复数综合复习卷
- 格式:doc
- 大小:125.50 KB
- 文档页数:2
专题6.4 复 数【考试要求】1.通过方程的解,认识复数;2.理解复数的代数表示及其几何意义,理解两个复数相等的含义;3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义. 【知识梳理】 1.复数的有关概念内容 意义 备注复数的概念形如a +b i(a ∈R ,b ∈R )的数叫复数,其中实部为a ,虚部为b若b =0,则a +b i 为实数;若a =0且b ≠0,则a +b i 为纯虚数复数相等a +bi =c +di ⇔a =c 且b =d(a ,b ,c ,d∈R)共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +b i ,则向量OZ →的长度叫做复数z =a +b i 的模|z |=|a +b i|=a 2+b 22.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ →.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ;(2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i≠0).【微点提醒】 1.i 的乘方具有周期性 i n=⎩⎪⎨⎪⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系z ·z -=|z |2=|z -|2.3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( ) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)虚部为b ;(2)虚数不可以比较大小. 【教材衍化】2.(选修2-2P106A2改编)若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1 B.2 C.1或2 D.-1【答案】 B【解析】 依题意,有⎩⎪⎨⎪⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.3.(选修2-2P116A1改编)复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i【答案】 C【解析】 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i.【真题体验】4.(2017·全国Ⅱ卷)3+i1+i =( )A.1+2iB.1-2iC.2+iD.2-i【答案】 D 【解析】3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 5.(2018·北京卷)在复平面内,复数11-i 的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】 D 【解析】11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i 的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 【答案】 -1【解析】 ∵z =-1+i ,则z 2=-2i , ∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 【考点聚焦】考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( )A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( )A.2-iB.2+iC.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i 为纯虚数,则实数a 的值为( )A.1B.0C.-12D.-1【答案】 (1)D (2)D (3)D【解析】 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 【规律方法】1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.2.解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i (2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1【答案】 (1)B (2)C【解析】 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B.(2)∵1-i =2+a i1+i ,∴2+a i =(1-i)(1+i)=2,解得a =0.故选C. 考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i 对应的点关于实轴对称,则z =( )A.1+iB.-1-iC.-1+iD.1-i【答案】 (1)D (2)D 【解析】 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D.【规律方法】1.复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i【答案】 (1)D (2)D【解析】 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D. 考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D. 2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】 (1)D (2)C (3)C (4)-1+i【解析】 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i2i=2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.【规律方法】 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式. (3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i5B.2+i5C.1-2i5D.1+2i5(3)设z =1+i(i 是虚数单位),则z 2-2z=( )A.1+3iB.1-3iC.-1+3iD.-1-3i【答案】 (1)D (2)D (3)C【解析】 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i 5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z=2i -(1-i)=-1+3i.故选C.【反思与感悟】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z =a +b i(a ,b ∈R )是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z =a +b i(a ,b ∈R ),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识. 【易错防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.注意复数的虚部是指在a +b i(a ,b ∈R )中的实数b ,即虚部是一个实数. 【分层训练】【基础巩固题组】(建议用时:30分钟) 一、选择题1.已知复数(1+2i)i =a +b i ,a ∈R ,b ∈R ,则a +b =( ) A.-3 B.-1 C.1 D.3【答案】 B【解析】 因为(1+2i)i =-2+i ,所以a =-2,b =1,则a +b =-1,选B. 2.(2018·浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A.1+iB.1-iC.-1+iD.-1-i【答案】 B【解析】 因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i的共轭复数为1-i.故选B. 3.设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( ) A.2-i B.2+i C.1D.-1-2i【答案】 A【解析】 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i ,故选A. 4.下列各式的运算结果为纯虚数的是( ) A.i(1+i)2B.i 2(1-i) C.(1+i)2D.i(1+i)【答案】 C【解析】 i(1+i)2=i·2i=-2,不是纯虚数,排除A ;i 2(1-i)=-(1-i)=-1+i ,不是纯虚数,排除B ;(1+i)2=2i ,2i 是纯虚数.故选C. 5.设z =11+i +i(i 为虚数单位),则|z |=( )A.12B.22C.32D.2【答案】 B【解析】 因为z =11+i +i =1-i (1+i )(1-i )+i =1-i 2+i =12+12i ,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22. 6.若a 为实数,且1+2ia +i 为实数,则a =( )A.1B.12C.-13D.-2【答案】 B【解析】 因为1+2i a +i =(1+2i )(a -i )(a +i )(a -i )=a +2+(2a -1)i a 2+1是一个实数,所以2a -1=0,∴a =12.故选B.7.(2019·豫南九校质量考评)已知复数a +i2+i=x +y i(a ,x ,y ∈R ,i 是虚数单位),则x +2y =( )A.1B.35C.-35D.-1【答案】 A【解析】 由题意得a +i =(x +y i)(2+i)=2x -y +(x +2y )i ,∴x +2y =1,故选A.8.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z -对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限【答案】 A【解析】 由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z -=1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A. 二、填空题9.(2018·天津卷)i 是虚数单位,复数6+7i1+2i =________.【答案】 4-i 【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i. 10.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 【答案】 5【解析】 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5. 11.(2019·西安八校联考)若a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________.【答案】 -7 【解析】 ∵a +b i i=(a +b i )(-i )-i2=b -a i ,(2-i)2=4-4i -1=3-4i ,a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,∴b =3,a =-4,则a -b =-7,故答案为-7.12.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________. 【答案】 -2+i【解析】 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i. 【能力提升题组】(建议用时:15分钟)13.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i (i 是虚数单位),则b =( )A.-2B.-1C.1D.2【答案】 A【解析】 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i 13,a ∈R ,所以6+3b13=0⇒b =-2,故选A.14.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件 【答案】 B【解析】 由复数z =(x 2-4)+(x +2)i 为纯虚数,得⎩⎪⎨⎪⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B.15.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2【答案】 B【解析】 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i 2=i ,1-i1+i=-i ,∴⎝ ⎛⎭⎪⎫1+i 1-i 2 019+⎝ ⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.16.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i ,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85C.|z |=3D.z 在复平面内对应的点在第一象限 【答案】 D【解析】 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5,11 ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D.。
