备战2018年数学优质试卷分项版(第02期)专题10推理与证明、算法、复数文
- 格式:doc
- 大小:650.02 KB
- 文档页数:11
湖北省各地2018届高三最新数学文试题分类汇编复数、推理与证明一、复数1、(黄冈市2016高三3月质量检测)若复数z 满足201520161zi i i=++ i 为虚数单位),则复数z= A .1 B .2 C .i D .2i 2、(荆、荆、襄、宜四地七校联盟2016届高三2月联考)已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则=-b a ( )A .3-B .2-C .1-D .1 3、(荆门市2016届高三元月调考)复数231iz i+=+(i 为虚数单位)在复平面上的对应点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4、(湖北省七市(州)2016届高三3月联合调研)i 505的虚部为(A) -i (B) i (C)-l (D) l5、(武汉市2016届高中毕业班二月调研)复数z 满足:(3-4i )z =1+2i ,则z A.i 5251-+ B.i 52-51 C.i 52-51- D.i 5251+ 6、(武汉市武昌区2016届高三元月调研)已知(1+2i)z =4 +3i (其中i 是虚数单位,z 是z 的共轭复数),则z 的虚部为(A) 1 (B) -1 (C) i (D) -i 7、(襄阳市普通高中2016届高三统一调研)已知复数z 满足11z i z -=+,则z 等于 A .1 + iB .1-iC .iD .-i8、(孝感市六校教学联盟2016届高三上学期期末联考)设i 是虚数单位,若复数10()3a a R i-∈-是纯虚数,则a 的值为( )A .3-B .1-C .1D .3 9、(湖北省优质高中2016届高三下学期联考)在复平面内,复数31ii--对应的点的坐标为( ) A . (2,1) B . (1,2)- C . (1,2) D . (2,1)-10、(湖北省八校2016届高三第一次(12月)联考)欧拉公式cos sin ixe x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.2ie 在复平面中表示的复数位于A .第一象限B .第二象限C .第三象限D .第四象限11、(湖北省部分重点中学2016届高三第一次联考)已知,,a b R i ∈是虚数单位,且(2)1a i b i --=+,则(1)a b i ++的值为( )A. 4B. 4-C. 44i +D. 2i 12、(孝感市2016届高三上学期第一次统考)如果复数2bii-(b R ∈)的实部和虚部互为相反数,那么b 等于A B C 、-2 D 、2参考答案:1、B2、A3、A4、A5、A6、A7、C8、D9、A 10、B 11、D 12、C二、推理与证明1、(荆门市2016届高三元月调考)下列式子:13=(1×1)2,13+23 +33 =(2×3)2,l 3+23 +33 +43 +53 =(3×5)2,l 3 +23 +33+ 43 +53 +63 +73=(4×7)2,…由归纳思想,第n 个式子为 。
【2018年高三数学优质试卷分项精品】专题24 算法 推理 证明 复数一、填空题1.设复数z 1,z 2在复平面内的对应点关于实轴对称,z 1=1+i ,则z 1z 2= . 【答案】2【解析】由题意,得i z +=11,i z -=12,则2)1)(1(21=-+=i i z z . 2.若复数z 满足i 1i z ⋅=+,则z 的共轭复数的虚部是 . 【答案】1【解析】i ii i i i i z -=-+-=⋅+=+=111)1()1(2,所以i z +=1_,得虚部为1. 3. 执行如图所示的程序框图,若输入n 的值为8,则输出S 的值为 .【答案】84. 用火柴棒摆“金鱼”,如图所示:按照上面的规律,第○n 个“金鱼”图需要火柴棒的根数是 . 【答案】62n +【解析】由题意得:“金鱼”图需要火柴棒的根数依次构成一个等差数列,首项为8,公差为6,因此第n 项为62n +5. 执行如图所示的程序框图,则输出i 的值为.【答案】56.若复数43(cos )(sin )55z i θθ=-+-是纯虚数(i 为虚数单位),则tan ()4πθ-的值为 .【答案】7-【解析】因为复数43(cos )(sin )55z i θθ=-+-是纯虚数,所以4cos 053sin 05θθ⎧-=⎪⎪⎨⎪-≠⎪⎩,解之得43cos ,sin 55θθ==-,所以3tan 4θ=-,3tan tan144tan 7341tan tan 1144πθπθπθ---⎛⎫-===- ⎪⎛⎫⎝⎭++-⨯ ⎪⎝⎭.7.对于数列{n a },定义数列{n n a a -+1}为数列{n a }的“差数列”,若21=a ,{n a }的“差数列”的通项为n 2,则数列{n a }的前n 项和n S = .【答案】122n +-【解析】由题意得:12nn n a a +-=,所以1122(12)22222212n n n n n a ----=++++=+=- ,所以n S 122n +=-.8.设i 是虚数单位,如果复数i2ia +-的实部与虚部相等,那么实数a 的值为 . 【答案】3【解析】∵i 21(2)i2i 5a a a +-++=-,∴212a a -=+,3a =. 9. 已知函数()2log 1f x a x =+(0a ≠),定义函数()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,给出下列命题:① ()()F x f x =;②函数()F x 是偶函数;③当0a <时,若01m n <<<,则有()()0F m F n -<成立;④当0a >时,函数()2y F x =-有4个零点.其中正确命题的个数为 .【答案】3调递增函数,因此③对;当(0,1),0x a ∈>时,()2log 1f x a x =-+为单调递减函数,且()(1,)f x ∈+∞,当(1,),0x a ∈+∞>时,()2log 1f x a x =+为单调递增函数,且()(1,)f x ∈+∞,因此当0x >时()2f x =有两个解,又()F x 是偶函数,因此函数()2y F x =-有4个零点,即④对,正确命题的个数为3. 10. 如图,当输入5x =-,15y =时,图中程序运行后输出的结果为 .【答案】33,3【解析】因为0<x ,所以执行183=+=y x ,即此时18=x ,15=y ,输出为y x y x +-,,而33,3=+=-y x y x ,所以输出结果为33,3.11. 复数34343iz i+=+-,则||z 等于 .【解析】由题意得()()()()344334333434343i i iz i i i i +++=+=+=+--+,所以z ==12. 若复数()21+2ai i -(i 为虚数单位)是纯虚数,则实数a = .【答案】1-13. 某程序框图如图所示,则该程序运行后输出的值是.【答案】2017【解析】分析程序框图可知,当i 为偶数时,2017S =,当i 为奇数时,2016S =,而程序在0i =时跳出循环,故输出2017S =,14. 在平面直角坐标系x y O 中,已知过原点O 的动直线l 与圆C :22650x y x +-+=相交于不同的两点A ,B ,若点A 恰为线段OB 的中点,则圆心C 到直线l 的距离 .【解析】由22650x y x +-+=可得4)3(22=+-y x ,设圆心C 到直线l 的距离为m OA OB d 22,==,则借助几何特征可得方程组⎪⎪⎩⎪⎪⎨⎧=+=+449)23(2222m d m d ,解之得:463827==d .二、解答题15. (1)已知复数z 满足⎝ ⎛⎭⎪⎫12+32i ·z =1+i(其中i 为虚数单位),求|z |的值.(2)执行如图所示的程序框图,求输出的S 的值.【答案】(1) 2;(2)25 【解析】(1)i ii i i i i i z )2321()2321(4341)2321()2321()2321)(2321()2321)(1(23211-++=+-++=-+-+=++=,所以2)2321()2321(22=-++=z .16.一个非空集合中的各个元素之和是3的倍数,则称该集合为“好集”. 记集合 {1,2,3,…,3n }的子集中所有“好集”的个数为f (n ).(1)求f (1),f (2)的值; (2)求f (n )的表达式.【答案】(1)f (1)=3,f (2)=23;(2)f (n )=2n(4n-1)3+2n-1.【解析】 (1)易得f (1)=3;当n =2时,集合{1,2,3,4,5,6}的子集中是“好集”的有:单元集:{3},{6}共2个,双元集{1,2},{1,5},{2,4},{4,5},{3,6}共5个,三元集有:{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6}共8个,四元集有{3,4,5,6},{2,3,4,6}, {1,3,5,6},{1,2,3,6},{1,2,4 ,5}共五个,五元集{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集. 故f (2)=1+(2+5)×2+8=23.③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合,合计是23n;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}. 所以,f (n +1)=2 f (n )+2×23n+1. 两边同除以2n +1,得f (n +1)2n +1-f (n )2n=4n+12n +1, 所以 f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n-13+1-12n ,即f (n )=2n (4n-1)3+2n-1.17.汽车从刹车开始到完全静止所用的时间叫做刹车时间;所经过的距离叫做刹车距离.某型汽车的刹车距离s(单位米)与时间t(单位秒)的关系为32510s t k t t =-⋅++,其中k 是一个与汽车的速度以及路面状况等情况有关的量.(1)当k =8时,且刹车时间少于1秒,求汽车刹车距离;(2)要使汽车的刹车时间不小于1秒钟,且不超过2秒钟,求k 的取值范围. 【答案】(1)6752210米;(2)⎥⎦⎤⎢⎣⎡∈461,8k .【解析】(1)当8k =时,325810s t t t =-++, 这时汽车的瞬时速度为V='215161s t t =-+, 令'0s =,解得1t =(舍)或115t =, 当115t =时,6752210=s , 所以汽车的刹车距离是6752210米.115t t+≥Q115,t t t ==Q []1,2t =,∴记1()15f t t t=+, '21()15f t t =-,[1,2]t ∈ ,'21()150f t t ∴=->,()f t ∴单调递增, ⎥⎦⎤⎢⎣⎡∈∴261,16)(t f ,⎥⎦⎤⎢⎣⎡∈261,162k ,即⎥⎦⎤⎢⎣⎡∈461,8k ,故k 的取值范围为⎥⎦⎤⎢⎣⎡∈461,8k . 考点:导数的物理意义,方程有解问题.18.若数列{}n C1n c +,②存在常数(M M 与n 无关),使n c M ≤.则称数列{}n c 是“和谐数列”. (1)设n S 为等比数列{}n a 的前n 项和,且442,30a S ==,求证:数列{}n S 是“和谐数列”;(2)设{}n a 是各项为正数,公比为q 的等比数列,n S 是{}n a 的前n 项和,求证:数列{}n S 是“和谐数列”的充要条件为01q <<.【答案】(1)详见解析(2)详见解析【解析】(1)设公比为q ,则3411414161(1)21a a q a a q q s q ⎧==⎧⎪⎪⇒⎨⎨-==⎪⎪⎩-⎩,所以51322n n s -=-.≤141322n n S +--=.且513232.2n n S -=-<即存在常数32,所以,数列{}n S 是“和谐数列” .因为222222112()(1)(1)()(1)11n n n n n n n a aS S q q q q q q q ++++=--=--+-- 21222122111()(12)()(1)11n n n n a aq q q S q q++++<-+=-=-- 所以{}n S 是“和谐数列” 必要性等比数列{}n a 各项为正,且n S 是“和谐数列”. 