌握点到直线距离公式和辅助角公式,考查了分析能力和计算能力,属于中档题.2.在直角坐标系xOy 中,曲线C 的方程为221124x y +=,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l()cos 40a a πθ⎛⎫- ⎪⎝=>⎭. (1)求直线l 的直角坐标方程;(2)已知P 是曲线C 上的一动点,过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45°,若PA 的最大值为6,求a 的值. 解:(1cos 4a πθ⎛⎫- ⎪⎭=⎝cos cos sin sin 44a ππθθ⎛⎫+= ⎪⎝⎭, 即cos sin a ρθρθ+=. ∵cos x ρθ=,sin y ρθ=,∴直线l 的直角坐标方程为x y a +=,即0x y a +-=.(2)依题意可知曲线C的参数方程为2sin x y αα⎧=⎪⎨=⎪⎩(α为参数).设(),2sin P αα,则点P 到直线l 的距离为:d ==∵0a >, ∴当sin 13πα⎛⎫+=- ⎪⎝⎭时,max d =.又过点P 作直线1l 交直线于点A ,且直线1l 与直线l 的夹角为45o ,∴cos 45dPA=o,即PA =. ∴PAmax 6=6=.∵2a >,∴解得2a =.点评:考查直线的极坐标方程与直角坐标方程的互化,第二问考查了利用椭圆的参数方程求最值,属于中档题.3.在直角坐标系xOy 中,曲线1C的参数方程为2cos ,sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C的极坐标方程为ρθ=-.(1)求曲线2C 的直角坐标方程;(2)设曲线1C 与2C 交于,A B两点,若(2,P ,求||||PA PB +的取值范围. 解:(1)cos ,sin x y ρθρθ==Q ,由ρθ=-,∴曲线2C的直角坐标方程为220x y ++=.(2)将曲线1C 的参数方程代入曲线2C 的直角坐标方程, 化简得24cos 10t t α++=, 由>0∆,得21cos4α>. 设,A B 两点对应的参数分别为12,t t , 则12124cos ,10t t t t α+=-=>,12||||4|cos |PA PB t t α∴+=+=,又1cos 12α<≤,24|cos |4α∴<≤, ||||PA PB ∴+的取值范围为(2,4].点评:考查了极坐标方程与直角坐标方程的互化,重点考查了直线参数方程中参数的几何意义,属基础题.4.在平面直角坐标系中,直线l 的参数方程为102x t y t =⎧⎨=-⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为223645cos ρθ=+.(1)求直线l 的普通方程以及曲线C 的参数方程;(2)过曲线C 上任意一点M 作与直线l 的夹角为60︒的直线,交l 于点N ,求MN 的最小值解:(1)将直线l 的参数方程消去参数t , 可得直线l 的普通方程为210x y +-=0.将222p x y =+,cos x ρθ=代入曲线C 的极坐标方程, 可得曲线C 的直角坐标方程为229436x y +=,即22149x y +=故曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)(2)设()2cos ,3sin M ϕϕ,则M 到l 的距离d ==,其中tan 43r =.如图,过点M 作MP l ⊥于点P ,则d MP =,则在Rt MNP △中,sin60||dMN ︒==.当()sin 1r ϕ+=时,d故MN =点评:考查参数方程与普通方程的互化、极坐标方程与直角坐标方程的互化、点到直线的距离公式,考查学生分析问题、解决问题的能力,运算求解能力,考查数形结合思想. 5.在直角坐标系xOy 中,曲线C 1的参数方程为cos 2sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为22413sin ρθ=+.(1)写出曲线C 1和C 2的直角坐标方程;(2)已知P 为曲线C 2上的动点,过点P 作曲线C 1的切线,切点为A ,求|PA |的最大值.解:(1)由cos 2sin x y αα=⎧⎨=+⎩(α为参数),消去参数α,可得22(2)1x y +-=.∴曲线C 1的直角坐标方程为22(2)1x y +-=; 由22413sin ρθ=+,得ρ2+3ρ2sin 2θ=4, 即x 2+y 2+3y 2=4,即2214x y +=.∴曲线C 2的直角坐标方程为2214x y +=;(2)∵P 为曲线C 2上的动点,又曲线C 2的参数方程为2cos sin x y αα=⎧⎨=⎩∴设P (2cos α,sin α), 则P 与圆C 1的圆心的距离d ===. 要使|P A |的最大值,则d 最大,当sin α23=-时,d∴|P A |3==. 点评:考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与圆位置关系的应用,考查计算能力,是中档题.6.在中面直角坐标系xOy 中,已知1C:6x ty =-⎧⎪⎨=⎪⎩t 为参数),2C :2cos 22sin x y θθ=⎧⎨=+⎩(其中θ为参数).以O 为极点、x 轴的非负半轴为极轴建立极坐标系(两种坐标系的单位长度相同).(1)求1C 和2C 的极坐标方程;(2)设以O 为端点、倾斜角为α的射线l 与1C 和2C 分别交于A ,B 两点,求OA OB的最小值.解:(1)在6x ty =-⎧⎪⎨=⎪⎩中,消去参数t,得)6y x =-0y +-=.由cos x ρθ=,sin y ρθ=,得)sin ρθθ+=,所以1C的极坐标方程为πsin 3ρθ⎛⎫+= ⎪⎝⎭(未化成这种形式可不扣分) 在2cos 22sin x y θθ=⎧⎨=+⎩中,消去参数θ,得()2224x y +-=,即2240x y y +-=.