复习验收卷(五) 平面向量与复数(时间:120分钟 满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·浙江“超级全能生”联考)已知复数z 满足z (1+3i)=1-i(i 为虚数单位),则复数z 的虚部为( ) A.-25B.25C.-25ID.25i答案 A 解析 z =1-i 1+3i=-15-25i ,虚部为-25,故选A.2.(2020·武汉调研)已知向量a =(1,1),b =(-1,3),c =(2,1),且(a -λb )∥c ,则λ=( ) A.3 B.-3C.17D.-17答案 C解析 由题意知a -λb =(1+λ,1-3λ),c =(2,1).若(a -λb )∥c ,则(1+λ)×1-2(1-3λ)=0,解得λ=17,故选C.3.如图,若向量OZ→对应的复数为z ,则z +4z 表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i答案 D解析 由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D.4.(2021·潍坊模拟)在平面直角坐标系xOy 中,点P (3,1),将向量OP 绕点O 按逆时针方向旋转π2后得到向量OQ→,则点Q 的坐标是( )A.(-2,1)B.(-1,2)C.(-3,1)D.(-1,3)答案 D解析 由P (3,1),得P ⎝ ⎛⎭⎪⎫2cos π6,2sin π6,∵将向量OP→绕点O 按逆时针方向旋转π2后得到向量OQ →,∴Q ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π6+π2,2sin ⎝ ⎛⎭⎪⎫π6+π2.又cos ⎝ ⎛⎭⎪⎫π6+π2=-sin π6=-12,sin ⎝ ⎛⎭⎪⎫π6+π2=cos π6=32,∴Q (-1,3).故选D.5.设复数z 满足(1+i)z =2i(其中i 为虚数单位),则下列结论正确的是( ) A.|z |=2 B.z 的虚部为i C.z 2=2D.z 的共轭复数为1-i答案 D解析 由(1+i)z =2i ,得z =2i1+i =2i (1-i )(1+i )(1-i )=1+i , ∴|z |=2,z 的虚部为1,z 2=(1+i)2=2i ,z 的共轭复数为1-i ,故选D. 6.已知单位向量e 1,e 2分别与平面直角坐标系x ,y 轴的正方向同向,且向量AC →=3e 1-e 2,BD →=2e 1+6e 2,则平面四边形ABCD 的面积为( )A.10B.210C.10D.20答案 C解析 由向量正交分解的定义可知,AC →=(3,-1),BD →=(2,6),则|AC →|=32+(-1)2=10,|BD→|=22+62=210.因为AC→·BD →=3×2+(-1)×6=0,所以AC ⊥BD ,即平面四边形的对角线互相垂直,所以该四边形的面积S =|AC→|·|BD →|2=10×2102=10.故选C.7.已知向量OA →,OB →满足|OA →|=|OB →|=2,OA →·OB →=2,若OC →=λOA →+μOB →(λ,μ∈R ),且λ+μ=1,则|OC→|的最小值为( )A.1B.52C.2D.3答案 D解析 |OC→|2=(λOA →+μOB →)2=[λOA →+(1-λ)OB →]2=4λ2+4(1-λ)2+2λ(1-λ)OA→·OB →,因为OA →·OB →=2,所以|OC→|2=4λ2+4(1-λ)2+2λ(1-λ)·2=4λ2-4λ+4=4⎝ ⎛⎭⎪⎫λ-122+3,当λ=12时,|OC→|取得最小值 3.8.(2021·海南新高考诊断)如图,在等腰直角△ABC 中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF →=( ) A.35AB →+15AC →B.25AB →+15AC →C.415AB →+815AC →D.815AB →+415AC →答案 D解析 设BC =6,因为D ,E 分别为斜边BC 的三等分点且D 靠近点B ,则BD =DE =2.在△ABD 中,AB =32,BD =2,∠ABD =45°, 由余弦定理可知AD =AB 2+BD 2-2AB ·BD cos ∠ABD =10, 则AD =AE =10.在△DAE 中,cos ∠DAE =AD 2+AE 2-DE 22AD ·AE =45.因为AF ⊥EF ,所以AF AD =AF AE =45,所以AF→=45AD →.因为AD→=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →,所以AF →=45×⎝ ⎛⎭⎪⎫23AB →+13AC →=815AB →+415AC →,故选D.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分) 9.已知等边三角形ABC 内接于⊙O ,D 为线段OA 的中点,则BD →=( )A.23BA →+16BC →B.43BA →-16BC →C.BA→+13AE →D.23BA →+13AE →答案 AC解析 如图所示,设BC 中点为E ,连接AE ,D 在AE 上,则BD →=BA →+AD →=BA →+13AE →=BA →+13(AB →+BE →)=BA →-13BA →+13·12BC →= 23BA →+16BC →.故选AC.10.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝ ⎛⎭⎪⎫255,-55 B.⎝ ⎛⎭⎪⎫-255,-55 C.⎝ ⎛⎭⎪⎫255,55D.⎝⎛⎭⎪⎫-255,55 答案 AD解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c ,∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0,解得k =6, ∴b =(6,-3),∴e =±b 62+(-3)2=±⎝ ⎛⎭⎪⎫255,-55,故选AD. 11.设z 1,z 2是复数,则下列说法中正确的是( )A.若|z 1-z 2|=0,则z -1=z -2B.若z 1=z -2,则z -1=z 2C.若|z 1|=|z 2|,则z 1·z -1=z 2·z -2D.若|z 1|=|z 2|,则z 21=z 22答案 ABC解析 对于A ,若|z 1-z 2|=0,则z 1-z 2=0,z 1=z 2,所以z -1=z -2正确;对于B ,若z 1=z -2,则z 1和z 2互为共轭复数,所以z -1=z 2正确;对于C ,设z 1=a 1+b 1i ,z 2=a 2+b 2i ,若|z 1|=|z 2|,则a 21+b 21=a 22+b 22,即a 21+b 21=a 22+b 22,所以z 1·z -1=a 21+b 21=a 22+b 22=z 2·z -2,所以z 1·z -1=z 2·z -2正确;对于D ,若z 1=1,z 2=i ,则|z 1|=|z 2|,而z 21=1,z 22=-1, 所以z 21=z 22,错误.故选ABC.12.(2020·济南调研)下列命题正确的是( )A.若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB→=CD → B.在△ABC 中,若O 点满足OA→+OB →+OC →=0,则O 点是△ABC 的重心C.若a =(1,1),把a 向右平移2个单位,得到的向量的坐标为(3,1)D.在△ABC 中,若CP →=λ⎝ ⎛⎭⎪⎪⎫CA →|CA →|+CB →|CB →|,则P 点的轨迹经过△ABC 的内心 答案 BD解析 如图,A ,B ,C ,D 四点满足条件,但AB →≠CD →,故A 错误;对于B ,设BC 的中点为D ,当OA→+OB →+OC →=0时,能得到OA →=-(OB →+OC →),所以OA→=-2OD →,所以O 是△ABC 的重心,故B 正确. 对于C ,向量由向量的方向和模确定,平移不改变这两个量,故C 错误. 对于D ,根据向量加法的几何意义知,以CA→|CA →|,CB →|CB →|为邻边所得到的平行四边形是菱形,点P 在该菱形的对角线上,由菱形的对角线平分一组对角,得P 点在∠ACB 的平分线所在直线上,故D 正确.三、填空题(本题共4小题,每小题5分,共20分)13.已知复数z 1=a +2i ,z 2=2+3i(i 是虚数单位),若z 1·z 2是纯虚数,则实数a =________. 答案 3解析 因为复数z 1=a +2i ,z 2=2+3i ,所以z 1·z 2=(a +2i)·(2+3i)=2a -6+(3a +4)i ,又z 1·z 2是纯虚数,所以2a -6=0,且3a +4≠0,解得a =3.14.在直角梯形ABCD 中,AB →=λDC →(λ>0),∠B =60°,AD =3,E 为CD 中点,AC →·BE →=-1,则|DC →|=________. 答案 2解析 设|DC→|=x ,AC →·BE →=(AD →+DC →)·(BC →+CE →)=AD →·BC →+AD →·CE →+DC →·BC →+DC →·CE →=3×2×32+3×x 2×0+2×⎝ ⎛⎭⎪⎫-12x +(-1)×x 2·x =3-x -12x 2=-1,求得x =2,即|DC →|=2.15.(2021·重庆联考)若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案 -7 解析 ∵a +b i i =(a +b i )(-i )-i 2=b -a i ,(2-i)2=4-4i -1=3-4i ,a +b i i (a ,b ∈R )与(2-i)2互为共轭复数,∴b =3,a =-4,则a -b =-7,故答案为-7. 16.已知平面向量a ,b 满足|2a +b |=1,且a ·(a -b )=1,则|a -b |的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤13-12,13+12 解析 设向量2a +b 与a -b 的夹角为θ,则a ·(a -b )=13(2a +b +a -b )·(a -b )=13(|2a +b ||a -b |cos θ+|a -b |2)=1,化简得|a -b |cos θ+|a -b |2=3,即cos θ=3|a -b |-|a -b |∈[-1,1],解得13-12≤|a -b |≤13+12.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,-2). (1)若|c |=25,且c ∥a ,求c 的坐标;(2)若|b |=1,且a +b 与a -2b 垂直,求a 与b 的夹角θ的余弦值. 解 (1)设c =(x ,y ),由c ∥a 和|c |=25,可得⎩⎨⎧1·y +2·x =0,x 2+y 2=20,解得⎩⎨⎧x =-2,y =4或⎩⎨⎧x =2,y =-4.∴c =(-2,4)或c =(2,-4).(2)∵a +b 与a -2b 垂直,∴(a +b )·(a -2b )=0, 即a 2-a ·b -2b 2=0,又|a |=12+(-2)2=5,|b |=1, ∴a ·b =3,∴cos θ=a ·b |a |·|b |=355.18.(本小题满分12分)如图,在△ABC 中,AB =3,AC =2,∠BAC =60°,D ,E 分别是边AB ,AC 上的点,AE =1,且AD →·AE →=12. (1)求|AD→|; (2)若P 是线段DE 上的一个动点,求BP→·CP →的最小值.解 (1)因为AD →·AE →=|AD →||AE →|cos 60°=12,|AE →|=1,所以|AD →|=1.(2)因为|AE→|=|AD →|,∠DAE =60°,所以△DAE 为等边三角形,所以∠BDP =∠CEP =120°,BD =2,CE =1. 设DP =x (0≤x ≤1),则EP =1-x , 所以BP→·CP →=(DP →-DB →)·(EP →-EC →) =DP→·EP →-DP →·EC →-DB →·EP →+DB →·EC → =x (1-x )cos 180°-x cos 60°-2(1-x )·cos 60°+2×1×cos 60° =x 2-12x =⎝ ⎛⎭⎪⎫x -142-116≥-116,当x =14时,等号成立, 所以BP→·CP →的最小值为-116. 19.(本小题满分12分)设两个向量a ,b 满足|a |=2,|b |=1. (1)若(a +2b )·(a -b )=1,求a ,b 的夹角;(2)若a ,b 的夹角为60°,向量2t a +7b 与a +t b 的夹角为钝角,求实数t 的取值范围.解 (1)由(a +2b )·(a -b )=1得a 2+a ·b -2b 2=1. 又a 2=4,b 2=1,所以a ·b =-1. 所以cos 〈a ,b 〉=a ·b |a |·|b |=-12, 又0≤〈a ,b 〉≤180°, 所以a ,b 的夹角为120°.(2)由已知得a ·b =2×1×cos 60°=1,所以(2t a +7b )·(a +t b )=2t a 2+(2t 2+7)a ·b +7t b 2=2t 2+15t +7, 因为向量2t a +7b 与a +t b 的夹角为钝角, 所以2t 2+15t +7<0,解得-7<t <-12. 设2t a +7b =λ(a +t b )(λ<0), 所以⎩⎨⎧2t =λ,7=tλ,解得2t 2=7,当t =-142时,λ=-14,此时向量2t a +7b 与a +t b 的夹角为180°,不符合题意.所以向量2t a +7b 与a +t b 的夹角为钝角时,t 的取值范围是⎝ ⎛⎭⎪⎫-7,-142∪⎝⎛⎭⎪⎫-142,-12. 20.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA→·BC →=cCB →·CA →. (1)求角B 的大小;(2)若|BA→-BC →|=6,求△ABC 面积的最大值. 解 (1)由题意得(2a -c )cos B =b cos C .根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ),即2sin A cos B =sin A ,因为A ∈(0,π),所以sin A >0,所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA→-BC →|=6,所以|CA →|=6,即b =6,根据余弦定理及基本不等式得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2). 故△ABC 的面积S =12ac sin B ≤3(2+1)2,因此△ABC 的面积的最大值为32+32.21.(本小题满分12分)(2021·宜昌模拟)如图,在同一个平面内,向量OA→,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),求m +n 的值.解 ∵tan α=7,α∈⎝⎛⎭⎪⎫0,π2,∴cos α=210,sin α=7210.∵OA→与OC →的夹角为α,OC →=mOA →+nOB →,|OA →|=|OB →|=1,|OC →|=2,∴210=OA→·OC →|OA →|·|OC →|=OA →·(mOA →+nOB →)|OA →|·|OC →|=m +nOA →·OB →2.①又∵OB→与OC →的夹角为45°, ∴22=OB→·OC →|OB →|·|OC →|=OB →·(mOA →+nOB →)|OB →|·|OC →|=mOA →·OB →+n 2.②又cos ∠AOB =cos(45°+α)=cos αcos 45°-sin αsin 45°=210×22-7210×22=-35,∴OA→·OB →=|OA →|·|OB →|cos ∠AOB =-35,将其代入①②得m -35n =15,-35m +n =1,两式相加得25m +25n =65,∴m +n =3. 22.(本小题满分12分)(2020·镇江模拟)已知向量m =(3cos x ,-1),n =(sin x ,cos 2x ).(1)当x =π3时,求m ·n 的值;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π4,且m ·n =33-12,求cos 2x 的值.解 (1)当x =π3时,m =⎝ ⎛⎭⎪⎫32,-1,n =⎝ ⎛⎭⎪⎫32,14,所以m ·n =34-14=12. (2)m ·n =3cos x sin x -cos 2x=32sin 2x -12cos 2x -12=sin ⎝ ⎛⎭⎪⎫2x -π6-12.若m ·n =33-12,则sin ⎝ ⎛⎭⎪⎫2x -π6-12=33-12,即sin ⎝ ⎛⎭⎪⎫2x -π6=33.因为x ∈⎣⎢⎡⎦⎥⎤0,π4, 所以-π6≤2x -π6≤π3,所以cos ⎝ ⎛⎭⎪⎫2x -π6=63,则cos 2x =cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2x -π6+π6 =cos ⎝ ⎛⎭⎪⎫2x -π6×32-sin ⎝ ⎛⎭⎪⎫2x -π6×12=63×32-33×12 =32-36.。