因为0.n a > 所以,0.q > 下面用反证法证明,1q <(1)当1,q =则1,n S na =因为10,a >所以,不存在M ,使1na M <对1n N -∈恒成立; 当1q >,则111(1)111n n n a q a aS q q q q -==---- 所以,对于给定的正数M ,若11,11n a aq M q q ->--因为,1q >,所以,11log (1).q q n M a ->+ 即当11log (1)q q n M a ->+时,有n S M >. 所以,不存在常数M ,使.n S M ≤ 所以,0 1.q <<综上,数列{}n S 是“和谐数列”的充要条件为其公比为01q <<. 19 .已知两个无穷数列{}{},n n a b 分别满足12n na a +-=,2214n nb b +=,且111,1a b ==-. (1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式; (2)若数列{}n c 满足:存在唯一的正整数()r r N *∈,使得1r r cc +<,称数列{}n c为“梦r 数列”;设数列{}{},n n a b 的前n 项和分别为,nn ST ,① 若数列{}n a 为“梦5数列”,求nS;② 若{}n a 为“梦1r 数列”,{}n b 为“梦2r 数列”,是否存在正整数m ,使得1m m ST +=,若存在,求m 的最大值;若不存在,请说明理由.【答案】(1)21n a n =-,11,12,2n n n b n --=⎧=⎨≥⎩(2)①22,5420,6n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②max 6m =差数列,故22,5420,6n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩; ………8分②∵2214n n b b +=即12n n b b +=±,1||2n n b -∴= ………9分 而数列{}n b 为“梦数列”且11b =-,∴数列{}n b 中有且只有两个负项.假设存在正整数m ,使得+1m m S T =,显然1m ≠,且m T 为奇数,而{}n a 中各项均为奇数,∴m 必为偶数. ………10分 首先证明:6m ≤.若7m >,数列{}n a 中()()21max 1321(1)m S m m +=++⋅⋅⋅++=+,而数列{}n b 中,m b 必然为正,否则()()1121212122230m m m m T b ---=-++⋅⋅⋅+-≤-++⋅⋅⋅++-=-<,显然矛盾;(※)∴()()()13211min 12+22223m m m m m T ----=-++⋅⋅⋅++-+=-, 设122(1)3m m c m -=-+-,易得11223,m m m m d c c m -+=-=-- 而11220m m m d d -+-=->,()7m >,∴{}m d ()7m >为增数列,且70d >进而{}m c ()7m >为增数列,而80c >, ∴()()min max m m T S >,即6m ≤. ………14分 当6m =时,构造:{}n a 为1,3,1,3,5,7,9,⋅⋅⋅,{}n b 为1,2,4,8,16,32,64,--⋅⋅⋅ 此时12r =,24r =所以max 6m =,对应的12r =,24r = ………16分20.设数列{}n a 的通项公式为n a pn q =+(,0)n N p *∈>,数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值. (1)若11,23p q ==-,求3b ; (2)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(3)是否存在p 和q ,使得32m b m =+()m N *∈?如果存在,求p 和q 的取值范围?如果不存在,请说明理由.【答案】(1)37b =;(2)22m m +;(3)121,[,]333p q =∈--.(2)由题意,得21n a n =-,对于正整数由n a m ≥,得12m n +≥, 根据m b 的定义可知,当21m k =-时,()m b k k N *=∈ 当2m k =时,1()m b k k N *=+∈∴1221321()m m b b b b b b -+++=+++ 242()m b b b ++++ =2(123)[234(1)]2m m m m ++++++++++=+(3)假设存在p 和q 满足条件,由不等式pn q m +≥及0p >得m q n p -≥ ∵32()m b m m N *=+∈,根据m b 的定义可知,对于任意正整数的都有 3132m q m m p-+<≤+即2(31)p q p m p q --≤-<--对任意的正整数m 都成立. 当310p ->(或310p -<)时,得22()31313131p q p q p q p q m m p p p p ++++-≥≥--≤≤-----或 这与上述结论矛盾.当310p -=即13p =时,21033q q --≤<--,∴2133q -≤<- ∴所以存在p 和q ,使得满足条件的p ,q ,且p ,q 的取值范围分别是:121,[,]333p q =∈--.。
1.条件概率及其性质(1)一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质 ①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件, 则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (A )P (B |A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. 3.二项分布(1)一般地,在相同条件下重复做的几次试验称为n 次独立重复试验.(2)一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率. 【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要; (2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)条件概率一定不等于它的非条件概率.( × ) (2)相互独立事件就是互斥事件.( × )(3)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( × )(4)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 答案 B解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(教材改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ) A.49 B.29 C.427 D.227 答案 A解析 所求概率P =C 13·(13)1·(1-13)3-1=49. 3.(2015·课标全国Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________. 答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,故所 求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25 D.12(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________. 答案 (1)B (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P (AB )P (A )=14. (2)AB 表示事件“豆子落在△OEH 内”, P (B |A )=P (AB )P (A )=△OEH 的面积正方形EFGH 的面积=14. 引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25, P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P (AB )P (A )=P (B )P (A )=34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=12π, ∴P (A |B )=P (AB )P (B )=12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ).(2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P (AB )P (A )=730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T 的分布列为(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法 (1)首先判断几个事件的发生是否相互独立.(2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2017·青岛月考)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22千米.已知甲、乙乘车不超过6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率 P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14,P (ξ=8)=14×13+14×13+12×13=13,P (ξ=9)=12×13+14×13=14,P (ξ=10)=14×13=112.所以ξ的分布列为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝⎛⎭⎫232×⎝⎛⎭⎫1-23×23=827, P (C )=C 24⎝⎛⎭⎫232×⎝⎛⎭⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎫1-232×⎝⎛⎭⎫232×⎝⎛⎭⎫1-12=427, P (X =3)=⎝⎛⎭⎫133+C 23⎝⎛⎭⎫132×23×13=19. 故X 的分布列为命题点2 根据独立重复试验求二项分布例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝⎛⎫121×⎝⎛⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响,∴P (A )=C 23(13)2(23)1+C 33(13)3=727. (2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3. P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29, P (X =2)=C 23(23)2(13)1=49, P (X =3)=(23)3=827.因此X 的分布列为18.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________.(2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243. 答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A ∪B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则 P (A )=P (A 1A 2A 3A 4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝⎛⎭⎫233×⎝⎛⎭⎫132+13×⎝⎛⎭⎫233×13+⎝⎛⎭⎫132×⎝⎛⎭⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18 答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P (AB )P (A )=1412=12.2.(2016·长春模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A .C 1012(38)10(58)2 B .C 912(38)9(58)2C .C 911(58)9(38)2D .C 911(38)10(58)2 答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911(38)9(58)2=C 911(38)10(58)2. 