共价键和双原子分子的结构化学习题解答
- 格式:pdf
- 大小:131.05 KB
- 文档页数:19
共价键与分子的空间构型【要点梳理】要点一、共价键的形成及其本质1.共价键的形成通常情况下,吸引电子能力相近的原子之间通过共用电子对形成共价键。
那么两个成键原子为什么能通过共用电子对结合在一起呢?下面我们以氢分子的形成过程为例来说明共价键是怎样形成的。
当两个氢原子相互接近时,若两个氢原子核外电子的自旋方向相反,它们接近到一定距离时,两个1s轨道发生重叠,电子在两原子核间出现的机会较大。
随着核间距的减小,核间电子出现的机会增大,体系的能量逐渐下降,达到能量最低状态。
核间距进一步减小时,两原子间的斥力使体系的能量迅速上升,这种排斥作用又将氢原子推回到平衡位置。
能量(主要指势能)随核间距的变化如图中曲线a所示。
2.共价键的本质:共价键的本质是电子与原子核之间的电性作用。
同种或不同种非金属元素(或某些非金属与金属)之间原子相遇时,若原子的最外层电子排布未达到稳定状态,则原子间通过共用电子对形成共价键。
形成共价键的微粒是同种或不同种原子。
要点二、共价分子的表示方法1.电子式:通常人们在元素符号周围用小黑点(或×)来描述分子中原子共用电子以及原子中未成键的价电子的情况,这种式子叫电子式。
如:2.结构式:在化学上,常用一根短线“一”表示一对共用电子,所以氯气分子也可以表示为:C1—Cl,这种式子叫结构式。
注意在不熟练的情况下,书写结构式时往往先写出电子式,原子间有几对共用电子,就用几根短线表示,未共用的电子不加以考虑。
结构式可形象地表示出分子内各原子的连接顺序。
因此,同种原子不能合并,只有通过共价键形成的分子才能写结构式,离子化合物不能用结构式表示。
3.用电子式表示共价化合物的形成过程用电子式表示共价化合物的形成过程时,在“→”的左侧写成键原子的电子式,同种原子可以合并,右侧写形成的单质或化合物的电子式,但应注意,相同的原子要对称写,不能合并。
如:要点三、σ键与π键原子轨道沿核间连线方向以“头碰头”的方式重叠形成的共价键叫做σ键;原子轨道在核间连接两侧以“肩并肩”的方式重叠形成的共价键叫做π键。
第10章共价键与分子结构1.写出下列物质的Lewis结构式并说明每个原子如何达到八电子结构:HF,H2Se,H2C2O4(草酸),CH3OCH3(甲醚),H2CO3,HClO,H2SO4,H3PO4。
解:,,,,,,。
上述分子中的原子除H原子外,其他原子通过所形成的共价键共有电子和价电子层孤对电子共同构成8电子结构。
2、用杂化轨道理论说明下列化合物由基态原子形成分子的过程(图示法)并判断分子的空间构型和分子极性:HgCl2,BF3,SiCl4,CO2,COCl2,NCl3,H2S,PCl5。
解:①HgCl2HgCl2分子的中心原子为Hg原子。
基态时Hg原子的价电子构型为6s2。
当Hg 原子与Cl原子相遇形成HgCl2时,Hg的6s轨道中的1个电子激发到1个6p轨道,然后6s轨道和该6p轨道采用sp杂化形成2个等同的sp杂化轨道:并分别与两个Cl原子的3p单电子轨道重叠形成2个Hg-Cl σ键。
HgCl2分子构型是直线形,为非极性分子。
②BF3BF3分子的中心原子是B原子。
基态时B原子的价电子构型为2s22p1。
当B原子与F原子相遇形成BF3分子时,B原子2s轨道中的1个电子激发到1个空的2p 轨道,然后采用sp2杂化形成3个等同的sp2杂化轨道:并分别与3个F原子2p单电子轨道重叠形成3个B-F σ键。
BF3分子构型是平面三角形,为非极性分子。
③SiCl4Si原子为SiCl4的中心原子,基态时价电子构型为3s23p2,当Si原子与Cl原子相遇形成SiCl4分子时,Si原子3s轨道的1个电子激发到一个空的3p轨道,然后采用sp3杂化形成4个等同的sp3杂化轨道:并分别与4个Cl原子3p单电子轨道重叠形成4个Si-Cl σ键。
SiCl4分子构型是正四面体,为非极性分子。
④CO2C原子为CO2的中心原子。