由cos x ρθ=,sin y ρθ=,得24sin 0ρρθ-=,即4sin ρθ=.(2)射线l 的极坐标方程为θα=,则OA =4sin OB α=.所以OAOB==12sin 26α=+- ⎪⎝⎭. 故OA OB当且仅当πsin 216α⎛⎫-= ⎪⎝⎭即π3α=时取得. 点评:考查把参数方程化成极坐标方程和利用极径的几何意义求最值,中档题. 7.以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为2cos sin 60ρθρθ+-=,曲线C 的参数方程为:2cos 3sin x y αα=⎧⎨=⎩(α为参数)(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)直线l 与x 轴、y 轴分别交于A ,B 两点,设点P 为C 上的一点,求PAB △的面积的最小值.解:(1)直线l 的直角坐标方程为260x y +-=;因为22cos sin 1αα+=,所以曲线C 的普通方程为22149x y +=;(2)对直线l ,令0y =可得3x =,则(3,0)A ;令0x =可得6y =,则(0,6)B ,设(2cos ,3sin )P αα,点P 到直线l的距离d ==其中34cos ,sin 55ϕϕ==, PAB △的面积35sin()611222S AB d αϕ⨯+-=⋅⋅=⨯=,当sin()=1αϕ+时,PAB △的面积取得最小值32. 点评:考查参数方程、普通方程、极坐标方程的相互转化,利用参数方程及三角函数的有界性解决三角形面积的最值问题,涉及辅助角公式、点到直线的距离公式的应用,属于基础题.8.在平面直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,⊙O的极坐标方程为ρθ=. (1)写出⊙O 的直角坐标方程;(2)P 为直线上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由222,sin x y y ρρθ=+=得222sin x y ρθρθ=⇒=⇒+=,即⊙O的直角坐标方程为220x y +-=,即22(3x y +=;(2)设P点坐标为1(3)2t +, P 到圆心C的距离d ==≥= 当0t =时,P 到圆心C的距离取最小值 此时(3,0)P .点评:考核极坐标方程和普通方程的互化,考查直线参数方程的应用,是基础题. 9.在平面直角坐标系xOy 中,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2212,1sin ρθ=+射线(0)4πθρ=≥交曲线C 于点A ,倾斜角为α的直线l 过线段OA 的中点B 且与曲线C 交于P 、Q 两点. (1)求曲线C 的直角坐标方程及直线l 的参数方程;(2)当直线l 倾斜角α为何值时, |BP |·|BQ |取最小值, 并求出|BP |·|BQ |最小值. 解:(1)由题,因为22121sin ρθ=+,即()221sin 12ρθ+=, 因为222sin x y yρρθ⎧=+⎨=⎩, 所以22212x y y ++=,即22212x y +=,则曲线C 的直角坐标方程为221126x y +=,因为射线(0)4πθρ=≥交曲线C 于点A ,所以点A 的极坐标为4π⎛⎫ ⎪⎝⎭,则点A 的直角坐标为()2,2,所以OA 的中点B 为()1,1,所以倾斜角为α且过点B 的直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数).(2)将直线l 的参数方程1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数)代入曲线C 的方程221126x y+=中,整理可得()()222cos2sin 2cos 4sin 90t t αααα+++-=,设P 、Q 对应的参数值分别是1t 、2t ,则有12229cos 2sin t t αα-=+, 则1222299cos 2sin 1sin BP BQ t t ααα⋅===++,因为(]0,απ∈,当sin 1α=,即2πα=时,BP BQ ⋅取得最小值为92点评:考查极坐标方程与直角坐标方程的转化,考查直线的参数方程,考查最值问题.10.已知曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以直角坐标系的原点o 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程是:12cos sin 6θθρ+=(Ⅰ)求曲线C 的普通方程和直线l 的直角坐标方程:(Ⅱ)点P 是曲线C 上的动点,求点P 到直线l 距离的最大值与最小值.解:(Ⅰ)∵曲线C 的参数方程为2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),∴曲线C 的普通方程为22149x y +=,∵直线l 的极坐标方程是:12cos sin 6θθρ+=,∴2cos sin 6ρθρθ+=,∴直线l 的直角坐标方程为260x y +-=. (Ⅱ)∵点P 是曲线C 上的动点,∴设()2cos ,3sin P ϕϕ,则P 到直线l 的距离:d ==,∴当()sin 1ϕθ+=-时,点P 到直线l距离取最大值max d ==; 当()sin 1ϕθ+=时,点P 到直线l距离取最小值min d ==点评:考查参数方程、直角坐标方程、极坐标方程的互化以及曲线上的点到直线的距离的最值的求法,还考查了运算求解能力,属于中档题.11.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为sin 26πρα⎛⎫+= ⎪⎝⎭,曲线C 的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数). (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)以曲线C 上的动点M 为圆心、r 为半径的圆恰与直线l 相切,求r 的最大值. 