3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( )A .事件A ,B 同时发生 B .事件A ,B 至少有一个发生C .事件A ,B 至多有一个发生D .事件A ,B 都不发生 答案 C解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14. 故目标被击中的概率P =1-P (A B C )=34.5.(2017·南昌质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是( ) A.56 B.45 C.3132 D.12 答案 C解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·安徽黄山屯溪一中月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .事件B 与事件A 1相互独立C .P (B |A 1)=511D .P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关 答案 C解析 由题意A 1,A 2,A 3是两两互斥的事件, P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,由此知,C 正确;P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3) =12×511+15×411+310×411=922. 由此知A ,D 不正确.故选C.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59, 解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2017·广州月考)设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.答案964解析 设事件A 发生的概率为p ,由题意知(1-p )3=1-6364=164,解得p =34,则事件A 恰好发生一次的概率为C 13×34×(14)2=964. 10.(2016·荆州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P (AB )P (A )=3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k . 这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3∪A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝⎛⎭⎫133×23+C 44⎝⎛⎭⎫134 =19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故 P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1)+P (A 3)=4081,P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是12.(2016·西安模拟)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率. 解 (1)设A 表示事件“作物产量为300 kg ”,B 表示事件“作物市场价格为6 元/kg ”,由题设知P (A )=0.5,P (B )=0.4, 因为利润=产量×市场价格-成本. 所以X 所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的分布列为(2)设C i表示事件“第i季利润不少于2 000元”(i=1,2,3),由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.*13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B∪A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。
2018版高考数学一轮复习 第十二章 推理与证明、算法、复数 12.5复数真题演练集训 理 新人教A 版1.[2016·新课标全国卷Ⅱ]已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)答案:A解析:由已知,可得⎩⎨⎧m +3>0m -1<0⇒⎩⎨⎧m >-3m <1⇒-3<m <1.故选A.2.[2016·山东卷]若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =( ) A .1+2i B .1-2i C .-1+2i D .-1-2i答案:B解析:设z =a +b i(a ,b ∈R ),则2z +z =2(a +b i)+a -b i =3a +b i =3-2i ,∴a =1,b =-2,∴z =1-2i ,故选B.3.[2016·四川卷]设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4B .15x 4C .-20i x 4D .20i x 4答案:A解析:T 3=C 26x 4i 2=-15x 4,故选A.4.[2016·新课标全国卷Ⅰ]设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3 D .2答案:B解析:∵x ,y ∈R ,(1+i)x =1+y i ,∴x +x i =1+y i ,∴⎩⎪⎨⎪⎧x =1y =1,∴|x +y i|=|1+i|=12+12= 2.故选B.5.[2016·天津卷]已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则ab的值为________. 答案:2解析:由(1+i)(1-b i)=a 得1+b +(1-b )i =a ,则⎩⎨⎧b +1=a1-b =0,解得⎩⎨⎧a =2b =1,所以a b=2.6.[2016·北京卷]设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________.答案:-1解析:(1+i)(a +i)=(a -1)+(a +1)i ,∵a ∈R ,该复数在复平面内对应的点位于实轴上,∴a +1=0,∴a =-1.课外拓展阅读利用共轭复数的性质解复数方程复数方程是复数学习中的一个重要内容,解题时,不少学生总是迫不及待地将方程中的复数z 设为代数形式a +b i(a ,b ∈R ),将复数方程转化为实数方程解决.这种方法有时候是非常费时费力的.有没有解决此类问题的更简单的方法呢?共轭复数的概念在复数学习中占有极其重要的地位,若能在解复数方程时灵活运用,则可以大大减少运算量,起到事半功倍的效果.共轭复数的性质有很多,在此列举几条供大家参考:(1)z ∈R ⇔z =z ;(2)z 是纯虚数⇔z ≠0且z +z =0或z 2=-|z |2; (3)|z |2=z ·z ; (4)|z |=|z |.这些性质的应用非常广泛,下面以例题的形式展现上述性质在解复数方程中的应用. [典例1] 在复数集中解下列方程: (1)2z -i z =1;(2)z -λz =ω(λ,ω∈C ,且|λ|≠1).[解] (1)将原方程两边同时取共轭复数可得2z +i z =1,联立方程得⎩⎪⎨⎪⎧2z -i z =12z +i z =1,解得z =23+13i.(2)将原方程两边同时取共轭复数可得z -λz =ω,联立方程得⎩⎪⎨⎪⎧z -λz =ωz -λz =ω,从而(1-λλ)z =λω+ω. 因为|λ|≠1,所以1-λλ≠0,所以z =λω+ω1-λλ.[方法探究] 求解本题(1)时,常设z =a +b i(a ,b ∈R ),代入原方程,利用复数相等的充要条件建立方程组求a ,b .题(2)若用上述方法求解则非常繁琐.[典例2] 已知z ∈C ,解方程z ·z -3i z =1+3i. [解] 原方程可化为-3i z -3i =1-z ·z , 因为z ·z =|z |2∈R ,所以-3i z -3i =-3i z -3i =3i z +3i , 所以(z +z )3i =-6i , 所以z +z =-2.令z =x +y i(x ,y ∈R ),则x =-1.把z =-1+y i 代入原方程可得y 1=0,y 2=-3, 所以原方程的解为z 1=-1,z 2=-1-3i.[方法探究] 本题巧妙利用z ∈R ⇔z =z 这一性质完成了解答.本题也可以采用将原方程两边同时取共轭复数的方法解得z +z =-2.。
专题 推理与证明、算法、复数一、选择题1.【2018湖北咸宁联考】若复数z 满足121ii z+=-,则z 的共轭复数是( ) A. 3122i + B. 3122i - C. 1322i -+ D. 1322i --【答案】D 【解析】121213131,,.1222i i i i z z i z i ++-+=-∴==∴=--- 本题选择D 选项.2.【2018黑龙江齐齐哈尔八中三模】已知复数()2017i 43i z =-,则复数z 的共轭复数为( )A. 34i -B. 34i -+C. 43i -D. 43i -- 【答案】A3.【2018河南中原名校联考】i 是虚数单位,复数()2421412i i i i+---=-( ) A. 0 B. 2 C. 4i - D. 4i 【答案】A 【解析】()()()()()()24212421412142240121212i i i i i i i i i i i i i +++---=----=+-=--+,所以选A 。
4.【2018黑龙江齐齐哈尔一模】设a R ∈,若()2a i i -(i 为虚数单位)为正实数,则复数2a i +的共轭复数为( )A. 22i +B. 12i -C. 12i +D. 12i -- 【答案】B【解析】()()()22212ai 21a i i a i a a i -=--=+-,又其为正实数∴220{10a a >-=,∴1a = ∴复数12i +的共轭复数为12i - 故选:B5.【2018河北衡水中学联考】已知复数521iz i =-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】D6.【2018云南昆明一中一模】已知11zi z+=--(其中i 是虚数单位),则1z +=( ) A. 1 B. 02 【答案】C 【解析】11ii,i 11iz z z+-+=∴==-+,11z i ∴+=+== C. 7.【2018广西柳州摸底联考】已知复数z 在复平面内对应点是()1,2-, i 为虚数单位,则21z z +=-( ) A. 1i -- B. 1i + C. 312i - D. 312i + 【答案】D 【解析】21z z +=- 323122i i i -=+- ,选D. 8.【2018河南林州一中调研】已知复数满足()1z +=,则z ( )A.344+ B. 322- C. 322+ D.344i - 【答案】A【解析】134z -====+ ,选A. 9.【2018辽宁鞍山一中二模】下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A. 0B. 2C. 4D. 14 【答案】B故选B .点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10.【2018四川德阳三校联考】执行如图所示的程序框图,若输入1,3m n ==,输出的x =1.75,则空白判断框内应填的条件为( )A. m n -<1B . m n -<0.5C . m n -<0.2D . m n -<0.1 【答案】B【解析】当第一次执行, 22,230,2,x n =->=返回,第二次执行2333,)30,222x m =-<=(,返回,第三次, 234771.75,)30,444x n +==->=(,要输出x,故满足判断框,此时371244m n -=-=-,故选B.点睛:本题主要考查含循环结构的框图问题。