综合测试卷(一)时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020浙江超级全能生第一次联考,2)已知复数z =2-i 1+i(i 为虚数单位),则复数z 的模等于( )A.√102B.3√22C.√3D.√52答案 A 由于z =2-i 1+i =(2-i)(1-i)(1+i)(1-i)=1-3i2,∴|z |=|12-32i |=√(12)2+(-32)2=√102.故选A .2.(2019江西南昌外国语学校适应性测试,1)已知集合M ={x |0<x <5},N ={x |m <x <6},若M ∩N ={x |3<x <n },则m +n 等于 ( )A.9B.8C.7D.6答案 B 因为M ∩N ={x |0<x <5}∩{x |m <x <6}={x |3<x <n },所以m =3,n =5,因此m +n =8.故选B . 3.(2020九师联盟9月质量检测,3)埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔,令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约为230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为 ( )A.128.4米B.132.4米C.136.4米D.140.4米答案 C 本题主要考查空间几何体的结构特征,考查数学抽象、数学运算的核心素养.由已知条件“胡夫金字塔的底部周长除以其高度的两倍,得到商为3.14159”可得,胡夫金字塔的原高为230×42×3.14159≈146.4米,则胡夫金字塔现高大约为146.4-10=136.4米,故选C . 4.(2019广西梧州调研,6)若抛物线x 2=2py (p >0)上一点(1,m )到其准线的距离为54,则抛物线的方程为( )A.x 2=y B.x 2=2y 或x 2=4y C.x 2=4y D.x 2=y 或x 2=4y答案 D 由已知可得m =12p ,则12p +p 2=54,化简得2p 2-5p +2=0,解得p =12或p =2,所以抛物线方程为x 2=y 或x 2=4y.5.(2018湖南张家界三模,4)已知变量x ,y 之间的线性回归方程为p^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误..的是 ( ) x 6 8 10 12 y6m32A.变量x ,y 之间成负相关关系B.可以预测,当x =20时,p^=-3.7 C.m =4D.该回归直线必过点(9,4)答案 C 由-0.7<0,得变量x ,y 之间成负相关关系,故A 说法正确;当x =20时,p^=-0.7×20+10.3=-3.7,故B 说法正确; 由表格数据可知。
算法与复数综合检测(时间120分钟,满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列程序框中表示处理框的是( )A.菱形框B.平行四边形框C.矩形框D.起止框答案:C2.a=0是复数z=a+bi(a,b∈R)为纯虚数的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:z=a+bi为纯虚数的充要条件是a=0且b≠0.∴a=0⇒/z 为纯虚数,z为纯虚数⇒a=0.答案:B3.下列给出的赋值语句中正确的是( )A.3=AB.M=-mC.A=B=3D.x+y=0答案:B4.设z=1+2i,则z2-2z等于( )A.-3 B.3C.-3i D.3i解析:∵z=1+2i,∴z2=1+22i+(2i)2=-1+22i.∴z2-2z=-1+22i-2-22i=-3.答案:A5.若(2-i)·4i=4-bi(其中b∈R,i为虚数单位),则b=( ) A.-4 B.4C.-8 D.8解析:4-bi=(2-i)·4i=8i+4=4+8i.∴b=-8.答案:C6.当a=3时,下面的程序段输出的结果是( )IF a<10 THEN y =2*a ELSE y=a*aA .9B .3C .10D .6解析:该程序揭示的是分段函数y =22a,a 10a ,a 10<⎧⎨≥⎩的对应法则.∴当a =3时,y =6.答案:D7.现给出一个算法,算法语句如图,若输出值为1,则输入值x 为( ) INPUT x IF x≥0 THEN y =x 2 ELSEy =x +3 END IF PRINT y ENDA .1B .-2C .1或-2D .±1解析:该程序揭示的是分段函数.y =2x ,x 0.x 3,x 0⎧≥⎨<⎩,+的对应法则.当y =1时,若x≥0,则x =1,若x<0,则x =-2. 答案:C8.在复平面内,复数i1+i+(1+3i)2对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:i 1+i +(1+3i)2=i(1-i)2+1+23i -3=-32+(12+23)i.∴复数对应点在第二象限. 答案:B 9.小林爱好科技小发明,他利用休息时间设计了一个数字转换器,其转换规则如图所示.例如,当输入数字1,2,-4,5时,输出的数字为8,-6,6,6.现在输出了一组数字为-1,-1,6,-1,则他输入的数字为( )A .2,3,-5,4B .2,3,-5,1C .-5,3,-2,4D .2,3,5,-1解析:把选项中的数字代入验证知.应选C. 答案:C10.定义运算⎪⎪⎪⎪⎪⎪⎪⎪ab c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪⎪⎪1-1z zi )=4+2i 的复数z 为( )A .3-iB .1+3iC .3+iD .1-3i解析:由运算知⎪⎪⎪⎪⎪⎪⎪⎪1-1z zi )=zi +z =z(1+i)∴z(1+i)=4+2i ,∴z=4+2i 1+i =(1+i)(3-i)1+i=3-i.答案:A11.阅读下面程序框图,输出的结果是( ) A.34 B.45 C.56 D.67解析:i =1时,A =12-12=23,i =2时,A =12-23=34,i =3时,A =12-34=45,i =4时,A =12-45=56.结束. 答案:C12.设f(n)=(1+i 1-i )n +(1-i 1+i)n(n∈N *),则集合{x|x =f(n)}元素的个数为( )A .1B .2C .3D .无穷多个解析:∵1+i 1-i =(1+i)(1+i)(1-i)(1+i)=2i2=i.1-i1+i=-i.∴f(n)=i n +(-i)n . 当n =1时,f(1)=0;当n =2时,f(2)=-2; 当n =3时,f(3)=-i +i =0;当n =4时,f(4)=1+1=2.由i n 的周期性知,集合中仅含3个元素. 答案:C二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在题中横线上.13.给出下面一个程序,此程序运行的结果是________.解析:读程序知A =8,X =5, B =5+8=13.答案:A =8,B =1314.复数(1+1i)4的值为________.解析:∵1+1i =1-i ,∴(1+1i)4=(1-i)4=(1-i)2·(1-i)2=(-2i)(-2i)=4i 2=-4. 答案:-415.读程序框图,则该程序框图表示的算法功能是________.解析:该序是循环结构,i 是计数变量,从S =S×i 中可以判断最后:S =1×3×5×7×…×n.答案:计算并输出使1×3×5×…×n≥10000成立的最小正整数.16.若将复数1+3i1-i表示为a +bi(a ,b∈R )的形式,则a +b =________.解析:1+3i 1-i =(1+3i)(1+i)(1-i)(1+i)=-2+4i 2=-1+2i.∴a=-1,b=2.∴a+b =1. 答案:1三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知点A(-1,0),B(3,2),写出求直线AB 的方程的一个算法.解:第一步:求直线AB 的斜率k =2-03-(-1)=12.第二步:用点斜式写出直线AB 的方程y -0=12[x -(-1)].第三步:将第二步的方程化简,得到方程x -2y +1=0. 18.(12分)已知复数z 的共轭复数为z -,且z·z --3i·z=101-3i,求z.解:设z =x +yi(x ,y∈R ),则z -=x -yi.由已知,得(x +yi)(x -yi)-3i(x +yi)=101-3i,∴x 2+y 2-3xi +3y =10(1+3i)10,∴x 2+y 2+3y -3xi =1+3i ,∴22x y 3y 13x 3⎧⎨⎩++=,-=,∴x 1,y 0⎧⎨⎩=-=,或x 1y 3⎧⎨⎩=-,=-.∴z=-1或z =-1-3i.19.(12分)观察所给程序框图,说明它所表示的函数,当输入x =2时,求输出的y 值.解:读图可知,所表示的函数为y =-5,(x>0),20,(x=0),+3,(x<0)2xx⎧⎪⎪⎨⎪⎪⎩当x =2时,输出的y =-4.20.(12分)已知1+i 是实系数方程x 2+ax =b =0的一个根. (1)求a 、b 的值.(2)试判断1-i 是否是方程的根.分析:1+i 是方程的根,把1+i 代入方程可利用复数相等求出a 、b 的值,然后再验证1-i 是否为方程的根.解:(1)∵1+i 是方程x 2+ax +b =0的根, ∴(1+i)2+a(1+i)+b =0, 即(a +b)+(a +2)i =0∴a b 0,a 20⎧⎨⎩+=+=∴a 2b 2⎧⎨⎩=-,= ∴a、b 的值为a =-2,b =2.(2)方程为x 2-2x +2=0 把1-i 代入方程左边=(1-i)2-2(1-i)+2 =-2i -2+2i +2=0显然方程成立.∴1-i 也是方程的一个根.点评:与复数方程有关的问题中,一般是利用复数相等的充要条件,把复数问题转化为实数求解.注意:在复数方程中,根与系数的关系仍然成立,但判别式“Δ”不再适用.21.(12分)设计程序,对输入的任意两个实数,按从大到小的顺序排列,并输出.解:程序框图如下:的问题只需处理其中的一种可能,故选择了第一种条件语句.22.(12分)设计一个算法,输入一个学生的成绩S ,根据该成绩的不同作如下输出:若S<60,则输出“不及格”;若60≤S<85,则输出“及格”,若S≥85,则输出“优秀”.画出程序框图,并写出程序.解:程序框图如下:程序如下:。