解:(1)由sin 26πρα⎛⎫+=⎪⎝⎭1sin cos 22ραρα+=, 将sin y ρα=,cos x ρα=代入上式,得直线l 的直角坐标方程为40x +-=.由曲线C的参数方程2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),得曲线C 的普通方程为22143x y +=.(2)设点M的坐标为()2cos θθ, 则点M 到直线l:40x +-=的距离为2cos 3sin 42d θθ+-==2tan 3ϕ=,ϕ为锐角), 当d r =时,圆M 与直线l 相切,故当()sin 1θϕ+=-时,r 取最大值,且r. 点评:考查极坐标方程与直角坐标方程互化,参数方程与普通方程互化,考查椭圆参数方程的应用,属于中档题.12.在平面直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C的极坐标方程为ρ=.(1)直接写出曲线2C 的普通方程;(2)设A 是曲线1C 上的动点,B 是曲线2C 上的动点,求AB 的最大值.解:(1)曲线2C 的普通方程为2214y x +=;(2)由曲线1C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),得曲线1C 的普通方程为2224x y -+=(), 它是一个以20C (,)为圆心,半径等于2的圆, 则曲线2C 的参数方程为:cos (2sin x y βββ=⎧⎨=⎩为参数),∵A 是曲线1C 上的点,B 是曲线2C 上的点,∴max max 2AB BC =+.设cos 2sin B ββ(,),则BC, ∴当2cos =3β-时,max 3BC∴max23AB =+. 点评:考查利用互化公式将极坐标方程转化为普通方程,利用消参法将参数方程化为普通方程,运用曲线的参数方程表示点坐标,以及结合两点间的距离和二次函数的性质,求出距离最值,考查转化思想和计算能力.13.在直角坐标系xOy 中,曲线1C的参数方程是sin x y αα⎧=⎪⎨=⎪⎩(α是参数).以原点O 为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程是sin 4πρθ⎛⎫ ⎪⎭=⎝+(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,过P 点且与x 垂直的直线交2C 于点A ,求||PA 的最小值,并求此时点P 的直角坐标.解:(1)由曲线1:sin x C y αα⎧=⎪⎨=⎪⎩,可得:cos sin yαα⎧=⎪⎨⎪=⎩两式两边平方相加可得:曲线1C 的普通方程为:2213x y +=.由曲线2:sin 4C πρθ⎛⎫+= ⎪⎝⎭(sin cos )2ρθθ+= 即()sin cos 8ρθθ+=,所以曲线2C 的直角坐标方程为:80x y +-=. (2)由(1)知椭圆1C 与直线2C 无公共点,椭圆上的点),sin Pαα到直线80x y +-=的距离为d ==, 当sin 13πα⎛⎫+= ⎪⎝⎭时,d的最小值为 此时||PA 的最小值为6,此时点P 的坐标为31,22⎛⎫⎪⎝⎭. 点评:考查利用消去参数的方法将参数方程化为普通方程,利用关系式222cos ,sin tan x y x y y x ρρθρθθ⎧⎧+==⎪⎪⎨⎨==⎪⎪⎩⎩等可以将极坐标方程与直角坐标方程互化,利用点到直线距离的公式和三角恒等变换的辅助角公式求距离最值问题.14.在平面直角坐标系xOy 中,将曲线方程()()22221164x y -++=,先向左平移2个单位,再向上平移2个单位,得到曲线C .(1)点M (x ,y )为曲线C 上任意一点,写出曲线C的参数方程,并求出12x 的最大值;(2)设直线l 的参数方程为22x ty t=⎧⎨=-⎩,(t 为参数),又直线l 与曲线C 的交点为E ,F ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段EF 的中点且与l 垂直的直线的极坐标方程. 解:(1)将曲线方程()()22221164x y -++=,先向左平移2个单位,再向上平移2个单位,得到曲线C 的方程为()()2222221164x y -++-+=,即221164x y +=, 故曲线C 的参数方程为42x cos y sin θθ=⎧⎨=⎩(θ为参数);又点M (x ,y )为曲线C 上任意一点,所以12x =2cos θθ-=4cos (3πθ+).所以12x 的最大值为4; (2)由(1)知曲线C 的直角坐标方程为221164x y +=,又直线l 的参数方程为22x ty t=⎧⎨=-⎩,(t 为参数),所以直线l 的普通方程为x +2y ﹣4=0,所以有222401164x y x y +-=⎧⎪⎨+=⎪⎩,解得40x y =⎧⎨=⎩或02x y =⎧⎨=⎩.所以线段EF 的中点坐标为(402022++,), 即线段EF 的中点坐标为(2,1), 直线l 的斜率为12-, 则与直线l 垂直的直线的斜率为2,故所求直线的直角坐标方程为y ﹣1=2(x ﹣2), 即2x ﹣y ﹣3=0,将x =ρcos θ,y =ρsin θ代入,得其极坐标方程为2ρcos θ﹣ρsin θ﹣3=0.点评:考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,中点坐标公式,直线与曲线位置关系的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.15.在平面直角坐标系中,曲线1C的参数方程为x y ⎧=⎪⎪⎨⎪=⎪⎩(θ为参数,0πθ≤≤,π2θ≠),以标原点O 为极点,x轴的非负半轴为极轴建立极坐标系,曲线2π:cos 4C ρθ⎛⎫-= ⎪⎝⎭(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)若点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最小值. 解:(1)由已知可得222224tan 2tan 112tan 1x y θθθ⎧=⎪⎪+⎨⎪=⎪+⎩,所以2222x y +=,又0θπ≤≤且2πθ≠,所以(]0,1y =,故1C 普通方程为2212x y +=(01y <≤),由2π:cos 4C ρθ⎛⎫-= ⎪⎝⎭cos sin 20ρθρθ+-=, 所以2C :20x y +-=. (2)设),sin Pϕϕ,(0ϕπ<<).则点P 到直线20x y +-=的距离2d ϕα-+===,其中tan α=当()sin1ϕα+=时,min 2d ==.所以PQ点评:考查参数方程转化为普通方程、极坐标方程转化为直角坐标方程和利用参数坐标求点到直线距离的最值,考查学生转化思想和计算能力,属于中档题.。