专题 推理与证明、算法、复数一、 选择题1.【2018河南中原名校高三联考五】老师在四个不同的盒子里面放了4张不同的扑克牌,分别是红桃A ,梅花A ,方片A 以及黑桃A ,让明、小红、小张、小李四个人进行猜测: 小明说:第1个盒子里面放的是梅花A ,第3个盒子里面放的是方片A ; 小红说:第2个盒子里面饭的是梅花A ,第3个盒子里放的是黑桃A ; 小张说:第4个盒子里面放的是黑桃A ,第2个盒子里面放的是方片A ; 小李说:第4个盒子里面放的是红桃A ,第3个盒子里面放的是方片A ;老师说:“小明、小红、小张、小李,你们都只说对了一半.”则可以推测,第4个盒子里装的是( ) A. 红桃A 或黑桃A B. 红桃A 或梅花A C. 黑桃A 或方片A D. 黑桃A 或梅花A 【答案】A2.【2018四川广元高三第一次适应性统考】二维空间中,圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,三维空间中,球的二维测度(表面积)24S r π=,三维测度(体积)“超球”的三维测度38V r π=,则其思维测度W=( ) A. 42r π B. 43r π C. 44r π D. 46r π 【答案】A【解析】由题意得,二维空间中,二维测度的导数为一维测度;三维空间中,三维测度的导数为二维测度.由此归纳,在四维空间中,四维测度的导数为三维测度,故42W r π=.选A .3.【2018山东淄博12月摸底】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术. 得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:“穿墙术”,则n= A. 35 B. 48 C. 63 D. 80【答案】C【解析】根据规律得313,824,1535,2446,n=⨯= ,选C.=⨯=⨯=⨯=⨯ ,所以79634.【2018河南安阳高三一模】执行下图所示的程序框图,若输入0.8p=,则输出的n=()A. 3B. 4C. 5D. 6【答案】B5.【2018河南安阳高三一模】执行下图所示的程序框图,若输入0.99p=,则输出的n=()A. 6B. 7C. 8D. 9【答案】C6.【2018湖南株洲高三统检一】已知[]x表示不超过x的最大整数,如[][][]===.执行如图所示0.50,11, 2.42的程序框图,则输出S的值为()A. 450B. 460C. 495D. 550 【答案】B故选B.7.【2018贵州遵义高三上学期联考二】下边程序框图的算法思路是来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图时,若输入的a b 、分别为16、18,输出的结果为a ,则二项式开式中常数项是( )A. -20B. 52C. -192D. -160 【答案】D8.【2018吉林普通高中二调】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。
1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × ) (4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N *).( × ) (6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123 D .199答案 C解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a 10+b 10=123. 2.下面几种推理过程是演绎推理的是( )A .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳数列{a n }的通项公式B .由平面三角形的性质,推测空间四面体性质C .两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人 答案 C解析 A 、D 是归纳推理,B 是类比推理,C 符合三段论模式,故选C.3.(2017·济南调研)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________. 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________. 答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *) 解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *). 5.(2016·青岛模拟)若数列{a n }的通项公式为a n =1(n +1)2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________. 答案n +22n +2解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34(1-19)=23=46,f (3)=(1-a 1)(1-a 2)(1-a 3)=23(1-116)=58,推测f (n )=n +22n +2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4;⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5;…照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N *),则a =________.答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n . 命题点3 与数列有关的推理例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n . … …可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 (2017·大连调研)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 答案 D解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(1)(2015·陕西)观察下列等式:1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为___________________________.(2)(2016·抚顺模拟)观察下图,可推断出“x ”处应该填的数字是________.答案 (1)1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)(2)183解析 (1)等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .(2)由前两个图形发现:中间数等于四周四个数的平方和,∴“x ”处应填的数字是32+52+72+102=183. 题型二 类比推理例5 (1)(2017·西安月考)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________. (2)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0. (2)令1+12+1…=x ,则有1+12+1x =x , 解得x =1+32(负值已舍去).思维升华(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.题型三 演绎推理例6 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ). (1)试证明:f (x )为R 上的单调增函数;(2)若x ,y 为正实数且4x +9y =4,比较f (x +y )与f (6)的大小.(1)证明 设x 1,x 2∈R ,且x 1<x 2, 则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0, ∵x 1<x 2,∴f (x 2)-f (x 1)>0, ∴f (x 2)>f (x 1).∴f (x )为R 上的单调增函数.(2)解 ∵x ,y 为正实数,且4x +9y =4,∴x +y =14(x +y )(4x +9y )=14(13+4y x +9x y )≥14(13+24y x ·9x y )=254, 当且仅当⎩⎨⎧ 4y x =9xy ,4x +9y =4,即⎩⎨⎧x =52,y =154时取等号,∵f (x )在R 上是增函数,且x +y ≥254>6,∴f (x +y )>f (6).思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误(2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数答案(1)C(2)B解析(1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C、D都不是由一般性命题到特殊性命题的推理,所以C、D都不正确,只有B正确,故选B.10.高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:①b 2 014是数列{a n }的第________项; ②b 2k -1=________.(用k 表示)(2)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(ⅰ)T ={f (x )|x ∈S };(ⅱ)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N *,B =N ;②A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}; ③A ={x |0<x <1},B =R ; ④A =Z ,B =Q .解析 (1)①a n =1+2+…+n =n (n +1)2,b 1=4×52=a 4,b 2=5×62=a 5,b 3=9×(2×5)2=a 9,b 4=(2×5)×112=a 10,b 5=14×(3×5)2=a 14,b 6=(3×5)×162=a 15,…b 2 014=⎝⎛⎭⎫2 0142×5⎝⎛⎭⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝⎛⎭⎫2k -1+12×5-1⎝⎛⎭⎫2k -1+12×52=5k (5k -1)2.(2)对于①,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②;对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④.答案 (1)①5 035 ②5k (5k -1)2(2)④1.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( ) A .大前提 B .小前提 C .推理过程 D .没有出错答案 A解析 推理形式正确,但大前提错误,故得到的结论错误.故选A. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确答案 C 解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提错误.4.(2016·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为( )A .29B .30C .31D .32答案 C解析 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n +1,…,其前n 项和S n =n [3+(2n +1)]2=n (n +2)且S 31=1 023,即第31个等式中最后一个偶数是1 023×2=2 046,且第31个等式中含有63个偶数,故2 016在第31个等式中.5.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2.其中正确结论的个数是( )A .0B .1C .2D .3 答案 B解析 (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误.sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34, 故②错误.由向量的运算公式知③正确.6.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107.7.