基态时C原子价电子构型为2s22p2,当C原子与O 原子相遇形成CO2分子时,C原子2s轨道的1个电子激发到一个空的2p轨道,然后采用sp杂化形成2个等同的sp杂化轨道:并分别与2个O原子的2p单电子轨道重叠形成2个σ键,两个O原子的一个2p 单电子轨道与C原子未参与杂化的2p轨道肩并肩重叠形成π键。
2组长:070601314 组员:070601313070601315070601344070601345070601352第四章 双原子分子结构与性质1.简述 LCAO-MO 的三个基本原则,其依据是什么?由此可推出共价键应具有什么样的特征?答:1.(1)对称性一致(匹配)原则: φa = φs 而φb = φ pz 时, φs 和φ pz 在σˆ yz 的操作下对称性一致。
故 σˆ yz ⎰φs H ˆφ pz d τ = β s , pz ,所以, β s , pz ≠ 0 ,可以组合成分子轨道(2)最大重叠原则:在 α a 和α b 确定的条件下,要求 β 值越大越好,即要求 S ab 应尽可能的大(3)能量相近原则: 当α a = α b 时,可得 h = β ,c 1a = c 1b , c 1a =- c 1b ,能有效组合成分子轨道;2.共价键具有方向性。
2、以 H 2+为例,讨论共价键的本质。
答:下图给出了原子轨道等值线图。
在二核之间有较大几率振幅,没有节面,而在核间值则较小且存在节面。
从该图还可以看出,分子轨道不是原子轨道电 子云的简单的加和,而是发生了波的叠加和强烈的干涉作用。
图 4.1 H +的 ψ 1(a)和 ψ 2(b)的等值线图研究表明,采用 LCAO-MO 法处理 H 2+是成功的,反映了原子间形成共价键 的本质。
但由计算的得到的 Re=132pm ,De=170.8kJ/mol ,与实验测定值Re=106pm、De=269.0 kJ/mol 还有较大差别,要求精确解,还需改进。
所以上处理方法被称为简单分子轨道法。
当更精确的进行线性变分法处理,得到的最佳结果为Re=105.8pm、De=268.8 kJ/mol,十分接近H2+的实际状态。
成键后电子云向核和核间集中,被形象的称为电子桥。
通过以上讨论,我们看到,当二个原子相互接近时,由于原子轨道间的叠加,产生强烈的干涉作用,使核间电子密度增大。
结构化学之双原子分子结构习题附参考题答案1 / 231 / 23 .......... 双原子分子结构一、填空题(在题中空格处填上正确答案)3101、描述分子中 _______________ 空间运动状态的波函数称为分子轨道。
3102、在极性分子 AB 中的一个分子轨道上运动的电子,在 A 原子的φA 原子轨道上出现的概率为80%, B 原子的φB 原子轨道上出现的概率为20%, 则该分子轨道波函数 。
3103、设φA 和φB 分别是两个不同原子 A 和 B 的原子轨道, 其对应的原子轨道能量为E A和E B ,如果两者满足________ , ____________ , ______ 原则可线性组合成分子轨道 = c A φA + c B φB 。
对于成键轨道, 如果E A ______ E B ,则 c A ______ c B 。
(注:后二个空只需填 "=" , ">" 或 "等比较符号 )3104、试以 z 轴为键轴, 说明下列各对原子轨道间能否有效地组成分子轨道,若可能,则填写是什么类型的分子轨道。
2d z -2d zd yz -d yz d xz -d xz d xy - d xy3105、判断下列轨道间沿z 轴方向能否成键。
如能成键, 则在相应位置上填上分子轨道的名称。
p x p z d xy d xz p xp zd xyd xz3106、AB 为异核双原子分子,若φA yz d 与φB y p 可形成π型分子轨道,那么分子的键轴为____轴。
3107、若双原子分子 AB 的键轴是z 轴,则φA 的 d yz 与φB 的 p y 可形成________型分子轨结构化学之双原子分子结构习题附参考题答案道。