三角形中的最值、范围问题一、知识与方法1、正弦定理可将边用角的正弦值表示:2sin sin sin a b cR A B C===, 2sin a R A =,2sin b R B =,2sin c R C =2、在三角形ABC ∆中,若 222c a b =+,则C 为直角;若 222c a b >+,则C 为钝角;若 222c a b <+, 则C 为锐角;3、在锐角三角形中,已知角C ,求B 的范围,可由下列限制条件求出:02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩ 4、三角形有关最值和范围求解(1)利用余弦定理和基本不等式进行解答; (2)利用正弦定理和三角函数值域进行解答; 例如:已知角C ,求解 sin sin m A n B +的范围 :解题方法:()()sin sin =sin +sin sin +sin m A n B m A n A C m A n A C π+--=+,再利用三角函数和差角公式和辅助角公式进行化简,求出三角函数的值域;注意:若三角形为锐角三角形,已知角C ,则需满足02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,从而进一步限制B 的范围.(3)利用三角形三边关系进行解答; 若为锐角三角形,则222222222c a b b a c a b c ⎧<+⎪<+⎨⎪<+⎩,若为钝角三角形,如角C 为钝角,则222c a b a b c ⎧>+⎨+>⎩二、题型训练题型一 利用余弦定理和基本不等式求面积与周长最值问题例1.(2021•丙卷模拟)在ABC ∆中角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )sin ()a b A B C b c -+=+,2b c +=,则ABC ∆的面积的最大值为( )A .14B C .12D 【解答】解:因为()(sin sin )sin ()a b A B C b c -+=+, 由正弦定理得()()()a b a b c b c -+=+, 所以222a b bc c -=+,由余弦定理得2221cos 22b c a A bc +-==-,由A 为三角形内角得23A π=, 因为2b c +=, 所以2()12b c bc +=,所以113sin 1222ABC S bc A ∆=⨯⨯=1b c ==时取等号, 故选:B . 方法点拨:本题考查正弦定理的边角互化、余弦定理和基本不等式求最值,熟练利用正余弦定理和基本不等式是解题的关键. 巩固训练:1.(2021•河南模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+,当ABC ∆的外接圆半径2R =时,ABC ∆面积的最大值为( )A B .C .D .【解答】解:2cos cos cos a A b C c B =+,∴由正弦定理可得2sin cos sin cos sin cos A A B C C B =+,即2sin cos sin()sin A A B C A =+=,(0,)A π∈, 1cos 2A ∴=,即3A π=,由余弦定理,2221222b c bc bc bc =+-⨯⨯-, 则12bc ,(当且仅当b c =时等号成立),ABC ∴∆的面积11sin 1222S bc A=⨯=b c =时,等号成立, 故选:C .2.在ABC ∆中,A ,B ,C 的对边分别为a ,b ,c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC ∆面积的最大值为( )A .B .C .D .【解答】解:已知等式整理得:1cos sin cos cos sin sin()sin 2b A A C A C A C B =+=+=,即2sin cos b B A=,由正弦定理sin sin a b A B =2cos A =,即sin tan cos AA A==60A ∴=︒,由余弦定理得:2222cos a b c bc A =+-,即22122b c bc bc bc bc =+--=,则1sin 332ABC S bc A ∆=,即ABC ∆面积的最大值为故选:B .3.(2021春•鼓楼区校级期末)在ABC ∆中,1cos 2a c Bb =+.(1)若7a b +=,ABC ∆的面积为c ; (2)若4c =,求ABC ∆周长的最大值. 【解答】解:(1)由正弦定理知,sin sin sin a b cA B C==, 1cos2a c Bb =+,∴1sin sin cos sin 2A C B B =+,即1sin()sin cos sin 2B C C B B +=+,1sin cos cos sin sin cos sin 2B C B C C B B ∴+=+,∴1sin cos sin 2B C B =,sin 0B ≠,∴1cos 2C =, (0,)C π∈,∴3C π=,11sin 22S ab C ab ===12ab ∴=,由余弦定理知,22222cos ()3493613c a b ab A a b ab =+-=+-=-=,∴c =(2)由余弦定理知,2222cos c a b ab A =+-,2222()()16()3()344a b a b a b ab a b ++∴=+-+-⋅=, 8a b ∴+,当且仅当4a b ==时,取等,ABC ∴∆周长的最大值为4812+=.4.