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________.答案 x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1. 8.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S △△=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为__________________.答案 111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 9.设f (x )=13x+3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解 f (0)+f (1)=130+3+131+3 =11+3+13(1+3) =33(1+3)+13(1+3)=33, 同理可得f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x=13x +3+3x3(3+3x )=3+3x 3(3+3x )=33. 10.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n, ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)*11.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )的对称中心;(2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1), 所以f (12+x )+f (12-x )=2, 即f (x )+f (1-x )=2.故f (12 017)+f (2 0162 017)=2, f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2, …,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。
1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部.(i 为虚数单位) (2)分类:(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( × )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( × )(3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ )1.(2016·全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a 等于( ) A .-3 B .-2 C .2 D .3 答案 A解析 ∵(1+2i)(a +i)=a -2+(2a +1)i , ∴a -2=2a +1,解得a =-3,故选A.2.(2015·课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i 答案 C解析 由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i.3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i 答案 C解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4), 则点C 对应的复数为z =2+4i.4.(教材改编)在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是( ) A .1-2i B .-1+2i C .3+4i D .-3-4i答案 D解析 CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i. 5.i 2 011+i 2 012+i 2 013+i 2 014+i 2 015+i 2 016+i 2 017=________. 答案 1解析 原式=i 3+i 4+i 1+i 2+i 3+i 4+i =1.题型一 复数的概念例1 (1)(2015·福建)若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3D .-1,4(2)若z 1=(m 2+m +1)+(m 2+m -4)i(m ∈R ),z 2=3-2i ,则“m =1”是“z 1=z 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件(3)(2016·天津)i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________. 答案 (1)A (2)A (3)1解析 (1)∵(1+i)+(2-3i)=3-2i =a +b i , ∴a =3,b =-2,故选A.(2)由⎩⎪⎨⎪⎧m 2+m +1=3,m 2+m -4=-2,解得m =-2或m =1,所以“m =1”是“z 1=z 2”的充分不必要条件. (3)∵(1+i)z =2,∴z =21+i =1-i ,∴其实部为1.引申探究1.将本例(1)中方程左边改为(1+i)(2-3i),求a ,b 的值. 解 (1+i)(2-3i) =2+3-i =5-i =a +b i , 所以a =5,b =-1.2.将本例(3)中的条件“(1+i)z =2”改为“(1+i)3z =2”,求z 的实部. 解 z =2(1+i )3=2-2+2i=-12-12i , ∴z 的实部为-12.思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(1)已知a ∈R ,复数z 1=2+a i ,z 2=1-2i ,若z 1z 2为纯虚数,则复数z 1z 2的虚部为( )A .1B .i C.25D .0(2)如果复数m 2+i1-m i 是实数,则实数m 等于( )A .-1B .1C .- 2 D. 2 答案 (1)A (2)A解析 (1)由z 1z 2=2+a i 1-2i =(2+a i )(1+2i )5=2-2a 5+4+a 5i 是纯虚数,得a =1,此时z 1z 2=i ,其虚部为1.(2)因为m 2+i 1-m i =(m 2+i )(1+m i )1+m 2=m 2-m +(1+m 3)i 1+m 2是实数,所以1+m 31+m 2=0,所以m =-1,故选A.题型二 复数的运算 命题点1 复数的乘法运算例2 (1)(2016·四川)设i 为虚数单位,则复数(1+i)2等于( ) A .0 B .2 C .2i D .2+2i(2)(2016·全国乙卷)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|等于( ) A .1 B. 2 C. 3 D .2(3)(2015·课标全国Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a 等于( ) A .-1 B .0 C .1 D .2 答案 (1)C (2)B (3)B解析 (1)(1+i)2=12+i 2+2i =1-1+2i =2i.(2)由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎪⎨⎪⎧ x =1,x =y ⇒⎩⎪⎨⎪⎧x =1,y =1.所以|x +y i|=x 2+y 2=2,故选B.(3)因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B.命题点2 复数的除法运算例3 (1)(2016·全国丙卷)若z =1+2i ,则4iz z -1等于( )A .1B .-1C .iD .-i (2)(2016·北京)复数1+2i2-i 等于( )A .iB .1+iC .-iD .1-i (3)(1+i 1-i )6+2+3i 3-2i =________. 答案 (1)C (2)A (3)-1+i 解析 (1)z =1+2i ,z z =5,4iz z -1=i.(2)1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i 5=i. (3)原式=[(1+i )22]6+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.命题点3 复数的综合运算例4 (1)(2016·山东)若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z 等于( ) A .1+2i B .1-2i C .-1+2iD .-1-2i(2)(2016·全国丙卷)若z =4+3i ,则z |z |等于( ) A .1 B .-1 C.45+35i D.45-35i (3)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45答案 (1)B (2)D (3)D解析 (1)设z =a +b i(a ,b ∈R ),则z =a -b i ,∴2(a +b i)+(a -b i)=3-2i ,整理得3a +b i =3-2i ,∴⎩⎪⎨⎪⎧3a =3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴z =1-2i ,故选B.(2)z =4+3i ,|z |=5,z|z |=45-35i. (3)设z =a +b i ,故(3-4i)(a +b i)=3a +3b i -4a i +4b =|4+3i|,所以⎩⎪⎨⎪⎧3b -4a =0,3a +4b =5,解得b =45.思维升华 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.(3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2015·山东)若复数z 满足z1-i=i ,其中i 为虚数单位,则z 等于( )A .1-iB .1+iC .-1-iD .-1+i(2)⎝ ⎛⎭⎪⎫1+i 1-i 2 017=________. (3)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 017=________. 答案 (1)A (2)i (3)22+(22+1)i 解析 (1)z =i(1-i)=1+i ,∴z =1-i ,故选A. (2)(1+i 1-i )2 017=[(1+i )2(1-i )(1+i )]2 017=i 2 017=i. (3)-23+i 1+23i +(21-i )2 017=i (1+23i )1+23i+(21-i )[(21-i )2]1 008 =i +i 1 008·22(1+i)=22+(22+1)i.题型三 复数的几何意义例5 (1)△ABC 的三个顶点对应的复数分别为z 1,z 2,z 3,若复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点为△ABC 的( ) A .内心 B .垂心 C .重心 D .外心答案 D解析 由几何意义知,复数z 对应的点到△ABC 三个顶点距离都相等,z 对应的点是△ABC 的外心.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →、BC →所表示的复数; ②对角线CA →所表示的复数; ③B 点对应的复数.解 ①AO →=-OA →,∴AO →所表示的复数为-3-2i. ∵BC →=AO →,∴BC →所表示的复数为-3-2i. ②CA →=OA →-OC →,∴CA →所表示的复数为 (3+2i)-(-2+4i)=5-2i. ③OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i , 即B 点对应的复数为1+6i.思维升华 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.已知z 是复数,z +2i ,z2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. 解 设z =x +y i(x ,y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2. ∵z 2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由题意得x =4.