高中数学总复习知识点专题讲解与练习专题1集合、复数、逻辑一、单项选择题1.(2021·华大新高考联盟5月)已知集合M={(x,y)|x-y=0},N={(x,y)|y=x3},则M∩N 中元素的个数为()A.0 B.1 C.2 D.3答案 D解析因为直线y=x与曲线y=x3交于(-1,-1),(0,0),(1,1)三点,所以M∩N中有3个元素.故选D.2.(2021·安徽六校联考)设全集为实数集R,集合P={x|x≤1+2,x∈R},集合Q={1,2,3,4},则图中阴影部分表示的集合为()A.{4} B.{3,4}C.{2,3,4} D.{1,2,3,4}答案 B解析本题考查集合的表示方法.因为全集为U=R,集合P={x|x≤1+2,x∈R},Q ={1,2,3,4},所以∁U P={x|x>1+2,x∈R},所以图中阴影部分表示的集合为(∁U P)∩Q ={3,4}.故选B.3.(2021·湖北八市联考)1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年.仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件答案 B4.(2021·山东临沂一模)如图,若向量OZ →对应的复数为z ,且|z |=5,则1z-=( )A.15+25i B .-15-25i C.15-25i D .-15+25i答案 D解析 由题意,设z =-1+b i(b >0),则|z |=1+b 2=5,解得b =2,即z =-1+2i ,所以1z -=1-1-2i =-1+2i (-1-2i )(-1+2i )=-1+2i 5=-15+25i.故选D. 5.(2021·唐山市三模)已知i 是虚数单位,a ∈R ,若复数a -i 1-2i为纯虚数,则a =( ) A .-2 B .2 C .-12 D.12 答案 A解析 由题意a -i 1-2i =(a -i )(1+2i )(1-2i )(1+2i )=a -i +2a i +21+4=a +25+2a -15i.又因为a -i 1-2i 为纯虚数,所以⎩⎪⎨⎪⎧a +25=0,2a -15≠0,解得a =-2.故选A. 6.(2021·江西九江三校联考)已知f (x )=sin x -tan x ,命题p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x 0)<0,则( )A .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎪⎫0,π2,f (x )≥0 答案 C解析 当x ∈⎝ ⎛⎭⎪⎫0,π2时,sin x -tan x <0,可知命题p 是真命题.綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,f (x )≥0.故选C.7.若向量a =(a -1,2),b =(b ,4),则“a ∥b ”是“a =1,b =0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 由a ∥b 可知4(a -1)-2b =0,即2a -b =2,推不出“a =1,b =0”;而a =1,b =0,满足2a -b =2,可推出“a ∥b ”.故选B.8.(2021·皖南八校第三次联考,理)设集合A ={x |y =log 2(x +1)},B ={y |y =sin x ,x ∈R },且(∁R A )∩B =( )A .∅B .{-1}C .(-1,1]D .[-1,1]答案 B解析 A =(-1,+∞),B =[-1,1],∁R A =(-∞,-1],可得(∁R A )∩B ={-1}.故选B.9.(2021·重庆月考)已知复数z 的共轭复数是z -,若z -3z -=1+2i ,则|z |=( ) A.22 B.12 C.52 D.52答案 A解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,由题意,-2a +4b i =1+2i ,则a =-12,b =12,所以|z |=a 2+b 2=22.故选A.10.(2021·江淮十校质量检测,理)下列命题中,真命题是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .sin 2x +2sin x ≥3(x ≠k π,k ∈Z )C .函数f (x )=2x -x 2有两个零点D .a >1,b >1是ab >1的充分不必要条件答案 D解析 当x =0时,没有正整数小于0,A 错误;当sin x =-1时,sin 2x +2sin x =-1,B错误;f (x )=2x -x 2有三个零点(2,4,还有一个小于0),C 错误;(这时就可选D)当a >1,b >1时,一定有ab >1,但当a =-2,b =-3时,ab =6>1也成立.故D 正确.11.若命题“∃x ∈R ,使得3x 2+2ax +1<0”是假命题,则实数a 的取值范围是( )A .(-3,3)B .(-∞,-3)∪[3,+∞)C.[-3,3] D.(-∞,-3)∪(3,+∞)答案 C解析命题“∃x∈R,使得3x2+2ax+1<0”是假命题,即“∀x∈R,3x2+2ax+1≥0”是真命题,故Δ=4a2-12≤0,解得-3≤a≤ 3.故选C.12.已知p:2xx-1<1,q:(x-a)(x-3)>0,p为q的充分不必要条件,则a的取值范围是()A.[1,+∞) B.(1,+∞) C.[0,+∞) D.(-1,+∞) 答案 A解析根据题意,对于p:2xx-1<1,解可得-1<x<1,即不等式的解集为(-1,1).若p为q的充分不必要条件,则(-1,1)是不等式(x-a)(x-3)>0解集的真子集.当a>3时,解得q:x>a或x<3,满足条件;当a<3时,解得q:x>3或x<a,即a≥1;当a=3时,不等式化为(x-3)2>0,解得x>3或x<3满足条件,综上a≥1,即a的取值范围为[1,+∞).故选A.二、多项选择题13.已知集合A={x∈N||x|≤3},B={a,1},若A∩B=B,则实数a的值可以是() A.0 B.1 C.2 D.3答案ACD解析∵A∩B=B,∴B⊆A,又A ={x ∈N |-3≤x ≤3}={0,1,2,3},B ={a ,1},∴a =0,2,3.14.(2021·石家庄一模)设z 为复数,则下列命题中正确的是( )A .|z |2=z z -B .z 2=|z |2C .若|z |=1,则|z +i|的最大值为2D .若|z -1|=1,则0≤|z |≤2 答案 ACD解析 设复数z =a +b i(a ∈R ,b ∈R ),|z |2=a 2+b 2,z ·z -=(a +b i)·(a -b i)=a 2+b 2,故A 正确;z 2=(a +b i)2=a 2-b 2+2ab i ,|z |2=a 2+b 2,故B 错误;|z |=1,表示z 对应的点Z 在单位圆上,|z +i|表示点z 对应的点与(0,-1)的距离.故|z +i|的最大值为2,故C 正确;|z -1|=1表示z 对应的点Z 在以(1,0)为圆心,1为半径的圆上,|z |表示z 对应的点Z 与原点(0,0)的距离,故0≤|z |≤2,D 正确.故选ACD.15.a <0,b <0的一个必要条件为( )A .a +b <0B .(a +1)2+(b +3)2=0 C.a b >0 D.a b <0答案 AC三、填空题16.(2021·石家庄二质检)已知i 为虚数单位,复数z =1-i 2 0211-i 2 018,则z 的虚部为________. 答案 -12解析 i 2 021=i 4×505+1=i ,i 2 018=i 4×504+2=i 2=-1,∴复数z =1-i 2 0211-i 2 018=1-i 1-(-1)=12-12i ,则z 的虚部为-12.17.设函数f (x )=(m 2-1)sin x cos x -cos 2x (m ∈R ),则“f (x )为偶函数”的一个充分不必要条件是________.答案 m =1(或m =-1)解析 f (x )=(m 2-1)sin x cos x -cos 2x =m 2-12sin 2x -cos 2x (m ∈R ). 若m =±1,则f (x )=-cos 2x 是偶函数,若f (x )为偶函数,则f (-x )=f (x ),所以m 2-12sin 2(-x )-cos 2(-x )=m 2-12·sin 2x -cos 2x ,即(m 2-1)sin 2x =0对任意x ∈R 恒成立,所以m =±1.故“m =±1”是“f (x )为偶函数”的充要条件.所以“f (x )为偶函数”的一个充分不必要条件是m =1(也可以填m =-1).18.已知下列命题:①到两定点(-1,0),(1,0)距离之和等于1的点的轨迹为椭圆;②∃x ∈N ,x 2-2x -1≤0;③已知a =(2,3,m ),b =(2n ,6,8),则“a ,b 为共线向量”是“m +n =6”的必要不充分条件.其中假命题有________.答案 ①③解析 对于命题①:到两定点(-1,0),(1,0)距离之和等于1的点不存在,故命题①是假命题;对于命题②:解不等式x 2-2x -1≤0,得1-2≤x ≤1+2,又∵x ∈N ,∴x =0或1或2,∴∃x ∈N ,使得x 2-2x -1≤0,故命题②是真命题;对于命题③:已知a =(2,3,m ),b =(2n ,6,8),若a ,b 为共线向量,则⎩⎨⎧2n =4,8=2m ,∴⎩⎨⎧m =4,n =2,∴m+n=6,反之若m+n=6,则m不一定为4,n不一定为2,∴“a,b为共线向量”是“m+n=6”的充分不必要条件,∴命题③是假命题.19.【多选题】已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论正确的是()A.∃x∈N,使得x∈M B.∃x∈N,使得x∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案ABC解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.20.设a,b均为单位向量,则“cos〈a,b〉<0”是“|a-b|=|2a+b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析记条件p:cos〈a,b〉<0,条件q:|a-b|=|2a+b|,|a-b|=|2a+b|左右平方得a2-2a·b+b2=4a2+4a·b+b2⇒3a2=-6a·b,a,b均为单位向量,则3=-6cos〈a,b〉,则|a-b|=|2a+b|可以推出cos〈a,b〉=-12<0,但cos〈a,b〉<0不能得到cos〈a,b〉=-12,即q⇒p,但p推不出q,p是q的必要不充分条件.故选B.1.已知集合A={4,a},B={1,a2},a∈R,则A∪B不可能是() A.{-1,1,4} B.{1,0,4}C .{1,2,4}D .{-2,1,4}答案 A解析 若A ∪B 含3个元素,则a =1或a =a 2或a 2=4,当a =1时,不满足集合元素的互异性,当a =0,a =2或a =-2时满足题意.∴A ∪B 不可能是{-1,1,4}.故选A.2.(2021·山东临沂一模)已知全集U =A ∪B =(0,4],A ∩∁U B =(2,4],则集合B =( )A .(-∞,2]B .(-∞,2)C .(0,2]D .(0,2)答案 C解析 因为U =A ∪B =(0,4],A ∩∁U B =(2,4],所以B =∁U (A ∩∁U B )=(0,2].故选C.3.已知集合M ={y |y =2x +1,x ∈R },集合N ={x |-x 2+5x +6>0},则M ∩N =( )A .(-2,3)B .(0,6)C .(6,+∞)D .(1,6)答案 D解析 ∵M ={y |y >1},N ={x |-1<x <6},∴M ∩N =(1,6).故选D.4.(2021·长郡十五校联考(二))已知复数z 满足:z 2=74+6i(i 为虚数单位),且z 在复平面内对应的点位于第三象限,则复数z -的虚部为( )A .2iB .3 C.32 D.32i答案 C解析 设z =a +b i(a ,b ∈R ),∴z 2=a 2-b 2+2ab i =74+6i ,∴⎩⎪⎨⎪⎧a 2-b 2=74,2ab =6,∵a <0,b <0,∴a =-2,b =-32,∴z =-2-32i ,∴z -=-2+32i.故选C.5.(2021·潍坊市二模)已知集合A ={x |y =ln(x -1)},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y |y =⎝ ⎛⎭⎪⎫12x ,x >-2,则A ∩B=( )A .∅B .[1,4)C .(1,4)D .(4,+∞)答案 C解析 ∵A ={x |x >1},B ={y |0<y <4},∴A ∩B =(1,4).故选C.6.(2021·湖南期中试卷)设(-1+2i)x =y -1-6i ,x ,y ∈R ,则|x -y i|=( )A .6B .5C .4D .3答案 B解析 因为(-1+2i)x =y -1-6i ,所以⎩⎨⎧2x =-6,-x =y -1,解得⎩⎨⎧x =-3,y =4,所以|x -y i|=|-3-4i|=(-3)2+(-4)2=5.故选B.7.(2021·江淮十校质量检测,理)已知集合U =[-5,4],A ={x |x2-2x ≤0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +2x ≤0,则(∁U A )∩B =( )A .∅B .[0,2]C .[-2,0)D .[-2,2]答案 C解析 由题知A =[0,2],B =[-2,0),所以A ∩B =∅,B ⊆(∁U A ),(∁U A )∩B =B =[-2,0).故选C.8.(2021·长沙市一中模拟(一))若复数z =(1+a i)·(1-i)的模等于2,其中i 为虚数单位,则实数a 的值为( )A .-1B .0C .1D .±1答案 D解析 因为z =(1+a i)·(1-i)=1-i +a i -a i 2=(1+a )+(a -1)i ,则|z |=(1+a )2+(a -1)2=2a 2+2=2,解得a =±1.9.(2021·哈师大第三次理考)设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ).若A ={2,3,4,5},B ={3,5,6},则A *B 表示的6位字符串是( )A .101010B .011001C .010101D .000111答案 C10.(2021·东北三校第二次联考)定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={1,2,3},则集合A *B 的所有元素之和为( )A .16B .18C .14D .8答案 A解析 因为A ={1,2},B ={1,2,3},所以A *B ={1,2,3,4,6},所以A *B 的所有元素之和为1+2+3+4+6=16.故选A.11.(2021·南昌市一模)已知角α是△ABC 的一个内角,则“sin α=12”是“cos α=32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 因为角α是△ABC 的一个内角,所以α∈(0,π).由sin α=12可得α=π6或α=5π6,此时cos α=32或cos α=-32.由cos α=32可得α=π6,此时sin α=12.所以“sin α=12”是“cosα=32”的必要不充分条件.故选B.12.(2021·吉林五校联考)已知α⊥β,α∩β=l,n⊂α,m⊂β,则“m⊥n”是“m⊥l”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析在如图所示的正方体中,设平面ABCD为α,平面ADD1A1为β,AD1为m,AB为n,AD为l,则n⊥β,而m⊂β,所以n⊥m,但是m与l不垂直,所以m⊥n不是m⊥l 的充分条件;因为α⊥β,α∩β=l,m⊂β,m⊥l,则m⊥α,所以m⊥n,所以m⊥n 是m⊥l的必要条件.于是m⊥n是m⊥l的必要不充分条件.故选B.13.(2021·辽宁锦州第一次联考)若命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,则实数a的取值范围是()A.1≤a≤3 B.-1≤a≤3 C.-3≤a≤3 D.-1≤a≤1答案 B解析由特称命题“∃x0∈R,使得x02+(a-1)x0+1<0”是假命题,可知该命题的否定“∀x∈R,x2+(a-1)x+1≥0”是真命题.