(2021•一模拟)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin ()0a c A C B a b -+--=.(1)求C ;(2)若ABC S ∆=,2c =,求ABC ∆周长的最小值.【解答】解:(1)ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin 0a c A C b a B -++-=.利用正弦定理得:()()()0a c a c b a b -++-=,整理得:2220a c b ab -+-=,即2221cos 22a b c C ab +-==,由于0C π<<, 所以:3C π=.(2)因为11sin sin 223ABC S ab C ab π∆====,所以解得8ab =,所以周长22a b c ab c +++=,当且仅当a b ==所以ABC ∆周长的最小值为2.5.(2021•永州模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c (sin )b A A =. (1)求B ;(2)若3b =,求ABC ∆周长最大时,ABC ∆的面积.【解答】解:(1)(sin )b A A =,∴sin (sin )C B A A =,∴)sin sin cos A B B A B A +=+,∴cos cos sin sin cos A B B A B A B A =+,∴sin B B =,∴tan B ,0B π<<,∴3B π=.(2)222cos 2a c b B ac+-=, 据(1)可得3B π=,∴222122a c b ac +-=,222b ac ac ∴=+-,29()3a c ac ∴=+-,∴222()9()3()24a c a c a c +++-=, 当且仅当3a c ==时等号成立,即当3a c ==时,a c +取得最大值,即周长取得最大值,此时133sin 23ABC S π∆=⨯⨯⨯=6.(2021•巴中模拟)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin(),3b A a B b π=+=. (1)求ABC ∆的外接圆直径; (2)求ABC ∆周长的取值范围. 【解答】解:(1)sin sin()3b A a B π=+,∴由正弦定理,可得sin sin sin sin()3B A A B π=+,(0,)A π∈,sin 0A >,∴sin sin()3B B π=+,化简可得,1sin 2B B =,∴tan B =,(0,)B π∈,∴3B π=,由正弦定理可得,ABC ∆的外接圆直径21sin bR B ===. (2)由(1)可知,3B π=,由余弦定理可得,222b a c ac =+-, 222221()3()3()()24a cb ac ac a c a c +∴=+-+-=+, 当且仅当a c =时,等号成立,b , 2()3ac ∴+,即3a c +,又a cb +>=,∴3a c <+,∴332a b c++,ABC ∴∆的取值范围为.题型二 利用正弦定理和三角函数值域求三角形角度有关的最值、范围问题 例2.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求∠B 的大小; (Ⅱ)求cos A +cos C 的最大值.【解答】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+ac .∴a 2+c 2﹣b 2=ac .∴cos B ===,∴B =(Ⅱ)由(I )得:C =﹣A ,∴cos A +cos C =cos A +cos (﹣A )=cos A ﹣cos A +sin A=cos A +sin A =sin (A +). ∵A ∈(0,), ∴A +∈(,π),故当A +=时,sin (A +)取最大值1,即cos A +cos C 的最大值为1.方法点拨:本题考查了余弦定理、三角形内角和、三角函数和差角公式、辅助角公式以及三角函数值域,熟练掌握余弦定理、三角函数辅助角公式、三角函数值域求解的方法是解题的关键. 巩固训练:1.(2021•沈阳四模)在①2cos cos c b Ba A-=,②2cos 2a C c b +=,③1sin cos sin 2cos 2a A C c A A +=这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cos cos B C +的取值范围. 【解答】解:(1)选① 因为2cos cos c b Ba A -=, 所以2sin sin cos sin cos C B BA A-=, 所以2sin cos sin cos sin cos C A B A A B -=,整理得2sin cos sin cos sin cos sin()sin C A B A A B A B C =+=+=. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选②因为2cos 2a C c b +=,所以2sin cos sin 2sin 2sin()A C C B A C +==+, 所以2sin cos sin 2sin cos 2cos sin A C C A C A C +=+, 整理得sin 2cos sin C A C =. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选③因为1sin cos sin 2cos 2a A C c A A +,所以sin sin cos sin sin cos cos A A C C A A B A +=,所以sin (sin cos sin cos )cos A A C C A B A +=,整理得sin sin cos A B B A =.