3108、以z轴为键轴,按对称性匹配原则,下列原子轨道对间能否组成分子轨道?若能,写出是什么类型分子轨道,若不能,写出"不能",空白者按未答处理。
第3章双原子分子的结构与分子光谱习题答案1. CO是一个极性较小的分子还是极性较大的分子?其偶极距的方向如何?为什么?解:CO是一个异核双原子分子。
其中氧原子比碳原子多提供2个电子形成配位键::C=0:氧原子的电负性比碳原子的高,但是在CO分子中,由于氧原子单方面向碳原子提供电子,抵消了部分碳氧之间的电负性差别引起的极性,所以说CO是一个极性较小的分子。
偶极矩是个矢量,其方向是由正电中心指向负电中心,CO的偶极距4 = 0.37 10-30c m,氧原子端显正电,碳原子端显负电,所以CO分子的偶极距的方向是由氧原子指向碳原子。
2. 在N2, NO , O2, C2, F2, CN, CO, XeF中,哪几个得电子变为AB-后比原来中性分子键能大,哪几个失电子变为AB+后比原来中性分子键能大?解:就得电子而言,若得到的电子填充到成键电子轨道上,则AB-比AB键能大,若得到得电子填充到反键分子轨道上,则AB-比AB键能小。
就失电子而言,若从反键分子轨道上失去电子,则AB+比AB键能大,若从成键轨道上失去电子,则AB+比AB键能小。
2 2 4 2(1) N2 :(1「g) (1%) (V:u) (2^) 键级为3N2 :(l-g)2(l u)2(V:u)4(^g)1键级为2.5N2—:(16)2(1%)2(1L)4(26)2(2二u)1键级为2.5N2的键能大于N2+和N2的键能(2) NO : (1-)2(2-)2(1T)4(3-)2(27.)1键级为 2.5NO : (1;「)2(2二)2(1二)4(3二)2键级为32 2 4 2 2 ”NO:(1G (2G (1 二)(3匚)(2二) 键级为2所以NO的键能小于NO+的键能,大于NO-的键能⑶亠 2 2 2 2 2 4 1O2 :1;「g1;「u2;「g2;「u3;键级为2.5,2 2 2 2 2 4 2O2 :1;初汛2 汪2;二3汪1 二u1 二g 键级为2,2, 2 c 2 c 2小2, 4, 3O2 :1汪1汛2汪263;[1—1二9键级为1.5, 所以。
2组长:070601314组员:070601313070601315070601344070601345070601352第四章 双原子分子结构与性质1.简述 LCAO-MO 的三个基本原则,其依据是什么?由此可推出共价键应具有什么样的特征?答:1.(1)对称性一致(匹配)原则: φa = φs 而φb = φ pz 时, φs 和φ pz 在σˆ yz 的操作下对称性一致。
故 σˆ yz ⎰φs H ˆφ pz d τ = β s , pz ,所以, β s , pz ≠ 0 ,可以组合成分子轨道(2)最大重叠原则:在 α a 和α b 确定的条件下,要求 β 值越大越好,即要求 S ab 应尽可能的大(3)能量相近原则: 当α a = α b 时,可得 h = β ,c 1a = c 1b , c 1a =- c 1b ,能有效组合成分子轨道;2.共价键具有方向性。
2、以 H 2+为例,讨论共价键的本质。
答:下图给出了原子轨道等值线图。
在二核之间有较大几率振幅,没有节面,而在核间值则较小且存在节面。
从该图还可以看出,分子轨道不是原子轨道电子云的简单的加和,而是发生了波的叠加和强烈的干涉作用。
图 4.1 H + 的 ψ 1(a)和 ψ 2(b)的等值线图研究表明,采用 LCAO-MO 法处理 H 2+是成功的,反映了原子间形成共价键 的本质。
但由计算的得到的 Re=132pm ,De=170.8kJ/mol ,与实验测定值Re=106pm、De=269.0 kJ/mol 还有较大差别,要求精确解,还需改进。
所以上处理方法被称为简单分子轨道法。
当更精确的进行线性变分法处理,得到的最佳结果为Re=105.8pm、De=268.8 kJ/mol,十分接近H2+的实际状态。