∴z =4-2i.∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6,∴实数a 的取值范围是(2,6).24.解决复数问题的实数化思想典例 (12分)已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y .思想方法指导 (1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把x 、y 用复数的基本形式表示出来,再用待定系数法求解,这是常用的数学方法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解. 规范解答解 设x =a +b i (a ,b ∈R ),则y =a -b i ,x +y =2a ,xy =a 2+b 2,[3分] 代入原式,得(2a )2-3(a 2+b 2)i =4-6i ,[5分]根据复数相等得⎩⎪⎨⎪⎧4a 2=4,-3(a 2+b 2)=-6,[7分] 解得⎩⎪⎨⎪⎧ a =1,b =1或⎩⎪⎨⎪⎧ a =1,b =-1或⎩⎪⎨⎪⎧ a =-1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.[9分]故所求复数为⎩⎪⎨⎪⎧ x =1+i ,y =1-i 或⎩⎪⎨⎪⎧ x =1-i ,y =1+i 或⎩⎪⎨⎪⎧ x =-1+i ,y =-1-i 或⎩⎪⎨⎪⎧x =-1-i ,y =-1+i.[12分]1.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( ) A .-1 B .0 C .1 D .-1或1 答案 A解析 由复数z 为纯虚数,得⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,解得x =-1,故选A.2.(2017·天津质检)已知i 为虚数单位,a ∈R ,如果复数2i -a1-i 是实数,则a 的值为( )A .-4B .2C .-2D .4 答案 D解析 ∵2i -a1-i =2i -a (1+i )(1-i )(1+i )=2i -a 2-a 2i =(2-a 2)i -a2,a ∈R ,∴2-a2=0,∴a =4.3.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i的点是( )A .EB .FC .GD .H 答案 D解析 由题图知复数z =3+i , ∴z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i.∴表示复数z1+i的点为H .4.(2017·南昌月考)z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z 等于( ) A .1+i B .-1-i C .-1+i D .1-i答案 D解析 方法一 设z =a +b i ,a ,b 为实数,则z =a -b i. ∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i. 方法二 ∵(z -z )i =2,∴z -z =2i =-2i.又z +z =2,∴(z -z )+(z +z )=-2i +2, ∴2z =-2i +2,∴z =1-i.5.设f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为( ) A .1 B .2 C .3 D .无数个答案 C解析 f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…,∴集合中共有3个元素.6.集合M ={4,-3m +(m -3)i}(其中i 为虚数单位),N ={-9,3},若M ∩N ≠∅,则实数m 的值为( )A .-1B .-3C .3或-3D .3 答案 D解析 由题意可知-3m +(m -3)i 必为实数,则m =3,经检验符合题意.*7.对任意复数z =x +y i(x ,y ∈R ),i 为虚数单位,则下列结论正确的是( )A .|z -z |=yB .z 2=x 2+y 2C .|z -z |≥2xD .|z |≤|x |+|y |答案 D解析 |z |=x 2+y 2≤x 2+2|xy |+y 2 =(|x |+|y |)2=|x |+|y |,故选D.8.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________.答案 (-∞,23) 解析 z =(3m -2)+(m -1)i ,其对应点(3m -2,m -1)在第三象限内,故3m -2<0且m -1<0,∴m <23. 9.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为______. 答案 3或6解析 ∵M ∩N ={3},∴3∈M 且-1∉M ,∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意.10.已知i 是虚数单位,m 和n 都是实数,且m (1+i)=1+n i ,则(m +n i m -n i)2 017=________. 答案 i解析 由m (1+i)=1+n i ,得m =n =1,所以(m +n i m -n i )2 017=(1+i 1-i)2 017=i 2 017=i. 11.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则b =________,c =________.答案 -2 3解析 ∵实系数一元二次方程x 2+bx +c =0的一个虚根为1+2i ,∴其共轭复数1-2i 也是方程的根.由根与系数的关系知,⎩⎨⎧(1+2i )+(1-2i )=-b ,(1+2i )(1-2i )=c ,∴b =-2,c =3.12.给出下列命题:①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若a ∈R ,则(a +1)i 是纯虚数;④若z =-i ,则z 3+1在复平面内对应的点位于第一象限.其中正确的命题是________.(填上所有正确命题的序号)答案 ④解析 由复数的概念及性质知,①错误;②错误;若a =-1,则(a +1)i =0,③错误;z 3+1=(-i)3+1=i +1,④正确.13.计算:(1)(-1+i )(2+i )i 3; (2)(1+2i )2+3(1-i )2+i; (3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解 (1)(-1+i )(2+i )i 3=-3+i -i=-1-3i. (2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i=i 2+i=i (2-i )5=15+25i. (3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i=1+i -2+-1+i 2=-1. (4)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4 =-14-34i. 14.复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z 1+z 2是实数,求实数a 的值. 解 z 1+z 2=3a +5+(a 2-10)i +21-a+(2a -5)i =⎝⎛⎭⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3. 又(a +5)(a -1)≠0,∴a ≠-5且a ≠1,故a =3.*15.若虚数z 同时满足下列两个条件:①z +5z是实数; ②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由. 解 这样的虚数存在,z =-1-2i 或z =-2-i.设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i =a +b i +5(a -b i )a 2+b2 =⎝⎛⎭⎫a +5a a 2+b 2+⎝⎛⎭⎫b -5b a 2+b 2i. ∵z +5z 是实数,∴b -5b a 2+b2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数,∴a +3+b =0.②由①②得⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧a =-2,b =-1,故存在虚数z,z=-1-2i或z=-2-i.。
2018年高三二轮复习讲练测之测案【新课标版文科数学】专题八 算法推理与证明复数总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分______ (一) 选择题(12*5=60分)1.【2018届华大新高考联盟高三1月】若z 为12i -的共轭复数(i 是虚数单位),则z 的虚部为( ) A. 1 B. 2 C. i D. 2i 【答案】B2.如图给出了计算111124660++++的值的程序框图,其中①②分别是( )(A )30i <,2n n =+ (B )30i =,2n n =+ (C )30i >,2n n =+ (D )30i >,1n n =+【答案】C 【解析】因为2,4,6,8,…,60构成等差数列,首项为2,公差为2,所以2+2(n -1)=60,解得n =30,所以该程序循环了30次,即i >30,n =n +2,故选C .3.若复数z 满足i iz 21+=,其中i 为虚数单位,则在复平面上复数z 对应的点的坐标为( ) (A ))1,2(-- (B ))1,2(- (C ))1,2( (D ))1,2(- 【答案】D 【解析】 z=212(12)()2i i i i i i ++-==--,故选D. 4.【吉林省长春市普通高中2017届高三质量监测(一)】复数22cos sin 33z i ππ=+在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B5.【2018届福建省厦门市高三年级上学期期末】习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12…来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( )A. 100B. 140C. 190D. 250 【答案】C【解析】由题意得,当输入10m =时,程序的功能是计算并输出2222221123149110222222S ---=++++++.计算可得()()118244880416366410019022S =++++++++=.选C . 6.设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B7.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x = ([]x 表示不大于x 的最大整数)可以表示为( )A .10x y ⎡⎤=⎢⎥⎣⎦B .310x y +⎡⎤=⎢⎥⎣⎦C .410x y +⎡⎤=⎢⎥⎣⎦D .510x y +⎡⎤=⎢⎥⎣⎦ 【答案】B 【解析】当各班人数除以10的余数大于6时再增选一名代表,可以看作先用该班人数除以10再用这个余数与3相加,若和大于等于10就增选一名代表,将二者合并便得到推选代表人数y 与该班人数x 之间的函数关系,用取整函数[]y x = ([]x 表示不大于x 的最大整数)可以表示为3[]10x y +=.或者用特值法验证也可. 8.某程序框图如右图所示,则输出的n 值是( ) A. 21 B 22 C .23 D .24【答案】C 【解析】程序在执行过程中,n p 的值依次为:2,1n p ==;5,11n p ==;11,33n p ==;23,79n p ==,程序结束,输出23n =.9. 设函数()ln f x x =,若,a b 是两个不相等的正数且(),2a b p fab q f +⎛⎫== ⎪⎝⎭22122a b r f ⎛⎫+=⎪⎝⎭ ()()12v f a f b ⎡⎤=+⎣⎦,则下列关系式中正确的是( ) A. p q v r =<< B. p v q r =<< C. p v r q =<< D. p v q r <<< 【答案】B10.