因为sin 0B ≠,所以sin A A =.因为(0,)2A π∈,所以tan 3A A π=.(2)因为3A π=,所以1cos cos cos cos()cos sin()26B C B B A B B B π+=-+=+=+.因为2(0,),(0,)232B C B πππ∈=-∈,所以(,)62B ππ∈,所以2(,)633B πππ+∈,所以sin()6B π+∈,故cos cos B C +∈.2.(2021•下城区校级模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin b B a A c A -=.(1)求证:2B A =;(2)若ABC ∆是锐角三角形,求sin sin AC的取值范围. 【解答】解:(1)由sin sin sin b B a A c A -=得22b a ac -=, 由余弦定理2222cos b a c ac B =+-, 代入22b a ac -=得22cos ac c ac B =-, 则2cos a c a B =-,由正弦定理得sin sin 2sin cos A C A B =-,所以sin sin()2sin cos A A B A B =+-,得sin sin()A B A =-, 由220b a ac -=>知b a >,故B A >, 所以A B A =-或()A B A π+-=(舍去) 所以2B A ⋯=,(2)3C A π=-,由0,02,03222A A A ππππ<<<<<-<得64A ππ<<,sin sin sin sin sin sin3sin(2)sin cos2cos sin 2A A A AC A A A A A A A===++,32sin 11(,1)3sin 4sin 34sin 2A A A A ==∈--.题型三 利用正弦定理和三角函数值域求三角形边长有关的最值、范围问题例3.(2021•汕头三模)在①22(sin sin )sin 3sin sin B C A B C +=+,②22cos c a B b =+,③cos cos 2cos 0b C c B a A +-=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC ∆中,内角A ,B ,C 的对边长分别为a ,b ,c ,且____.(1)求角A 的大小;(2)若ABC ∆是锐角三角形,且2b =,求边长c 的取值范围. 【解答】解:(1)选条件①.因为22(sin sin )sin 3sin sin B C A B C +=+, 所以222sin sin sin sin sin B C A B C +-=, 根据正弦定理得,222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=选条件②,因为1cos 2c a B b =+,由余弦定理222122a c b c a b ac +-=⨯+,整理得222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=.选条件③,因为cos cos 2cos 0b C c B a A +-=, sin cos sin cos 2sin cos 0B C C B A A ∴+-=.sin()2sin cos B C A A ∴+=,即sin 2sin cos A A A =因为0A π<<,sin 0A ≠.∴1cos 2A =, ∴3A π=;(2)因为3A π=,ABC ∆为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<在ABC ∆中,2sin sin c C B=,所以212sin()sin )322sin sin B B B c B B π-+===,即1c . 由62B ππ<<可得,tan B >,所以10tan B<<,所以14c <<. 方法点拨:本题第一问考查正余弦定理的变形及应用,第二问边长范围问题考查正弦定理的边角互化,结合锐角三角形角度的范围和三角函数值域求解出角度的范围.巩固训练:1.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且220c a ab --=. (1)求证:2C A =;(2)若2a =,求c 的取值范围.【解答】解:(1)证明:因为220c a ab --=, 结合余弦定理,得2222cos c a b ab C =+-, 所以22cos ab b ab C =-,即2cos a b a C =-,由正弦定理,得sin sin 2sin cos sin()2sin cos A B A C A C A C =-=+- sin cos sin cos sin()C A A C C A =-=-,因为ABC ∆为锐角三角形, 所以A C A =-,即2C A =; (2)由(1)2C A =, 由正弦定理,得sin sin a cA C=,所以2cos 4cos c a A A ==,由题意,得02032022A A A ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,解得64A ππ<<,所以4cos c A =∈.2.(2021春•慈溪市期末)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m 、n 满足:(2,6)m a =,(,2sin )n b B =,且//m n . (Ⅰ)求角A ;(Ⅱ)若ABC ∆是锐角三角形,且2a =,求b c +的取值范围. 