则对于方程x2+(a-1)x+1=0,有Δ=(a-1)2-4≤0,解得-1≤a≤3.故选B.14.【多选题】(2021·八省八校联考)下列命题中正确的是()A .∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB .∀x ∈(0,1),log 12x >log 13x C .∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12 D .∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x 答案 ABC解析 对于A ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x 的图象如图1所示,由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x ,故A 正确.对于B ,分别画出y =log 12x ,y =log 13x 的图象如图2所示,由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确.对于C ,分别画出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象如图3所示,由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确.对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC. 15.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 本题考查充分条件与必要条件、函数的奇偶性.当f (x )为R 上的奇函数时,若x 1+x 2=0,则有x 1=-x 2,所以f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0;若f (x )=0,则当x 1=-1,x 2=2时,f (x 1)+f (x 2)=0,但x 1+x 2≠0,所以“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.故选A.16.已知集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4},若A ∩B 只有4个子集,则a 的取值范围是( )A .(-2,-1]B .[-2,-1]C .[0,1]D .(0,1]答案 D分析 A ∩B 只有4个子集,则元素有两个.解析 集合A ={x ∈Z |x ≥a },集合B ={x ∈Z |2x ≤4}={x ∈Z |x ≤2},A ∩B ={x ∈Z |a ≤x ≤2},A ∩B 只有4个子集,则A ∩B 中元素只能有2个,即A ∩B ={1,2},所以0<a ≤1.故选D.评说 结合数轴、动态演示,效果更佳,结果更明显.17.【多选题】“∀x ∈[1,2],ax 2+1≤0”为真命题的必要不充分条件是( )A .a ≤-1B .a ≤-14C.a≤-2 D.a≤0答案BD解析∵∀x∈[1,2],ax2+1≤0,∴ax2≤-1,∴a<0,∵x∈[1,2],∴ax2∈[4a,a],∴a≤-1,∴“∀x∈[1,2],ax2+1≤0”⇒“a≤-1”,“a≤-1”⇒“∀x∈[1,2],ax2+1≤0”.∴“∀x∈[1,2],ax2+1≤0”为真命题的充分必要条件是a≤-1.故必要不充分条件为B、D.18.(2021·浙江适应性试卷)已知a,b∈R,则“a2>b2”是“a>|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析若a=-2,b=1,此时a2>b2成立,而a>|b|不成立,而a>|b|时,由不等式的性质,两边平方得,a2>b2,所以“a2>b2”是“a>|b|”的必要不充分条件.故选B.19.(2021·湖北十一校第二次联考)已知非空集合A,B满足以下两个条件:(1)A∪B={1,2,3,4},A∩B=∅;(2)A的元素个数不是A中的元素,B的元素个数不是B中的元素.则有序集合对(A,B)的个数为()A.1 B.2 C.3 D.4答案 B解析若集合A中只有1个元素,则集合B中有3个元素,则1∉A,3∉B,即3∈A,1∈B,此时有1个有序集合对(A,B);同理,若集合B中只有1个元素,则集合A中有3个元素,则3∈B ,1∈A ,此时有1个有序集合对(A ,B );若集合A 中有2个元素,则集合B 中有2个元素,则2∉A ,且2∉B ,不满足条件.所以满足条件的有序集合对(A ,B )的个数为1+1=2.故选B.20.【多选题】下列说法正确的是( )A .设a ,b 为两个非零向量,则“a ·b =|a |·|b |”是“a 与b 共线”的充分不必要条件B .“平面向量a ,b 的夹角是钝角”的充分不必要条件是“a ·b <0”C .已知数列{a n },则“a n ,a n +1,a n +2成等比数列”是“a n +12=a n a n +2”的充要条件D .在三角形ABC 中,“A >B ”的充要条件是“sin A >sin B ”答案 AD解析 若a ·b =|a |·|b |,则a 与b 方向相同;若a 与b 共线,则a 与b 方向相同或相反,不一定有a ·b =|a |·|b |,故A 正确;因为a ·b <0时,〈a ,b 〉∈(90°,180°],所以“a ·b <0”是“平面向量a ,b 的夹角是钝角”的必要不充分条件,故B 错误;由“a n ,a n +1,a n +2成等比数列”,可得“a n +12=a n a n +2”成立,反之不成立,如a n +1=a n =a n +2=0,故C 错误;由A >B 得a >b ,由正弦定理a sin A =b sin B ,得sin A >sin B ,反之也成立,故D 正确.故选AD.21.设p :|x -a |≤3,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.答案 (-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ 解析 由|x -a |≤3,可得a -3≤x ≤a +3,即p :a -3≤x ≤a +3.由(x +1)(2x -1)≥0,可得x≤-1或x≥12,即q:x≤-1或x≥12.因为p是q的充分不必要条件,所以a+3≤-1或a-3≥12,解得a≤-4或a≥72.故a的取值范围是(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞.。
考点三 复数一、选择题1.(2020·新高考卷Ⅰ)2-i1+2i=( ) A .1 B .-1 C .iD .-i2.(2020·云南昆明三模)在复平面内,复数z =2i1+i所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(2020·青海西宁检测(一))已知a +b i(a ,b ∈R )是1-i1+i的共轭复数,则a +b =( )A .-1B .-12C .12D .14.(2020·全国卷Ⅰ)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C . 2D .25.(2020·陕西咸阳一模)设z ·i=2i +1,则z =( ) A .2+i B .2-i C .-2+iD .-2-i6.(2020·浙江宁波二模)已知复数z 是纯虚数,满足z (1-i)=a +2i(i 为虚数单位),则实数a 的值是( )A .1B .-1C .2D .-27.(2020·江西6月大联考)若复数z=1+2i1-i,则|z-|=( )A.10 B. 5C.105D.1028.(2020·北京高考)在复平面内,复数z对应的点的坐标是(1,2),则i·z =( )A.1+2i B.-2+iC.1-2i D.-2-i9.(2020·湖南师大附中高三摸底考试)满足条件|z+4i|=2|z+i|的复数z 对应点的轨迹是( )A.直线B.圆C.椭圆D.双曲线10.(2020·湖南长沙长郡中学高三下学期第一次高考模拟)在复平面内与复数z=2i1+i所对应的点关于虚轴对称的点为A,则A对应的复数为( )A.-1-i B.1-iC.1+i D.-1+i11.(2020·福建厦门高三毕业班5月质量检查)已知i是虚数单位,复数z 满足(1-i)z=2i,则复平面内与z对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限12.(2020·湖南长沙长郡中学二模)下面是关于复数z=2-1+i(i为虚数单位)的命题,其中假命题为( )A.|z|= 2 B.z2=2iC.z的共轭复数为1+i D.z的虚部为-113.(2020·陕西西安中学高三下学期仿真考试(一))已知复数z满足z-+i i=-1+i,则复数z=( )A.-1-2i B.-1+2iC.1-2i D.1+2i14.(2020·贵州贵阳高三6月适应性考试二)已知复数z满足z(1+i)=|-1+3i|,则复数z的共轭复数为( )A.-1+i B.-1-iC.1+i D.1-i15.(2020·山西太原五中高三3月模拟)已知复数z=23-i,则|z|=( )A.1 B.2C. 3 D. 216.(2020·陕西咸阳三模)设复数z满足|z-1+i|=1,z在复平面内对应的点为P(x,y),则点P的轨迹方程为( )A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.(x-1)2+(y+1)2=117.(2020·吉林长春高三质量监测二)若z=1+(1-a)i(a∈R),|z|=2,则a=( )A.0或2 B.0C.1或2 D.118.下面四个命题中,①复数z=a+b i(a,b∈R)的实部、虚部分别是a,b;②复数z满足|z+1|=|z-2i|,则z对应的点构成一条直线;③由向量a的性质|a|2=a2,可类比得到复数z的性质|z|2=z2;④i为虚数单位,则1+i+i2+…+i2020=1.正确命题的个数是( )A.0 B.1C.2 D.3二、填空题19.(2020·江苏高考)已知i是虚数单位,则复数z=(1+i)(2-i)的实部是________.20.(2020·广州高三综合测试一)已知复数z=22-22i,则z2+z4=________.21.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数z1-2i的共轭复数是________.22.(2020·全国卷Ⅱ)设复数z1,z2满足|z1|=|z2|=2,z1+z2=3+i,则|z1-z2|=________.一、选择题1.(2020·全国卷Ⅲ)若z-(1+i)=1-i,则z=( )A.1-i B.1+iC.-i D.i2.(2020·吉林东北师大附中第四次模拟)在复平面内,复数z对应的点与3+i对应的点关于实轴对称,则zi=( )A.-1-3i B.-3+iC.-1+3i D.-3-i3.(2020·山西太原一模)已知i是虚数单位,复数m+1+(2-m)i在复平面内对应的点在第二象限,则实数m的取值范围是( )A.(-∞,-1) B.(-1,2)C.(2,+∞) D.(-∞,-1)∪(2,+∞)4.(2020·河南洛阳第三次统一考试)已知复数z满足|z|=1,则|z-1+3 i|的最小值为( )A.2 B.1C. 3 D. 25.(2020·辽宁丹东二模)已知复数z=a2+1+i1-i-ai-1为纯虚数,则实数a=( )A.0 B.±1C.1 D.-16.(2020·山西大同模拟)如图,在复平面内,复数z1,z2对应的向量分别是OA→,OB→,若z1=zz2,则z的共轭复数z-=( )A.12+32i B.12-32iC.-12+32i D.-12-32i7.(2020·广州综合测试)若复数z满足方程z2+2=0,则z3=( )A.±2 2 B.-2 2C.-22i D.±22i8.(2020·吉林长春质量监测四模)设复数z=x+y i(x,y∈R),下列说法正确的是( )A.z的虚部是y iB.z2=|z|2C.若x=0,则复数z为纯虚数D.若z满足|z-i|=1,则z在复平面内对应点(x,y)的轨迹是圆二、填空题9.(2020·河南开封3月模拟)若z=1+2i,则4iz z--1=________.10.若2-i是关于x的实系数方程x2+bx+c=0的一个复数根,则bc=________.11.(2020·浙江杭州高三下学期仿真模拟)复数z满足:z1+i=a-i(其中a>0,i为虚数单位),|z|=10,则a=________;复数z的共轭复数z-在复平面上对应的点在第________象限.12.定义复数的一种新运算z1@z2=|z1|+|z2|2(等式右边为普通运算).若复数z=x+y i,i为虚数单位,且实数x,y满足x+y=22,则z-@z的最小值为________.三、解答题13.已知z1=cosα+isinα,z2=cosβ-isinβ,且z1-z2=513+1213i,求cos(α+β)的值.14.设z+1为关于x的方程x2+mx+n=0,m,n∈R的虚根,i为虚数单位.(1)当z=-1+i时,求m,n的值;(2)若n=1,在复平面上,设复数z所对应的点为P,复数2+4i所对应的点为Q,试求|PQ|的取值范围.考点三复数一、选择题1.(2020·新高考卷Ⅰ)2-i1+2i=( )A.1 B.-1 C.i D.-i 答案 D解析2-i1+2i =2-i 1-2i 1+2i 1-2i=-5i5=-i ,故选D. 2.(2020·云南昆明三模)在复平面内,复数z =2i1+i所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A 解析 ∵z =2i1+i=2i 1-i 1+i 1-i=1+i ,∴复数z 所对应的点的坐标为(1,1),位于第一象限.故选A.3.(2020·青海西宁检测(一))已知a +b i(a ,b ∈R )是1-i1+i的共轭复数,则a +b =( )A .-1B .-12C .12D .1答案 D 解析 1-i1+i=1-i 21+i 1-i=-2i2=-i ,∴a +b i =-(-i)=i ,∴a=0,b =1,∴a +b =1.故选D.4.(2020·全国卷Ⅰ)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C . 2 D .2答案 D解析 z 2=(1+i)2=2i ,则z 2-2z =2i -2(1+i)=-2,故|z 2-2z |=|-2|=2.故选D.5.(2020·陕西咸阳一模)设z ·i=2i +1,则z =( ) A .2+i B .2-i C .