成键后电子云向核和核间集中,被形象的称为电子桥。
通过以上讨论,我们看到,当二个原子相互接近时,由于原子轨道间的叠加,产生强烈的干涉作用,使核间电子密度增大。
学科教师辅导教案答案:B3.下列说法正确的是()A.σ键强度小,容易断裂,而π键强度较大,不易断裂B.共价键都具有方向性C.π键是由两个原子的p轨道“头碰头”重叠形成的D.两个原子之间形成共价键时,最多有一个σ键解析:形成σ键原子轨道的重叠程度比π键大,稳定性更好,不易断裂,A项错误;s轨道与s轨道重叠形成的共价键无方向性,B项错误;原子轨道以“头碰头”方式相互重叠形成的共价键为σ键,以“肩并肩”方式相互重叠形成的共价键为π键,C项错误;两个原子之间形成共价键时,单键为σ键,双键和三键中只有一个σ键,D项正确。
答案:D4.化合物A是一种新型锅炉水除氧剂,其结构式为,下列说法中正确的是()A.A分子中只有极性键没有非极性键B.A分子中的共用电子对数为11C.1 mol A分子中所含的σ键数目为10N AD.A是共价化合物解析:A项,N—N键是非极性键,A项不正确;A分子中存在12个共价键,其中有一个碳氧双键,故有12个共用电子对、11个σ键,B、C项均不正确;A分子中只有共价键,故A是共价化合物,D项正确。
答案:D5.我国科学家研制出一种催化剂,能在室温下高效催化空气中甲醛的氧化,其反应如下:HCHO+O2CO2+H2O。
下列有关说法正确的是()A.该反应为吸热反应B.CO2分子中的化学键为非极性键C.HCHO分子中既含σ键又含π键D.每生成1.8 g H2O消耗2.24 L O2解析:氧化反应一般为放热反应,A错;CO2分子中含有极性键,B错;HCHO分子中既有σ键,又有π键,C正确;D项,不一定是标准状况下,即产生的O2不一定为2.24 L。
答案:C6.某原子的原子核外最外层电子排布为n s2n p4,按照共用电子对理论,该原子一般可形成共用电子对的数目是()A.1对B.2对C.3对D.4对解析:原子核外最外层电子排布为n s2n p4,有2个未成对电子,一般只能形成2个共价键。
答案:B7.关于乙醇分子的说法正确的是()A.分子中共含有8个极性键B.分子中不含非极性键C.分子中只含σ键D.分子中含有1个π键解析:乙醇的结构式为,共含有8个共价键,其中C—H、C—O、O—H键为极性键,共7个,C—C键为非极性键。
结构化学习题答案结构化学是化学学科中的一个重要分支,它研究原子、分子和晶体的结构以及它们的性质。
以下是一些结构化学习题的答案示例:1. 原子轨道的能级顺序:- 根据量子力学理论,原子轨道的能级顺序通常遵循以下顺序:1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f。
2. 分子的几何构型:- 例如,水分子(H2O)的几何构型是弯曲的,因为氧原子与两个氢原子形成共价键,并且氧原子上有两对孤对电子。
3. 分子的极性:- 一个分子是否具有极性取决于其分子内电荷分布的对称性。
如果电荷分布不均匀,分子就是极性的。
例如,二氧化碳(CO2)分子是非极性的,因为它是线性的,电荷分布对称。
4. 晶体的点群对称性:- 晶体的点群对称性是指晶体结构中原子排列的对称性。
例如,立方晶体具有高对称性,其点群为O_h。
5. 分子轨道理论:- 分子轨道理论用于描述分子中电子的分布。
根据这一理论,原子轨道可以组合形成分子轨道,这些分子轨道可以是成键的、非键的或反键的。
6. X射线衍射分析:- X射线衍射是一种用于确定晶体结构的技术。
当X射线与晶体相互作用时,它们会被晶体中的原子散射,产生衍射图案,这个图案可以用来推断晶体的原子排列。
7. 化学键的类型:- 化学键主要包括共价键、离子键和金属键。
共价键是由两个原子共享电子对形成的,离子键是由电子从一个原子转移到另一个原子形成的,而金属键是由金属原子之间的电子云形成的。
8. 分子间力:- 分子间力包括范德华力、氢键和偶极-偶极相互作用。
这些力影响分子的物理性质,如沸点和溶解性。