【解答】解:(Ⅰ)因为//mn ,所以2a Bb =,2sin a B=, 由正弦定理得:2sin sin A B B =, 因为sin 0B≠, 所以sin A , 所以3A π=或23π. (Ⅱ)因为2a =,所以由正弦定理得sin sin sin a b c A B C ====,得:b B ,c C =,所以21sin )sin()]sin ]4sin()326b c B C B B B B B B ππ++=+-=++=+,因为ABC ∆是锐角三角形, 所以02B π<<,且2032B ππ<-<,可得62B ππ<<, 所以2363B πππ<+<sin()16B π<+,所以4b c <+.3.(2021春•青山湖区校级期中)在ABC ∆中,3B π=,AC ,则2AB BC +的最大值为( )A.B.C .3 D .4【解答】解:因为3B π=,AC由正弦定理得2sin sin sin a c bA C B===,所以2sin a A =,22sin 2sin()3c C A π==-,由则222sin()4sin 5sin )3AB BC A A A A A πϕ+=-++=+,其中ϕ为辅助角,根据正弦函数的性质得)A ϕ+的最大值 故选:B .4.(2021•B 卷模拟)在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且有2b =. 在下列条件中选择一个条件完成该题目:①cos (cos )cos 0C B B A +-=;②2sin (2)sin (2)sin a A b c B c b C =-+-. (1)求A 的大小; (2)求2a c +的取值范围.【解答】解:(1)若选择①,因为cos (cos )cos 0C B B A +-=, 所以cos()cos cos cos 0A B B A B A -++=,即cos cos sin sin cos cos cos 0A B A B B A B A -++=,所以sin sin cos A B B A =, 因为sin 0B ≠,可得sin A A =,所以tan A =,可得3A π=;若选择②,因为2sin (2)sin (2)sin a A b c B c b C =-+-. 所以222222a b bc c bc =-+-,所以222bc b c a =+-,可得2221cos 22b c a A bc +-==,可得3A π=.(2)设ABC ∆外接圆半径为R ,则有22sin sin b R B B==, 可得222122(2sin sin )sin )sin())sin )1sin sin sin 2a c R A C C A B B B B B B +=+==+=+=,因为ABC ∆为锐角三角形,可得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,所以sin B 在(6π,)2π单调递增,cos B 在(6π,)2π(6π,)2π单调递减,所以21a c +∈,4).5.(2021•肥城市模拟)已知锐角ABC ∆的外接圆半径为1,内角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ; (2)求bca的取值范围. 【解答】解:(1)2224)S c b =+-,∴222)4a b c S +-=,∴1cos 4sin 2C ab C =⨯sin C C =,cos 0C ∴≠,tan C又(0,)C π∈∴3C π=,(2)ABC ∆的外接圆半径为1,∴2sin cC=, 又正弦定理sin sin sin a b cA B C==, 2sin a A ∴=,2sin b B =,∴21sin()sin)3322sin sin2tanA A Abca A A Aπ-+======+,又因为ABC∆是锐角三角形,∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<,∴tan A>,1tan A<<,32tan A<<∴bca<<6.(2021春•庐阳区校级期末)在ABC∆中,内角A,B,C所对的边分别为a,b,c,(1cos)cosa b C c B++=.(1)求角C的大小;(2)若c=,求ABC∆周长的取值范围.【解答】解:(1)因为(1cos)cosa b C c B++=,所以由正弦定理得sin sin(1cos)sin cosA B C C B++=,又sin()sin()sinB C A Aπ+=-=,所以sin()sin sin cos sin cos0B C B B C C B+++-=,所以2sin cos sin0B C B+=,因为(0,)Bπ∈,所以sin0B≠,所以1cos2C=-,又(0,)Cπ∈,所以23Cπ=.(2)因为c=,23Cπ=,所以由正弦定理得2sin sin sin3b aB A===,则2sinb B=,2sina A=,故ABC∆的周长2sin2sin2sin2sin()3L B A B Bπ+=+-2sin2(sin cos cos sin)33B B Bππ=+-sin B B=+2sin()3B π=++,因为03B π<<,所以(33B ππ+∈,2)3π,sin()3B π+∈1],2sin()3B π+∈2+,故ABC ∆周长的取值范围为2.7.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A ,所以sin A A , 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =,可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =3sin a B=, 所以ABC∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.8.(2021•烟台模拟)在条件①222sin sin sin sin A B C B C --=,②1cos 2b a Cc =+,③(cos )cos cos 0C C A B +=中,任选一个补充在下面问题中并求解. 