-2+i D .-2-i 答案 B解析 ∵z ·i=2i +1,∴z =2i +1i =2i -i 2i=2-i.故选B.6.(2020·浙江宁波二模)已知复数z 是纯虚数,满足z (1-i)=a +2i(i 为虚数单位),则实数a 的值是( )A .1B .-1C .2D .-2答案 C解析 设z =b i(b ∈R 且b ≠0),则z (1-i)=b i(1-i)=b +b i =a +2i ,所以⎩⎨⎧b =a ,b =2,解得a =2.故选C.7.(2020·江西6月大联考)若复数z =1+2i1-i ,则|z -|=( ) A.10 B . 5 C .105D .102答案 D解析 因为z =1+2i1-i =1+2i 1+i 1-i1+i=1+i +2i +2i 22=-1+3i 2,所以z -=-12-3i 2,则|z -|=14+94=102.故选D. 8.(2020·北京高考)在复平面内,复数z 对应的点的坐标是(1,2),则i·z =( )A .1+2iB .-2+iC .1-2iD .-2-i答案 B解析 由题意得z =1+2i ,∴i·z =i -2.故选B.9.(2020·湖南师大附中高三摸底考试)满足条件|z +4i|=2|z +i|的复数z 对应点的轨迹是( )A .直线B .圆C .椭圆D .双曲线 答案 B解析设复数z=x+y i(x,y∈R),则|z+4i|=|x+(y+4)i|=x2+y+42,|z+i|=|x+(y+1)i|=x2+y+12,结合题意有x2+(y +4)2=4x2+4(y+1)2,整理可得x2+y2=4.即复数z对应点的轨迹是圆.故选B.10.(2020·湖南长沙长郡中学高三下学期第一次高考模拟)在复平面内与复数z=2i1+i所对应的点关于虚轴对称的点为A,则A对应的复数为( ) A.-1-i B.1-iC.1+i D.-1+i 答案 D解析由题意得z=2i1+i=2i1-i1+i1-i=2i+22=1+i,在复平面内对应的点为(1,1),关于虚轴对称的点为(-1,1),所以其对应的复数为-1+i.故选D.11.(2020·福建厦门高三毕业班5月质量检查)已知i是虚数单位,复数z 满足(1-i)z=2i,则复平面内与z对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析∵(1-i)z=2i,∴z=2i1-i=2i1+i2=-1+i,∴复平面内与z对应的点在第二象限,故选B.12.(2020·湖南长沙长郡中学二模)下面是关于复数z=2-1+i(i为虚数单位)的命题,其中假命题为( )A.|z|= 2 B.z2=2iC.z的共轭复数为1+i D.z的虚部为-1 答案 C解析因为z=2-1+i=2-1-i-1+i-1-i=-2-2i2=-1-i,所以|z|=2,A为真命题;z2=2i,B为真命题;z的共轭复数为-1+i,C为假命题;z的虚部为-1,D为真命题.故选C.13.(2020·陕西西安中学高三下学期仿真考试(一))已知复数z 满足z -+i i=-1+i ,则复数z =( )A .-1-2iB .-1+2iC .1-2iD .1+2i答案 B解析 已知复数z 满足z -+i i=-1+i ,则z -=i(-1+i)-i =-1-2i ,故z =-1+2i ,故选B.14.(2020·贵州贵阳高三6月适应性考试二)已知复数z 满足z (1+i)=|-1+3i|,则复数z 的共轭复数为( )A .-1+iB .-1-iC .1+iD .1-i答案 C解析 由z (1+i)=|-1+3i|=-12+32=2,得z =21+i=21-i1+i 1-i=1-i ,∴z -=1+i.故选C.15.(2020·山西太原五中高三3月模拟)已知复数z =23-i,则|z |=( ) A .1 B .2 C . 3 D . 2答案 A 解析 因为z =23-i=23+i 3-i 3+i=3+i 2=32+12i ,所以|z |=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=1.故选A. 16.(2020·陕西咸阳三模)设复数z 满足|z -1+i|=1,z 在复平面内对应的点为P (x ,y ),则点P 的轨迹方程为( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .(x -1)2+(y +1)2=1答案 D解析由题意得z=x+y i,则由|z-1+i|=1得|(x-1)+(y+1)i|=1,即x-12+y+12=1, 则(x-1)2+(y+1)2=1.故选D.17.(2020·吉林长春高三质量监测二)若z=1+(1-a)i(a∈R),|z|=2,则a=( )A.0或2 B.0C.1或2 D.1答案 A解析因为z=1+(1-a)i(a∈R),|z|=2,所以12+1-a2=2,解得a=0或a=2.故选A.18.下面四个命题中,①复数z=a+b i(a,b∈R)的实部、虚部分别是a,b;②复数z满足|z+1|=|z-2i|,则z对应的点构成一条直线;③由向量a的性质|a|2=a2,可类比得到复数z的性质|z|2=z2;④i为虚数单位,则1+i+i2+…+i2020=1.正确命题的个数是( )A.0 B.1C.2 D.3答案 D解析①复数z=a+b i(a,b∈R)的实部为a,虚部为b,故正确;②设z=a+b i(a,b∈R),由|z+1|=|z-2i|计算得2a+4b-3=0,故正确;③设z=a +b i(a,b∈R),当b≠0时,|z|2=z2不成立,故错误;④1+i+i2+…+i2020=1,故正确.二、填空题19.(2020·江苏高考)已知i是虚数单位,则复数z=(1+i)(2-i)的实部是________.答案 3解析∵复数z=(1+i)(2-i)=2-i+2i-i2=3+i,∴复数z的实部为3.20.(2020·广州高三综合测试一)已知复数z =22-22i ,则z 2+z 4=________.答案 -1-i解析 ∵z 2=⎝ ⎛⎭⎪⎫22-22i 2=12-i -12=-i ,∴z 4=(z 2)2=(-i)2=-1,∴z 2+z 4=-1-i.21.若i 为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z 表示复数z ,则复数z 1-2i的共轭复数是________.答案 -i解析 由题图可得z =2+i ,复数z1-2i =2+i 1-2i =-2i 2+i1-2i=i ,其共轭复数为-i.22.(2020·全国卷Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.答案 2 3解析 解法一:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ), ∵|z 1|=|z 2|=2, ∴a 2+b 2=4,c 2+d 2=4,∵z 1+z 2=a +b i +c +d i =3+i , ∴a +c =3,b +d =1,∴(a +c )2+(b +d )2=a 2+c 2+2ac +b 2+d 2+2bd =4, ∴2ac +2bd =-4,∵z 1-z 2=a +b i -(c +d i)=a -c +(b -d )i , ∴|z 1-z 2|=a -c2+b -d2=a 2+c 2-2ac +b 2+d 2-2bd =a 2+b 2+c 2+d 2-2ac +2bd=4+4--4=2 3.解法二:∵|z 1|=|z 2|=2,可设z 1=2cos θ+2sin θ·i,z 2=2cos α+2sin α·i, ∴z 1+z 2=2(cos θ+cos α)+2(sin θ+sin α)·i=3+i , ∴⎩⎨⎧2cos θ+cos α=3,2sin θ+sin α=1.两式平方作和,得4(2+2cos θcos α+2sin θsin α)=4, 化简得cos θcos α+sin θsin α=-12.∴|z 1-z 2|=|2(cos θ-cos α)+2(sin θ-sin α)·i| =4cos θ-cos α2+4sin θ-sin α2=8-8cos θcos α+sin θsin α=8+4 =2 3.一、选择题1.(2020·全国卷Ⅲ)若z -(1+i)=1-i ,则z =( ) A .1-i B .1+i C .-i D .i答案 D解析 因为z -=1-i 1+i=1-i 21+i 1-i=-2i2=-i ,所以z =i.故选D. 2.(2020·吉林东北师大附中第四次模拟)在复平面内,复数z 对应的点与3+i 对应的点关于实轴对称,则zi=( )A .-1-3iB .-3+iC .-1+3iD .-3-i答案 A解析 ∵复数3+i 在复平面内对应的点为(3,1),复数z 在复平面内对应的点与3+i 对应的点关于实轴对称,∴复数z 在复平面内对应的点为(3,-1),∴z =3-i ,∴zi =3-ii=3-i·ii 2=-1-3i.故选A.3.(2020·山西太原一模)已知i 是虚数单位,复数m +1+(2-m )i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2)C .(2,+∞)D .(-∞,-1)∪(2,+∞)答案 A解析 因为复数m +1+(2-m )i 在复平面内对应的点在第二象限,所以⎩⎨⎧m +1<0,2-m >0,解得m <-1.所以实数m 的取值范围为(-∞,-1).故选A.4.(2020·河南洛阳第三次统一考试)已知复数z 满足|z |=1,则|z -1+3i|的最小值为( )A .2B .1C . 3D . 2答案 B解析 设z =x +y i(x ∈R ,y ∈R ),由|z |=1得x 2+y 2=1,又|z -1+3i|=x -12+y +32表示定点(1,-3)与圆上任一点(x ,y )间的距离.则由几何意义得|z -1+3i|min =0-12+[0--3]2-1=2-1=1,故选B.5.(2020·辽宁丹东二模)已知复数z =a 2+1+i 1-i -ai-1为纯虚数,则实数a =( )A .0B .±1C .1D .-1答案 C解析 ∵z =a 2+1+i 1-i -ai -1=a 2+1+i 21-i 1+i-a i i2-1=a 2-1+(a +1)i 为纯虚数,∴⎩⎨⎧a 2-1=0,a +1≠0,解得a =1.故选C.6.(2020·山西大同模拟)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,若z 1=zz 2,则z 的共轭复数z -=( )A.12+32i B .12-32i C .-12+32iD .-12-32i答案 A解析 由题图可知z 1=1+2i ,z 2=-1+i ,所以z =z 1z 2=1+2i -1+i=1+2i -1-i -1+i-1-i=1-3i 2,所以z -=12+32i.故选A. 7.(2020·广州综合测试)若复数z 满足方程z 2+2=0,则z 3=( ) A .±2 2 B .-2 2 C .-22i D .±22i答案 D解析 z 2+2=0,即z 2=-2,解得z =±2i.所以z 3=z ·z 2=(±2i)·(-2)=±22i ,故选D.8.(2020·吉林长春质量监测四模)设复数z =x +y i(x ,y ∈R ),下列说法正确的是( )A .z 的虚部是y iB .z 2=|z |2C .若x =0,则复数z 为纯虚数D .若z 满足|z -i|=1,则z 在复平面内对应点(x ,y )的轨迹是圆 答案 D解析 z 的实部为x ,虚部为y ,所以A 错误;z 2=x 2-y 2+2xy i ,|z |2=x 2+y 2,所以B 错误;当x =0,y =0时,z 为实数,所以C 错误;由|z -i|=1得|x +y i -i|=1,所以|x +(y -1)i|=1,所以x 2+(y -1)2=1,所以D 正确.故选D.二、填空题9.(2020·河南开封3月模拟)若z =1+2i ,则4iz z --1=________. 答案 i 解析4iz z --1=4i1+2i1-2i-1=i.10.若2-i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则bc =________.答案 -20解析 把复数根2-i 代入方程中,得(2-i)2+b (2-i)+c =0,即3+2b +c -(4+b )i =0,所以⎩⎨⎧3+2b +c =0,4+b =0,解得⎩⎨⎧b =-4,c =5,故bc =-20.11.(2020·浙江杭州高三下学期仿真模拟)复数z 满足:z 1+i=a -i(其中a >0,i 为虚数单位),|z |=10,则a =________;复数z 的共轭复数z -在复平面上对应的点在第________象限.答案 2 四 解析 由z 1+i=a -i 可得,z =(a -i)(1+i)=a +1+(a -1)i ,所以|z |=a +12+a -12=10,左右同时平方得,a 2+2a +1+a 2-2a +1=10,所以a 2=4.又因为a >0,所以a =2.所以z =3+i ,z -=3-i ,所以z -在复平面上对应的点为(3,-1),位于第四象限.12.定义复数的一种新运算z 1@z 2=|z 1|+|z 2|2(等式右边为普通运算).若复数z =x +y i ,i 为虚数单位,且实数x ,y 满足x +y =22,则z -@z 的最小值为________.答案 2解析 z -@z =|z -|+|z |2=2|z |2=|z |=x 2+y 2.因为x +y =22,所以z -@z = 2x -22+4,故当x =2时,z -@z 取最小值2. 三、解答题13.已知z 1=cos α+isin α,z 2=cos β-isin β,且z 1-z 2=513+1213i ,求cos(α+β)的值.解 ∵z 1=cos α+isin α,z 2=cos β-isin β, ∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i. ∴⎩⎪⎨⎪⎧cos α-cos β=513, ①sin α+sin β=1213. ②由①2+②2,得2-2cos(α+β)=1. ∴cos(α+β)=12.14.设z +1为关于x 的方程x 2+mx +n =0,m ,n ∈R 的虚根,i 为虚数单位. (1)当z =-1+i 时,求m ,n 的值;(2)若n =1,在复平面上,设复数z 所对应的点为P ,复数2+4i 所对应的点为Q ,试求|PQ |的取值范围.解 (1)因为z =-1+i ,所以z +1=i , 则i 2+m i +n =0,易得⎩⎨⎧m =0,n =1.(2)设z =a +b i(a ,b ∈R ),则(a +1+b i)2+m (a +1+b i)+1=0,于是⎩⎨⎧a +12-b 2+m a +1+1=0, ①2a +1b +mb =0, ②因为z +1为虚数根,所以b 不为零,所以由②得m =-2(a +1),代入①得,(a +1)2+b 2=1,则点P 是以(-1,0)为圆心,1为半径的圆(去掉b =0对应的两点)上任意一点.又复数2+4i 对应的点为Q ,所以|PQ |的最大值为2+12+42+1=6,|PQ |的最小值为4.所以|PQ |的取值范围是[4,6].。