9. 晶体缺陷:- 晶体缺陷包括点缺陷、线缺陷(如位错)和面缺陷(如晶界)。
这些缺陷可以影响晶体的物理和化学性质。
10. 配位化合物的结构:- 配位化合物是由中心金属原子或离子与配体通过配位键连接形成的。
第二章分子结构习题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2、结合Cl 2的形成,说明共价键形成的条件。
共价键为什么有饱和性共价键形成的条件:原子中必须有单电子,而且成单电子的自旋方向必须相反。
共价键有饱和性是因为:一个原子的一个成单电子只能与另一个成单电子配对,形成一个共价单键。
一个原子有几个成单电子便与几个自旋相反的成单电子配对成键。
电子配对后,便不再具有成单电子了,若再有单电子与之靠近,也不能成键了。
例如:每一个Cl 原子有一个带有单电子的p 轨道,相互以头碰头的形式重叠可以形成共价单键,且只能形成一个单键。
3、画出下列化合物分子的结构式并指出何者是键,何者是键,何者是配位键。
H H H Ζ?δδσσσP N I I I Ζ?δδσσσN N N H H H H σσσσσ 膦PH 3, 三碘化氮NI 3 肼N 2H 4(N —H 单键)c C c H H H H σσσσσπ N N N O O o O H σσσσσππππ ,乙烯, 四氧化二氮(有双键)。
4.PCl 3的空间构型是三角锥形,键角略小于10928,SiCl 4是四面体形,键角为10928,试用杂化轨道理论加以说明。
杂化轨道理论认为,在形成PCl 3分子时,磷原子的一个3s 轨道和三个 3p 轨道采取sp 3杂化。
在四个sp 3杂化轨道中,有一个杂化轨道被一对孤电子对所占据,剩下的三个杂化轨道为三个成单电子占据,占据一个sp 3杂化轨道的一对孤电子对,由于它不参加成键作用,电子云较密集于磷原子的周围,因此孤电子对对成键电子所占据的杂化轨道有排斥作用,为不等性杂化,所以键角略小于109°28′。
而在SiCl 4分子中,为等性杂化,没有不参加成键的孤电子对,四个杂化轨道都为四个成单电子占据,不存在孤电子对对成键电子对所占据杂化轨道的排斥作用,所以键角为109°28′。
03 共价键和双原子分子的结构化学【3.1】试计算当Na +和Cl +相距280pm 时,两离子间的静电引力和万有引力;并说明讨论化学键作用力时,万有引力可以忽略不计。
(已知:完有引力11122, 6.710m m F GG r -==⨯22N m kg -⋅⋅;静电引力922122,9.010q q F KK N m C r -==⨯⋅⋅)解:万有引力 静电引力由上计算可见,在这情况下静电引力比万有引力大3410倍,所以万有引力可以忽略不计。
【3.2】写出2O ,2O +,22O -的键级,键长长短次序和磁性。
解:分子(或离子) 键 级 2.521.51键长次序磁 性顺磁 顺磁 顺磁 抗磁【3.3】2H 分子基态的电子组态为()21s σ,其激发态有()a 1s s σσ*↑↓ ,()*11s s b σσ↑↑,()*11s s c σσ↑↓试比较()a ,()b ,()c 三者能级的高低次序,说明理由,能量最低的激发态是顺磁性还是反磁性?解:ca b E E E >。
因为(c )中两个电子都在反键轨道上,与H 原子的基态能量相比,c E 约高出2β-。
而(a )和(b )中的2个电子分别处在成键轨道和反键轨道上,a E 和b E 都与H 原子的基态能量相近,但(a )中2个电子的自旋相反,(b )中的2个电子的自旋相同,因而a E 稍高于b E 。
能级最低的激发态(b )是顺磁性的。
【3.4】试比较下列同核双原子分子:2B ,2C ,2N ,2O ,2F 的键级、键能和键长的大小关系,在相邻两个分子间填入“”或“”符号表示。
解:【3.5】基态2C 为反磁性分子,试写出其电子组态;实验测定2C 分子键长为124pm ,比C 原子共价双键半径和()267pm ⨯短,试说明其原因。