问题:在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,1c =,____. (1)求A ;(2)求ABC ∆面积的取值范围.【解答】解:(1)若选①222sin sin sin sin A B C B C --=,由正弦定理得222a b c --=,由余弦定理得222cos 2b c a A bc +-=, 由A 为三角形内角得6A π=;(2)14ABC S b ∆=,由正弦定理得51sin()cos sin 1622sin sin sin 2tan C C Cc Bb CC C C π-====,由题意得02506C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32C ππ<<,所以tan Cb <ABC S ∆<<故ABC ∆面积的取值范围; (1)若选②1cos 2b a Cc =+,由正弦定理得1sin sin cos sin 2B AC C =+,所以1sin()sin cos sin 2A C A C C +=++,所以1sin cos sin cos sin cos sin 2A C C A A C C +=+,化简得1sin cos sin 2C A C =,因为sin 0C >, 所以1cos 2A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围; (1)若选③(cos )cos cos 0C C A B +=,所以(cos )cos cos()0C C A A C -+=,化简得sin sin cos A C C A =, 因为sin 0C >,所以tan A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围.题型四 利用三角形三边关系求解范围问题例4.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >, cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π=,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>, 解得122a <<,可得ABC ∆面积13sin 234S a π==∈.方法点拨:本题求解三角形面积的取值范围,由于一边和角度已知,可转化为求边长的范围,利用锐角三角形三边关系列出不等关系,从而求解出面积范围. 巩固训练:1.(2021•新高考Ⅱ)在ABC ∆中,角A ,B ,C 所对的边长为a ,b ,c ,1b a =+,2c a =+.(Ⅰ)若2sin 3sin C A =,求ABC ∆的面积;(Ⅱ)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 【解答】解:()2sin 3sin I C A =,∴根据正弦定理可得23c a =,1b a =+,2c a =+, 4a ∴=,5b =,6c =,在ABC ∆中,运用余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯,22sin cos 1C C +=,sin C ∴===∴11sin 4522ABC S ab C ∆==⨯⨯=()II c b a >>,ABC ∴∆为钝角三角形时,必角C 为钝角, 222222(1)(2)cos 022(1)a b c a a a C ab a a +-++-+==<+,2230a a ∴--<, 0a >, 03a ∴<<,三角形的任意两边之和大于第三边, a b c ∴+>,即12a a a ++>+,即1a >, 13a ∴<<,a 为正整数,2a ∴=.。
高考数学优质专题(附经典解析)
最值或取值范围问题
基本方法:
最值或取值范围问题解题策略一般有以下几种:
(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.
(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围; ②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;
③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围;
④利用基本不等式求出参数(自变量)的取值范围;
⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围.
最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.
一、典型例题
1. 已知抛物线2y x =和C :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.
2.
已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=(O 为坐标原点).
求当AB <数λ的取值范围.
二、课堂练习
1. 已知椭圆C :2214
x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.
2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.
三、课后作业
1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.
x
2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD 面积的最小值及此时直线AD 的方程.
3. 已知F 为椭圆2
214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交
椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.
x。