同步测试卷理科数学(八) 【p 299】 (平面向量、复数的概念及运算) 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.复数1+51-2i(i 是虚数单位)的模等于( )A .4B .5C .22D .2【解析】1+51-2i =1+5(1+2i )(1-2i )(1+2i )=1+1+2i =2+2i ,则它的模等于22+22=2 2. 【答案】C2.已知向量a =()1,m ,b =()m ,1,则“m =1”是“a∥b ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】当m =1时,a =b 可以推出a∥b ;当a∥b 时,1m =m1m 2=1,m =±1,不能推出m =1.所以,“m =1”是“a∥b ”成立的充分不必要条件.【答案】A3.在复平面上,复数z 1,z 2对应的点关于直线y =x 对称,且z 1z 2=4i ,则复数z 1的模长为( )A .2 B. 3 C. 2 D .1【解析】设z 1=a +b i ,则z 2=b +a i ,由z 1z 2=4i ,可知a 2+b 2=4,所以||z 1=a 2+b2=2.【答案】A4.如图,已知AB →=a, AC →=b, DC →=3BD →,AE →=2EC →,则DE →=( )A.34b -13aB.512a -34bC.34a -13bD.512b -34a 【解析】由平面向量的三角形法则可知:DE →=DC →+CE →=34BC →+⎝ ⎛⎭⎪⎫-13AC →=34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b . 【答案】D5.已知不共线向量a ,b ,|a |=|b |=|a -b |,则a +b 与a 的夹角是( ) A.π12 B.π6 C.π4 D.π3【解析】法一:根据|a |=|b |,有|a |2=|b |2,又由|b |=|a -b |,得|b |2=|a |2-2a ·b +|b |2,∴a ·b =12|a |2.而|a +b |2=|a |2+2a ·b +|b |2=3|a |2,∴|a +b |=3|a |.设a 与a +b 的夹角为θ,则cos θ=a ·(a +b )|a ||a +b |=|a |2+12|a |2|a |·3|a |=32,∴θ=π6.法二:根据向量加法的几何意义,在平面内任取一点O ,作OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB .∵|a |=|b |,即|OA →|=|OB →|,∴OACB 为菱形,OC 平分∠AOB ,这时OC →=a +b ,BA →=a -b .而|a |=|b |=|a -b |,即|OA →|=|OB →|=|BA →|.∴△AOB 为正三角形,则∠AOB =60°,于是∠AOC =30°,即a 与a +b 的夹角为π6.【答案】B6.△ABC 是底边边长为22的等腰直角三角形,P 是以直角顶点C 为圆心,半径为1的圆上任意一点,若m ≤AP →·BP →≤n ,则n -m 的最小值为( )A .42B .2 2C .2D .4【解析】如图所示,建立直角坐标系,则:A (-2,0),B (2,0),P (cos θ,2+sin θ),由平面向量的性质可得:AP →=(cos θ+2,sin θ+2),BP →=(cos θ-2,sin θ+2),由平面向量的数量积:AP →·BP →=cos 2θ-2+sin 2θ+22sin θ+2=1+22sin θ,据此有:m max =1-22,n min =1+22,(n -m )min =4 2.【答案】A二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.已知复数z 满足()2-i z =-3+4i ,则z 的共轭复数是________.【解析】因为z =-3+4i 2-i =()-3+4i ()2+i 5=-10+5i5=-2+i ,所以z 的共轭复数是-2-i .【答案】-2-i8.设x ,y ∈R ,向量a =(x ,2),b =(1,y ),c =(2,-6),且a ⊥c ,b ∥c ,则||a +b =__________.【解析】a ⊥c 2x -12=0x =6a =(6,2),b ∥c-6-2y =0y =-3b =(1,-3)||a +b 2=a 2+2a ·b +b 2=40+10=50||a +b =52.【答案】5 29.若向量OA →=(1,-3),|OA →|=|OB →|,OA → ·OB →=0,则 |AB →|=________. 【解析】法一:设OB →=(x ,y ),由|OA →|=|OB →|知,x 2+y 2=10,又OA → ·OB →=x -3y =0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.则|AB →|=2 5.法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,所以|AB →|=2 5. 【答案】2 510.已知△ABC ,其中顶点坐标分别为A ()-1,1,B ()1,2,C ()-2,-1,点D 为边BC 的中点,则向量AD →在向量AB →方向上的投影为__________.【解析】因为AB →=()2,1,AC →=(-1,-2),AD →=12()AB →+AC →=⎝ ⎛⎭⎪⎫12,-12,故AB→·AD →=2×12-12=12,由于||AB →=5,所以向量AD →在向量AB →方向上的投影为AB →·AD →||AB→=12×15=510. 【答案】510三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 11.(16分)已知平面上三点A ,B ,C ,BC →=(2-k ,3),AC →=(2,4). (1)若三点A ,B ,C 不能构成三角形,某某数k 应满足的条件;(2)若△ABC 中角A 为直角,求k 的值.【解析】(1)由三点A ,B ,C 不能构成三角形,得A ,B ,C 在同一直线上,即向量BC →与AC →平行,∴4(2-k)-2×3=0,解得k =12.(2)∵BC →=(2-k ,3),∴CB →=(k -2,-3), ∴AB →=AC →+CB →=(k ,1).当A 是直角时,AB →⊥AC →,即AB →·AC →=0, ∴2k +4=0,解得k =-2.12.(16分)在△ABC 中,AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM →与→交于点P ,且AP →=xAB →+yAC →(x ,y ∈R ),求x +y 的值. 【解析】(1)在△ABC 中,AM →=34AB →+14AC →,可得3BM →=MC →,即点M 在线段BC 靠近B 点的四等分点.故△ABM 与△ABC 的面积之比为14.(2)因为AM →=34AB →+14AC →,AM →∥AP →,AP →=xAB →+yAC →(x ,y ∈R ),所以x =3y, 因为N 为AB 中点,所以NP →=AP →-AN →=xAB →+yAC →-12AB →=⎝ ⎛⎭⎪⎫x -12AB →+yAC →,CP →=AP →-AC →=xAB →+yAC →-AC →=xAB →+(y -1)AC →,因为NP →∥CP →,所以⎝ ⎛⎭⎪⎫x -12(y -1)=xy ,即2x +y =1,又x =3y ,所以x =37,y =17,所以x +y =47.13.(18分)向量a =(2,2),向量b 与向量a 的夹角为3π4,且a·b =-2.(1)求向量b ;(2)若t =(1,0),且b⊥t ,c =⎝⎛⎭⎪⎫cos A ,2cos 2C 2,其中A ,B ,C 是△ABC 的内角,若A 、B 、C 依次成等差数列,试求|b +c |的取值X 围.【解析】(1)设b =(x ,y ),则a·b =2x +2y =-2,且|b |=a·b|a |cos3π4=1=x 2+y 2,联立方程得⎩⎪⎨⎪⎧2x +2y =-2,x 2+y 2=1,解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴b =(-1,0)或b =(0,-1). (2)∵A ,B ,C 依次成等差数列,∴B =π3.∴b +c =⎝ ⎛⎭⎪⎫cos A ,2cos 2C2-1=(cos A ,cos C ),∴|b +c|2=cos 2A +cos 2C =1+12()cos 2A +cos 2C=1+12⎣⎢⎡⎦⎥⎤cos 2A +cos ⎝ ⎛⎭⎪⎫4π3-2A =1+12⎝ ⎛⎭⎪⎫cos 2A -12cos 2A -32sin 2A=1+12cos ⎝⎛⎭⎪⎫2A +π3.∵A ∈⎝ ⎛⎭⎪⎫0,2π3,∴2A +π3∈⎝ ⎛⎭⎪⎫π3,5π3, ∴-1≤cos ⎝⎛⎭⎪⎫2A +π3<12,∴12≤|b+c|2<54,故22≤|b+c|<52.。
高考复数专题(1)姓名:1、若a 为实数且(2)(2)4ai a i i +-=-,则a = 02、设i 是虚数单位,则复数32i i-= i.3、若复数()32z i i =- ( i 是虚数单位 ),则z = 23i -4、设复数z 满足11zz+-=i ,则|z|= 1 5、若复数R ∈i1ai1+-,则实数a = -1 6、复数()i 2i -= 12i +7、 i 为虚数单位,607i 的共轭复数....为 i 8、若复数z 满足1zi i=-,其中i 为虚数为单位,则z = 1i - 9.设复数a +bi (a ,b ∈R,则(a +bi )(a -bi )=______3__.高考复数专题(1)作业 姓名:10.i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 2- .11.设复数z 满足234z i =+(i 是虚数单位),则z 的模为12.已知()211i i z-=+(i 为虚数单位),则复数z = 1i -- 13.若复数z 满足31z z i +=+,其中i 为虚数单位,则z 142i . 14、复数3+2i2-3i= i 15、在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是 2+4i16、若复数(m 2-3m -4)+(m 2-5m -6)i 表示的点在虚轴上,则实数m 的值是 -1和417已知复数z =11+i,则z -·i 在复平面内对应的点位于第 二象限 18、设i 是虚数单位,则复数21ii-在复平面内所对应的点位于第 二象限高考复数专题(2)姓名:1、复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内对应的点位于第 四 象限2、已知复数a =3+2i ,b =4+xi (其中i 为虚数单位),若复数a b ∈R ,则实数x 的值为 833、设z =1-i (i 是虚数单位),则z 2+2z = 1-i 4、在复平面内,复数21-i对应的点到直线y =x +1的距离是 22 5、设复数z 满足关系式z +|z -|=2+i ,则z 等于 34+i 6 、若复数z =a +i1-2i(a ∈R ,i 是虚数单位)是纯虚数,则|a +2i |等于 22 7、若复数z 1=a -i ,z 2=1+i (i 为虚数单位),且z 1·z 2为纯虚数,则实数a 的值为 ________-18、若a 是复数z 1=1+i2-i的实部,b 是复数z 2=(1-i )3的虚部,则ab 等于________.-25 9、如果复数2-bi 1+2i(i 是虚数单位)的实数与虚部互为相反数,那么实数b 等于________. -23高考复数专题(2)作业 姓名:10、已知a R ∈,若(1)(32)ai i -+为纯虚数,则a 的值为 32-11、复数(3i -1)i 的共轭复数....是 -3+i12、已知复数z 满足()()12z i i i -⋅+=-,则z z ⋅=13、已知复数z 满足()1i 2i z -=+,则z 的共轭复数在复平面内对应的点在. 第 四 象限14、设复数z 满足关系i i z 431+-=⋅,那么z =__34i +_______,|z|=___54_______.15、设i 是虚数单位,复数=++iii 123 116、若i x x x )23()1(22+++- 是纯虚数,则实数x 的值是 117、已知复数11z i i=+-,则复数z 的模|z |=18、复数201511i i +⎛⎫⎪-⎝⎭= -i高考复数专题(3)姓名:1、复数21ii -等于 -1+i2、复数i215+的共轭复数为 1+2i3、已知i 是虚数单位,则复数3(12)z i i =⋅-+的虚部为4、设复数i z 431-=,i z 322+-=,则复数12z z -在复平面内对应的点位于第 二 象限5、若i 是虚数单位,则复数21i z i-=+的实部与虚部之积为 34-6、纯虚数z 满足23z -=,则z 为7、设m ∈R ,222(1)m m m i +-+-是纯虚数,其中i 是虚数单位,则m = 一28、复平面内,复数2)31(i +对应的点位于第 二 象限9、已知复数13i z =+,21i z =-,则复数12z z 在复平面内对应的点位于第 一 象限高考复数专题(3)作业 姓名:10、复数12z a i =+,22z i =-+,如果12||||z z <,则实数a 的取值范围是 11<<-a11、已知ni m i n m ni im+-=+则是虚数单位是实数其中,,,,11的虚部为 112、若)54(cos 53sin -+-=θθi z 是纯虚数,则θtan 的值为 43-13、设a 是实数,且211ii a +++是实数,则=a 114、200811i i +⎛⎫ ⎪-⎝⎭= 115、若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 -616、已知复数z = (1 – i )(2 – i ),则| z |的值是 . 