某程序框图如图1所示,若该程序运行后输出的值是95,则( ) A .6a = B .5a = C .4a = D .7a =【答案】C11. 已知12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…,照此规律,则12-22+32-42+…+(-1)10×92的值为( )A. -36B. 36C. -45D. 45 【答案】D【解析】观察等式规律可知,第n 个等式的右边=(-1)n +1·()12n n +,所以12-22+32-42+…+(-1)10×92=(-1)10·()9912+=45.12.定义域为R 的函数()y f x =,若对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数为“H 函数”,现给出如下函数:①31y x x =-++②32(sin cos )y x x x =--③1+=xe y ④ln ,0()0,0x x f x x ⎧≠=⎨=⎩其中为“H 函数”的有( ) A .①② B .③④ C . ②③ D . ①②③【答案】C【解析】由已知对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,等价于1212()(()())0x x f x f x -->恒成立,因此()y f x =在其定义域是增函数.对于①31y x x =-++,由2'31y x =-+在33x <-或33x >时,'0y <知①不是“H 函数”;对于②32(sin cos )y x x x =--,由'32(cos sin )322sin()04y x x x π=-+=-+>知,②是“H 函数”;对于③1+=xe y ,由'0xy e =>知③是“H 函数”; 对于④ln ,0()0,0x x f x x ⎧≠=⎨=⎩,由对数函数的图象和性质,当0x >时,其为增函数,当0x <时,其为减函数,④不是“H 函数”.故选C .(二)填空题(4*5=20分)13.【2018届福建省厦门市高三年级第一学期期末】若复数z 满足2z i i ⋅=-,则z =__________. 【答案】5 【解析】22.12,5iz i i z i z i-⋅=-∴==-∴= 即答案为514.执行右边的程序框图,输出的T 的值为 .【答案】11615. 一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 . 【答案】5.16. 【2016山东卷】观察下列等式:2224sin sin 12333ππ--⎛⎫⎛⎫+=⨯⨯ ⎪ ⎪⎝⎭⎝⎭; 22222344sin sin sin sin 2355553ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-2; 22222364sin sin sin sin 3477773ππππ----⎛⎫⎛⎫⎛⎫⎛⎫++++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-2; 22222384sin sin sin sin 4599993ππππ----⎛⎫⎛⎫⎛⎫⎛⎫++++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; …… 照此规律,2222232sin sin sin sin 21212121n n n n n ππππ----⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭=________.【答案】43n(n +1) 【解析】通过观察已给出等式的特点,可知等式右边的43是个固定数, 43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半, 43后面第二个数是第一个数的下一个自然数,所以所求结果为43×n×(n+1),即43n(n +1). 三、解答题(共6道小题,满分70分)17. (10分) 复数()()22563m m m m i -++-, m R ∈, i 为虚数单位.(I)实数m 为何值时该复数是实数; (Ⅱ)实数m 为何值时该复数是纯虚数.【答案】(Ⅰ)0m =或3m =时为实数;(Ⅱ) 2m =时为纯虚数.【解析】试题分析:(Ⅰ)当230m m -=,为实数;(Ⅱ)当22560{30m m m m -+=-≠,可得复数为纯虚数.18. (12分) 通过计算可得下列等式:┅┅将以上各式分别相加得: ()()22112123n n n +-=⨯+++++即: ()11232n n n +++++=类比上述求法:请你求出2222123n ++++的值.【答案】见解析【解析】试题分析:类比得等式()3321331,1,2,3i i i i i n +-=++= ,将各式相加化简即可得正解.试题解析:3322131311-=⨯+⨯+ 3323232321-=⨯+⨯+ 3324333331-=⨯+⨯+ ()3321331n n n n +-=⨯+⨯+将以上各式分别相加得: ()()()3322221131233123n n n n +-=⨯+++++⨯++++所以: ()322221112311332n n n n n +⎡⎤++++=+---⎢⎥⎣⎦()()11216n n n =++19. (12分)【2018届吉林省乾安县第七中学高三上学期第三次模拟】 已知复数i 2iaz =++(a R ∈) (1)若z R ∈,求z ;(2)若z 在复平面内对应的点位于第一象限,求a 的取值范围. 【答案】(1)2;(2)20. (12分)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n 幅图的蜂巢总数.(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明); (2)证明:11114....(1)(2)(3)()3f f f f n ++++< 【答案】(1) f(4)=37,f(5)=61.f(n)=3n 2-3n +1.(2)见解析. 【解析】 (1) f(4)=37,f(5)=61. 由于f(2)-f(1)=7-1=6, f(3)-f(2)=19-7=2×6, f(4)-f(3)=37-19=3×6, f(5)-f(4)=61-37=4×6, …因此,当n≥2时,有f(n)-f(n -1)=6(n -1),所以f(n)=[f(n)-f(n -1)]+[f(n -1)-f(n -2)]+…+[f(2)-f(1)]+f(1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f(1)=1=3×12-3×1+1,所以f(n)=3n 2-3n +1(直接给出结果也可).21.【2016高考江苏卷】如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F.【答案】(1)详见解析(2)详见解析【解析】证明:(1)在直三棱柱111ABC A B C -中,11//AC AC在三角形ABC 中,因为D,E 分别为AB,BC 的中点.所以//DE AC ,于是11//DE AC又因为DE ⊄平面1111,AC F AC ⊂平面11AC F所以直线DE//平面11AC F因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=F ,平面平面所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面22. 已知n S 是数列{}n a 的前n 项和,并且11a =,对任意正整数n , 142n n S a +=+,设12n n n b a a +=-(1,2,3,n =). (1)证明:数列{}n b 是等比数列,并求{}n b 的通项公式;(2)设3n n b C =,求证:数列{}1n C +不可能为等比数列. 【答案】(1)答案见解析;(2)证明见解析.【解析】试题分析:(1)利用a n+1=S n+1-S n 可知证明a n+1=4(a n -a n-1),通过b n =a n+1-2a n 可知b n+1=2(a n+1-2a n ),通过作商可知{b n }是公比为2的等比数列,通过a 1=1可知b 1=3,进而可得结论;(2)假设}{1 n C +为等比数列,则有211111n n n c c c -++=+⋅+()()(), n≥2, 则有n-220=,故假设不成立,则数列}{1 n C +不可能为等比数列 .试题解析:(I)∵S n+1=4a n +2,∴S n =4a n-1+2(n≥2),两式相减:a n+1=4a n -4a n-1(n≥2),∴a n+1=4(a n -a n-1)(n≥2), ∴b n =a n+1-2a n ,∴b n+1=a n+2-2a n+1=4(a n+1-a n )-2a n+1,b n+1=2(a n+1-2a n )=2b n (n∈N*),∴,∴{b n }是以2为公比的等比数列,∵b 1=a 2-2a 1,而a 1+a 2=4a 1+2,∴a 2=3a 1+2=5,b 1=5-2=3,∴b n=3•2n-1(n∈N*)。
【备战2018高考高三数学全国各地优质模拟试卷分项精品】专题 推理与证明、算法、复数一、选择题1.【2018河南洛阳尖子生联考】已知复数z 满足z(1−i)2=1+i (i 为虚数单位),则|z|为( ) A. 12 B. √22C. √2D. 1【答案】B点睛:复数代数形式运算问题的常见类型及解题策略:(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.(3)利用复数相等求参数.a +bi =c +di ⇔a =c,b =d(a,b,c,d ∈R). 2.【2018天津市滨海新区八校联考】复数21ii=+( ) A. 1i - B. 1i -- C. 1i + D. 1i -+ 【答案】C【解析】21ii=+()2i 1i 1i 2-=+ ,选C. 3.【2018广西三校九月联考】己知()2,a ib i a b R i+=+∈.其中i 为虚数单位,则a b -=( )A. -1B. 1C. 2D. -3 【答案】D 【解析】()2222a i ia i aib i i i++==-=+,所以213b a a b ==--=-,, 故选D4.【2018河南中原名校质检二】若(x −i )i =y +2i ,x,y ∈R ,其中i 为虚数单位,则复数x +yi =( )A. −2+iB. 2+iC. 1−2iD. 1+2i 【答案】B5.【2018吉林百校联盟九月联考】已知实数m 、n 满足()()4235m ni i i +-=+(i 为虚数单位),则在复平面内,复数z m ni =+对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 【答案】A【解析】由题意可得: ()()()()424242m ni i m n n m i +-=++-,结合题意有: 423{ 425m n n m +=-=,解得: 110{ 1310m n ==则z 对应的点位于第一象限. 本题选择A 选项.6.【2018湖南省两市九月调研】已知命题p :若复数z 满足()()5z i i --=,则6z i =;命题q :复数112i i ++的虚部为15i -,则下面为真命题的是( ) A.()()p q ⌝⌝∧ B. ()p q ⌝∧ C.()p q ⌝∧D.p q ∧【答案】C【解析】复数z 满足()()5z i i --=,所以56z i i i=+=-,所以命题p 为真; 复数()()()112131212)125i i i ii i i +-+-==++-,虚部为15-,所以命题q 为假. A.()()p q ⌝⌝∧为假;B. ()p q ⌝∧为假;C.()p q ⌝∧为真;D.p q ∧为假.故选C.7.【2018江西省红色七校一模】已知复数201811i zi i +⎛⎫= ⎪-⎝⎭(i 为虚数单位),则z 的虚部()A. 1B. -1C. iD. -i 【答案】A8.【2018广西柳州市一模】已知()211i i z-=+(i 为虚数单位),则复数z =( ) A. 1i + B. 1i -- C. 1i -+ D. 1i - 【答案】B【解析】试题分析:,故选B.考点:复数9.【2018衡水金卷高三大联考】执行如图的程序框图,若输出的S 的值为-10,则①中应填( )A. n <19?B. n ≥18?C. n ≥19?D. n ≥20?【答案】C【解析】由图,可知S =(−1+2)+(−3+4)+⋯+(−17+18)−19=9−19=−10. 