解:2C 分子的基组态为:由于s-p 混杂,1u σ为弱反键,2C 分子的键级在23之间,从而使实测键长比按共价双键半径计算得到的值短。
化学键与分子结构【学习目标】1、了解物质中存在的作用及强弱判断;2、学会用价键理论预测和判断分子的空间构型;3、掌握配合物的结构和组成判断;4、理解分子性质的预测和判断方法。
【知识网络】【要点梳理】要点一、共价键与分子间作用力的本质及对物质性质的影响1、共价键的类型和成键方式【注意】①s—sσ键没有方向性。
②通常情况下σ键比π键稳定,但N2分子中π键比σ键稳定。
2、共价键与分子间作用力的比较【注意】①氢键不是化学键(原因:氢键是分子间一种较弱的作用力)。
②共价键影响结构特殊的物质(如原子晶体,后面将学到)的物理性质。
③化学键和分子间作用力都是电性作用。
要点二、分子空间构型的判断杂化轨道理论、价层电子对互斥理论预测分子的空间构型【注意】当中心原子上没有孤电子对时,杂化轨道理论和价层电子对互斥理论对分子空间构型的预测结论一致。
要点三、分子的性质1、分子类型与分子极性、空间构型、共价键类型的关系分子类型空间构型键角键的极性分子极性常见物质A ——————非极性分子He、Ne、Ar等A2——非极性键非极性分子H2、O2、N2等AB ——极性键极性分子HX、CO、NO等AB2180°极性键非极性分子CO2、BeCl2等A2B <180°极性键极性分子H2O、H2S等AB3120°极性键非极性分子BF3、SO3等AB3<120°极性键极性分子NH3、PCl4等AB4109°28′极性键非极性分子CH4、CCl4等【注意】①由成键原子的类型判断键的极性,由分子空间构型的对称性判断分子的极性。
②极性分子中一定有键,可能有键(H2O2);非极性分子中不一定有(CH4);只含非极性键的分子一定是分子。
③“相似相溶规律”:具有相同极性或结构相似的溶质和溶剂,溶质在溶剂中的溶解性。
2、手性碳原子、手性异构体与手性分子①手性碳原子:连接四个不同原子或基团的碳原子,称为手性碳原子,常用*C表示。
一、选择题:1. H 2+的H ˆ= 21∇2- a r 1 - b r 1 +R1, 此种形式已采用了下列哪几种方法: ------------------------------ ( AC )(A) 波恩-奥本海默近似 (B) 单电子近似(C) 原子单位制 (D) 中心力场近似2. 通过变分法计算得到的微观体系的能量总是:----------- ( C )(A) 等于真实基态能量 (B) 大于真实基态能量(C) 不小于真实基态能量 (D) 小于真实基态能量3. 在LCAO-MO 方法中,各原子轨道对分子轨道的贡献可由哪个决定: ----------------- ( B )(A) 组合系数 c ij (B) (c ij )2(C) (c ij )1/2 (D) (c ij )-1/24. 两个原子的 d yz 轨道以 x 轴为键轴时, 形成的分子轨道为------------ ( C )(A) σ轨道 (B) π轨道 (C) δ轨道 (D) σ-π轨道5. 若以x 轴为键轴,下列何种轨道能与p y 轨道最大重叠?---------------( B )(A) s (B) d xy (C) p z (D) d xz6. 下列分子的键长次序正确的是:-------------------------- ( A )(A) OF -> OF > OF + (B) OF > OF -> OF +(C) OF +> OF > OF - (D) OF - > OF +> OF7. 下列分子或离子净成键电子数为 1 的是:--------------------------(AC )(A) He2+(B) Be2(C)B2+(D)N+(E) Li228. 下列分子中哪一个顺磁性最大:-------------------------- ( C )(A) N2+(B) Li2(C) B2(D) C2(E) O2-9. 用紫外光照射某双原子分子,使该分子电离出一个电子。