1017、复数z 满足i i i z +=-2)(,则 z =i -118、复数z =-3+i2+i 的共轭复数是 -1-i高考复数专题(4)姓名:1、复数11i =+ 1122i - 2、若复数i z +=1 (i 为虚数单位) z -是z 的共轭复数 , 则2z +z -²的虚部为 03、复数z = i (i+1)(i 为虚数单位)的共轭复数是 -1-i4、若ibi-+13= a+b i (a ,b 为实数,i 为虚数单位),则a+b =____________.35、设i 为虚数单位,则复数34ii+= 43i -6、复数(2+i )2等于 3+4i7、在复平面内,复数103ii+对应的点的坐标为 (1 ,3)8、i 是虚数单位,复数ii-+435= 1+i9、设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 8 .高考复数专题(4)作业 姓名:10、计算:31ii-=+ i 21-(i 为虚数单位) 11、设1z i =+(i 是虚数单位),则22z z+= 1i +12、在复平面内,复数(12)z i i =+对应的点位于第 二象限13、复数31ii--等于 2i +14、复数8+15i 的模等于 17 15、已知1iZ+=2+i,则复数z= 1-3i16、i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是 -317、i 是虚数单位,i(1+i)等于 -1+i18、若复数2(1)(1)z x x i =-+-为纯虚数,则实数x 的值为 1-高考复数专题(5)姓名:1、i 是虚数单位,52i i-= -1+2i2、复数32(1)i i += 23、设a ∈R ,且2()a i i +为正实数,则a = 1-4、已知复数z=1-i, 则12-z z 等于 25、若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b = 26、复数211i ii +-+的值是 07、i 是虚数单位,32i 1i=-( 1i - )8、已知复数11i z =-,121i z z =+,则复数2z = i .9、复数322ii +的虚部为____45__.高考复数专题(5)姓名:10、3i 的共轭复数是 33i -- 11、复数1ii+在复平面中所对应的点到原点的距离为 22 12、复数()2化简得到的结果是 -l13、若a 为实数,i iai 2212-=++,则a 等于 2 214、若cos sin z i θθ=+(i 为虚数单位),则21z =-的θ值可能是 2π15、若i R b a i b i i a ,)2(∈+=+、,其中是虚数单位,则a+b = -116、2(1)i i += -217、设i 为虚数单位,则=⎪⎭⎫⎝⎛+20081i i 2100418、若复数()()22ai i --是纯虚数(i 是虚数单位),则实数a = 4高考复数专题(6)姓名:1、复数312i i ⎛⎫+ ⎪⎝⎭的虚部为________. -12、若复数()2i bi ⋅+是纯虚数,则实数b = 03、ii -210= -2+4i4、复数3223ii+=- i5、若(2)a i i b i -=+,其中i R b a ,,∈是虚数单位,则a +b =__________ 36、已知x ,y ∈R ,i 是虚数单位,且(x -1)i -y =2+i ,则(1+i )x -y 的值为 -47、若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为 3+5i8、已知i 是虚数单位,则31ii+-= 1+2i9、在复平面内,复数z=sin2+icos2对应的点位于第 四 象限10、 若复数12,z z 在复平面内对应的点关于y 轴对称,且i z -=21,则复数21z z = i 5453+-高考复数专题(6)姓名:11、已知复数z 满足28z z i +=+,其中i 为虚数单位,则z = 1712、设a ∈R ,且(a +i )2i 为正实数,则a 等于 -113、若i3i34m m +-(m ∈R )为纯虚数,则)i 2i 2(m m -+ 2 008的值为 114、设复数z 1=1-2i, z 2=1+i, 则复数z =21z z 在复平面内对应的点位于第 三象限15、若(a -2i)i = b -i ,其中a 、b ∈R ,i 是虚数单位,则a 2+b 2等于 516、 |1|11|1|i ii i +++++= 217、设复数z 1=1+i, z 2=x -i(x ∈R ),若z 1·z 2为实数,则x 等于 118、若复数z 满足 Z =i (2-z )(i 是虚数单位),则z = . 1+i19、复数3ii)2i)(1(+--的共轭复数是 . -3+i20、若复数()()i 2ai 1++的实部和虚部相等,则实数a 等于 21。
高二一级部 期末复习(数学) 学案编写 李光红 审核 高慎云数系的扩充与复数的引入复数的分类模、辐角共轭复数两复数相等基本概念代数形式几何形式三角形式表示形式运算代数式的运算三角式的运算点向量加、减、乘、除乘方、开方几何运用几何问题轨迹问题复数一、复数的有关概念1.复数:形如 ),(R b a ∈的数叫做复数,其中a , b 分别叫它的 和 .2.分类:设复数 (,)z a bi a b R =+∈:(1) 当 =0时,z 为实数;(2) 当 ≠0时,z 为虚数;(3) 当 =0, 且 ≠0时,z 为纯虚数.3.复数相等:如果两个复数 相等且 相等就说这两个复数相等.4.共轭复数:当两个复数实部 ,虚部 时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).5.若z =a +bi, (a, b ∈R), 则 | z |= ; z z ⋅= .6.复平面:建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做 , 叫虚轴.7.复数z =a +bi(a, b ∈R)与复平面上的点 建立了一一对应的关系.8.两个实数可以比较大小、但两个复数如果不全是实数,就 比较它们的大小.二、复数的代数形式及其运算1.复数的加、减、乘、除运算按以下法则进行: 设12, (,,,)z a bi z c di a b c d R =+=+∈,则(1) 21z z ±= ;(2) 21z z ⋅= ;(3)21z z = (≠2z ).2.几个重要的结论:⑴ )|||(|2||||2221221221z z z z z z +=-++⑵ z z ⋅= = .⑶ 若z 为虚数,则2||z = ()2 z =≠填或3.运算律⑴ n m z z ⋅= .⑵ n m z )(= .⑶ n z z )(21⋅= ),(R n m ∈.一、选择题(每小题4分,共24分) 1. i 是虚数单位,复数-1+3i1+2i =( A )A .1+iB .5+5iC .-5-5iD .-1-i 2.复数z 1=3+i ,z 2=1-i ,则复数z 1z 2在复平面内对应的点位于( A )A .第一象限B .第二象限C .第三象限D .第四象限3.复数z 1=3+4i ,z 2=1+i ,i 为虚数单位,若z 22=z ·z 1,则复数z 等于( C )A .-825+625iB .-825-625iC.825+625iD.825-625i 4.已知(x -2i )(2-y i )i =-8 (x ,y ∈R ),则x -y i 的模为( D )A .1 B. 2 C .2 D .22二、填空题(每小题4分,共48分) 5、已知复数z 满足21z z i=++,则_________z =.答案:i 6、复数(13)z i i =-.(i 为虚数单位)的虚部是 1 .7.(2010·江苏)设复数z 满足z (2-3i)=6+4i(i 为虚数单位),则z 的模为___2_____.8.若z 1=a +2i ,z 2=3-4i ,且z 1+z 2为纯虚数,则实数a 的值为____-3____.高二一级部 期末复习(数学) 学案编写 李光红 审核 高慎云9.若复数z 1=a +2i ,z 2=1+b i ,a ,b ∈R ,且z 1+z 2与z 1·z 2均为纯虚数,则z 1z 2=_____322i -+_______.10..z 1=-1+2i, z 2=1-i, z 3=3-2i,它们所对应的点分别为A ,B ,C .若OC →=xOA →+yOB →,则x +y 的值是____5____. 11、设i 为虚数单位,若复数ibi +-+1)1(2(R b ∈)的实部与虚部相等,则实数b 的值为 -2 .12.若复数z 满足:i z z 2=-,iz z =,(i 为虚数单位),则=2z1 . 13、设1i i+(其中i 是虚数单位)是实系数方程220x mx n -+=的一个根,则m ni +三、解答题(共78分)14.(10分)实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i :(1)与复数2-12i 相等; (2)与复数12+16i 互为共轭; (3)对应的点在x 轴上方.答案:(1)m=-1(2)m=1(3)m>5或m<-315.(10分)已知z 是复数,z +2i 、z2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点在第一象限,求实数a 的取值范围. 答案:(2,6)16、(本题14分)已知复数z 是关于x 的实系数一元二次方程2250x mx ++=的一个根,同时复数z 满足关系式84z z i +=+.(1)求z 的值及复数z ; (2)求实数m 的值.答案:(1)z=3+4i,z =5.(2)m=-6。
高二一级部 期末复习(数学) 学案编写 李光红 审核 高慎云
数系的扩充与复数的引入
复数的分类
模、辐角共轭复数两复数相等基本概念
代数形式
几何形式
三角形式表
示形式
运算
代数式的运算三角式的运算
点
向量
加、减、乘、除乘方、开方
几
何运用
几何问题轨迹问题
复
数
一、复数的有关概念
1.复数:形如 ),(R b a ∈的数叫做复数,其中a , b 分别叫它的 和 .
2.分类:设复数 (,)z a bi a b R =+∈:(1) 当 =0时,z 为实数;
(2) 当 ≠0时,z 为虚数;
(3) 当 =0, 且 ≠0时,z 为纯虚数.
3.复数相等:如果两个复数 相等且 相等就说这两个复数相等.
4.共轭复数:当两个复数实部 ,虚部 时.这两个复数互为共轭复数.(当虚部不为零时,也可说成互为共轭虚数).
5.若z =a +bi, (a, b ∈R), 则 | z |= ; z z ⋅= .
6.复平面:建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做 , 叫虚轴.
7.复数z =a +bi(a, b ∈R)与复平面上的点 建立了一一对应的关系.
8.两个实数可以比较大小、但两个复数如果不全是实数,就 比较它们的大小.
二、复数的代数形式及其运算1.复数的加、减、乘、除运算按以下法则进行: 设12, (,,,)z a bi z c di a b c d R =+=+∈,则(1) 21z z ±= ;
(2) 21z z ⋅= ;
(3)
2
1
z z = (≠2z ).2.几个重要的结论:
⑴ )
|||(|2||||2221221221z z z z z z +=-++⑵ z z ⋅= = .
⑶ 若z 为虚数,则2||z = ()2 z =≠填或3.运算律
⑴ n m z z ⋅= .
⑵ n m z )(= .
⑶ n z z )(21⋅= ),(R n m ∈.
一、选择题(每小题4分,共24分) 1. i 是虚数单位,复数-1+3i
1+2i =( A )
A .1—i
B .5+5i
C .-5-5i
D .-1-i 2.复数z 1=3+i ,z 2=1-i ,则复数z 1
z 2在复平面内对应的点位于
( A )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.复数z 1=3+4i ,z 2=1+i ,i 为虚数单位,若z 22=z ·
z 1,则复数z 等于( C )
A .-825+625i
B .-825-625i
C.825+625i
D.825-625
i 4.已知(x -2i )(2-y i )
i =-8 (x ,y ∈R ),则x -y i 的模为( D )
A .1 B. 2 C .2 D .22
二、填空题(每小题4分,共48分) 5、已知复数z 满足2
1z z i
=+
+,则i Z =. 6、复数(13)z i i =-.(i 为虚数单位)的虚部是 1 .
7.(2010·江苏)设复数z 满足z (2-3i)=6+4i(i 为虚数单位),则z 的模为___2i_____.
8.若z 1=a +2i ,z 2=3-4i ,且z 1+z 2为纯虚数,则实数a 的值为___-3_____.
高二一级部 期末复习(数学) 学案编写 李光红 审核 高慎云
9.若复数z 1=a +2i ,z 2=1+b i ,a ,b ∈R ,且z 1+z 2与z 1·z 2均为纯虚数,则z 1z 2=__5
68i +-__________.
10..z 1=-1+2i, z 2=1-i, z 3=3-2i,它们所对应的点分别为A ,B ,C .若OC →
=xOA →+yOB →
,则x +y 的值是___5_____.
11、设i 为虚数单位,若复数i
b
i +-+1)1(2
(R b ∈)的实部与
虚部相等,则实数b 的值为 -2 .
12.若复数z 满足:i z z 2=-,iz z =,(i 为虚数单位),则=2
z
2 .
13、设1i i
+(其中i 是虚数单位)是实系数方程2
20
x mx n -+=的一个根,则m ni +
三、解答题(共78分)
14.(10分)实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i :
(1)与复数2-12i 相等;1-=m (2)与复数12+16i 互为共轭;1=m (3)对应的点在x 轴上方.35-<>m m 或
15.(10分)已知z 是复数,z +2i 、z
2-i 均为实数(i 为虚数单位),
且复数(z +a i)2
在复平面上对应的点在第一象限,求实数a 的取值范围.i z 21--= 21<<a
16、(本题14分)已知复数z 是关于x 的实系数一元二次方程2250x mx ++=的一个根,同时复数z 满足关系式84z z i +=+.
(1)求z 的值及复数z ;i z 43+= (2)求实数
m 的值.6-=m。