故①中应填n ≥19?. 故选C.10.【2018吉林百校联盟九月联考】运行如图所示的程序框图,若输入的i a (1,2,i =…,10)分别为1.5、2.6、3.7、4.8、7.2、8.6、9.1、5.3、6.9、7.0,则输出的值为( )A. 49B.25C.12D.59【答案】C点睛:(1)解决程序框图问题要注意的三个常用变量①计数变量:用来记录某个事件发生的次数,如i=i+1.②累加变量:用来计算数据之和,如S=S+i;③累乘变量:用来计算数据之积,如p=p×i.(2)使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.11.【2018湖南两市九月调研】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入,n x的值分别为3,3.则输出v的值为()A. 15B. 16C. 47D. 48【答案】D12.【2018广东省海珠区一模】执行如图所示的程序框图,如果输出49S=,则输入的n=()A. 3B. 4C. 5D. 6 【答案】B13.【2018江西省红色七校一模】《九章算术》是我国古代内容极为丰富的数学典籍,其中第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A. 5B. 4C. 3D. 2 【答案】B【解析】模拟执行程序可得,a=1,A=1,S=0,n=1S=2 不满足条件S 10≥,执行循环体,n=2,a=12,A=2,S=92 不满足条件S 10≥,执行循环体,n=3,a=14,A=4,S=354不满足条件S 10≥,执行循环体,n=4,a=18,A=8,S=1358满足条件S 10≥,退出循环,输出n=4 故选B14.【2018广西柳州市一模】执行如图所示的程序框图,若输出K 的值为8,则判断框图可填入的条件是( ) A. 34s ≤B. 56s ≤C. 1112s ≤D. 2524s ≤ 【答案】C考点:程序框图及循环结构.15.【2018海南省八校联考】执行如图所示的程序框图,若输入的5x =-,则输出的y = ( )A. 2B. 4C. 10D. 28 【答案】B【解析】5x =-, 5x =,符合题意, 从而有x 4x =-=1,不符合题意, ∴1314y =+=, 故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16.【2018湖南永州市一模】执行如图所示程序框图,若输入的[]0,1x ∈,则输出的x 的取值范围为( )A. []0,1B. []1,1-C. []3,1-D. []7,1- 【答案】C【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可. 17.【2018广东珠海六校联考】执行如图所示的程序框图,输出的S 值为( )A. 2B. 4C. 8D. 16【答案】C【解析】试题分析:程序执行中的数据变化如下:0,1,03,1,1,13,2,2,23,8,3,33k s s k s k s k==<==<==<==<不成立,输出8s=考点:程序框图18.【2018陕西西工大附中一模】执行如图所示的程序框图,则输出的结果为()A. 40322017B.20152016C.20162017D.20151008【答案】D点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.19.【2018陕西西工大附中一模】执行下面的程序框图,如果输入1x =, 0y =, 1n =,则输出的坐标对应的点在以下幂函数图象上的是( )A. y =B. y x =C. 2y x =D. 3y x =【答案】D【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.20.【2018山东德州晏婴中学二模】执行如图所示的程序框图,则输出的结果是( )A. 7B. 8C. 9D. 10【答案】BS =log 226,n =5,S >−2 S =log 227,n =6,S >−2 S =log 228=−2,n =7,S =−2, S =log 229=−2,n =8,S <−2输出n=8,选B 。
专题推理与证明、算法、复数一、选择题1.【2018湖北八校联考】秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n, x的值分别为3,4则输出v的值为()A. 399B. 100C. 25D. 6【答案】B点睛:本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的i,v的值是解题的关键,属于基础题;对于循环结构的程序框图,当循环次数较少时,逐一写出循环过程,当循环次数较多时,寻找其规律尤其是循环的终止条件一定要仔细斟酌.2.【2018湖南湘东五校联考】程序框图如下图所示,当时,输出的的值为A. 23B. 24C. 25D. 26【答案】B【解析】由已知中的程序框图可知:该程序的功能是计算的值,∵,退出循环的条件为S⩾A,当k=24时,满足条件,故输出k=24,故选:B.3.【2018黑龙江齐齐哈尔三模】《九章算术》上有这样一道题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”假设墙厚16尺,现用程序框图描述该问题,则输出n ()A. 2B. 4C. 6D. 8【答案】D4.【2018陕西西安长安区联考】执行如图所示的程序框图,如果输入,那么输出的值为A. 16B. 256C.D.【答案】D5.【2018华大新高考联盟质检】我国古代的劳动人民曾创造了灿烂的中华文明,戍边的官兵通过在烽火台上举火向国内报告,烽火台上点火表示数字1,不点火表示数字0,这蕴含了进位制的思想.如图所示的程序框图的算法思路就源于我国古代戍边官兵的“烽火传信”.执行该程序框图,若输入,则输出的值为()A. 19B. 31C. 51D. 63 【答案】C【解析】按照程序框图执行,依次为0,1,3,3,3,19,51,故输出.故选C.6.【2018黑龙江齐齐哈尔一模】执行如图所示的程序框图,若输出的结果为15,则判断框中可填( )A. 4?k ≤B. 3?k ≥C. 3?k ≤D. 4?k > 【答案】B7.【2018江西宜春六校联考】执行如图所示的程序框图,要使输出的S的值小于1,则输入的t值不能是下面的()A. 4B. 5C. 6D. 7【答案】DD 项:当t 等于7时, 2345678sin sinsin sin sin sin sin sin 33333333S ππππππππ=++++++++=故D 项不符合题意点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8.【2018山西两校联考】如图所示的程序框图中,输出的S 的值是( )A. 80B. 100C. 120D. 140 【答案】C9.【2018广西南宁八中联考】执行如图的程序框图,输出的值为( )A. 6B. 5C. 4D. 3 【答案】D【解析】模拟执行程序框图,可得程序的功能是求的值,由于,故选D.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.【2018贵州黔东南州联考】执行如图所示的程序框图,输出S 的值为( )A. 2B. -1C. 1D. 0 【答案】C11.【2018黑龙江海林朝鲜中学一模】秦九昭是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求多项式的一个实例.若输入5n =, n a n =, 2x =,则输出的v 的值为( )A. 31B. 64C. 129D. 258 【答案】C【解析】输入5n =, n a n =, 2x =,运行程序55,4,v a i === 满足0i >,输入44a =, 52414v =⨯+=, 3i = ,满足0i >,输入33a =,142331v =⨯+=, 2i = ,满足0i >,输入22a =, 312264v =⨯+=, 1i =,满足0i >,输入11a =, 6421129v =⨯+=, 0i =,不满足0i >,输出129v =,选C.12.【2018黑龙江齐齐哈尔八中三模】已知复数()i 43i z =-,则复数z 的共轭复数为( ) A. 34i - B. 34i -+ C. 43i - D. 43i -- 【答案】A13.【2018湖北咸宁重点高中联考】若复数z 满足121ii z+=-,则z 等于( ) A. 3122i + B. 3122i - C. 1322i -+ D. 1322i --【答案】C 【解析】121ii z+=- ()()()()221211212213131111222i i i i i i i z i i i i i ++++++-+∴=====-+--+- 故选C14.【2018湖南五市十校联考】已知i 是虚数单位,复数952ii+的共轭复数在复平面上所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D 【解析】复数()95255122241i i i ii i i -===++++,共轭复数为12i -,在复平面上所对应的点为(1,-2)位于第四象限. 故选D.15.【2018衡水联考】已知i 为虚数单位,则下列各式计算错误的是( )A. 2017i i =B. ()11i i i +=-+C. 11ii i+=-- D. 2i +=【答案】C【解析】201750441i i i ⨯+==, ()11i i i +=-+, ()()()()1112i 1112i i i ii i i +++===--+, 2i +==故选:C16.【2018河南中原名校质检】复数11bii+-的实部与虚部相等,则实数b 的值为( ) A. 0 B. 17 C. 17- D. 1- 【答案】A点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数,共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化,转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分. 17.【2018吉林乾安七中三模】设复数z 满足i 2i 2i z =++,则z =( )A. 39 D. 10 【答案】A【解析】由题意可得2i +=23z i ==,选A 。
18.【2018豫西南高中联考】已知i 是虚数单位,若()21a ia R i+∈-为纯虚数,则a =( )A. 1B. -1C. 0D. 1± 【答案】D【解析】()()()()()22221111112a i i a a i a i i i i ++-+++==--+为纯虚数,故210 1.2a a -=⇒=± 故答案为D 。
19.【2018南宁摸底联考】已知(是虚数单位),那么复数对应的点位于复平面内的( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】A 【解析】,所以复数所对应点为在第一象限,选A.20.【2018吉林乾安七中三模】在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就坐,且相邻座位(如1与2, 2与3)上的人要有共同的体育兴趣爱好.现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是( )小李A. 小方B. 小张C. 小周D. 小马 【答案】A由于小周的自行车与小马的乒乓球没有共同兴趣爱好者,所以小周两边一事实上是跆拳道与击剑的,小马两边只能是棒球与篮球的。
即小马与小林一定相邻,所以1号位是小林,2 号位一定是小马,3号位就是棒球的小李。
小周与小张及小方一定相邻,所以小周坐5号位。
从3号位角度,4号位只能是排球和羽毛球(小林,不可能),所以是排球小方。
6号位小张。
选A.棒球/排球【点睛】逻辑推理题,一定要从受限条件多的元素入手,再逐个检验分析,如果关系特别复杂,尽量结合不同的表格分析。
21.【2018辽宁庄河两校联考】某校高二(1)班每周都会选出两位“迟到之星”,期中考试之前一周“迟到之星”人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生”,小赵说:“一定没有我,肯定有小宋”,小宋说:“小马、小谭二人中有且仅有一人是迟到之星”,小谭说:“小赵说的对”. 已知这四人中有且只有两人的说法是正确的,则“迟到之星”是()A. 小赵、小谭B. 小马、小宋C. 小马、小谭D. 小赵、小宋【答案】A11。