广东工业大学线性代数试题A卷2(含答案)
- 格式:pdf
- 大小:180.95 KB
- 文档页数:7
广东工业大学试卷用纸,共7页,第1页
广东工业大学试卷用纸,共7页,第2页
广东工业大学试卷用纸,共7页,第3页
记,
——(6分)
第二步单位化:
——(6分)
2. (12分)解:(用初等变换)
——(6分)
λλλ-;——(3分) 由上面特征矩阵的标准型,得出初等因子为,,2
且矩阵A的Jordan标准为
广东工业大学试卷用纸,共7页,第5页
的特征多项式为
X1,X2,X3就是特征值2的三个线性无关的特征向量;
X4就是特征值-2的特征向量;——(3分)
(2)因为特征向量X1,X2,X3,X4线性无关,则矩阵A可以对角化,且有
——(3)有(2),我们有
——(6分)
广东工业大学试卷用纸,共7页,第6页
——(6分)
广东工业大学试卷用纸,共7页,第7页。
广东工业大学考试试卷 (A)
课程名称: 高等数学A(2) 试卷满分 100 分
考试时间: 2009年6月29日 (第20周星期一)
题号一二三四五六七八九十总分评卷得分评卷签名
复核得分复核签名一、填空题:(每小题4分,共20
分)
1.设,,令. 则向量的方向余弦为:。
2.曲面在点处的切平面方程为:。
3.设区域,则 = 。
4.设是由方程所确定的隐函数,其中具有
连续的偏导数,且,则。
5.设是周期为的周期函数,它在区间上的定义为
,则的傅里叶级数在处收敛于________.
二、选择题:(每小题4分,共20分)
1.平面的位置是().
A.平行于轴.
B.斜交于轴
C.垂直于轴.
D.通过轴.
2. 考虑二元函数的下面4条性质:
①在点处连续;②在点处的两个偏导数连续;
③在点处可微;④在点处的两个偏导数存在.
若用“”表示可由性质推出性质,则有()
第 1 页
A ②③①;
B ③②①;
C ③④①;
D ③①④
学院:专业:学号:
姓名:
装订线
第 2 页
希望以上资料对你有所帮助,附励志名言3条:
1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。
2、推销产品要针对顾客的心,不要针对顾客的头。
3、不同的信念,决定不同的命运。
第 6 页。
广东工业大学试卷用纸,共3页,第1页广东工业大学试卷用纸,共3页,第2页2、设行列式1534780311113152−−−==A D ,则2=+−+4443424135A A A A .(A )0(B )1(C )-1(D )-163、设A 、B 是n 阶方阵,下列等式正确的是.(A )AB=BA (B )))((22B A B A B A −+=−(C )22AA =(D )111)(−−−+=+B A B A 4、设0α是非齐次方程组b AX =的一个解,r ααα,,,21⋯是0=AX 的基础解系,则.(A)01,,,r ααα⋯线性相关。
(B )01,,,r ααα⋯线性无关。
(C )01,,,r ααα⋯的线性组合是b AX =的解。
(D )01,,,r ααα⋯的线性组合是0=AX 的解。
5、n 阶方阵A 与对角阵相似的充要条件是.(A)A 是实对称阵;(B)A 有n 个互异特征值;(C)A 的特征向量两两正交.(D)A 有n 个线性无关的特征向量;三、(10分)设na a a A +++=111111111||21⋯⋯⋯⋯⋯⋯⋯,021≠n a a a ⋯其中.求A .四、(10分)设4阶方阵C B A ,,满足方程11)2(−−=−C A B C E T ,试求矩阵A ,其中123212010*******,0012001200010001B C −−⎛⎞⎛⎞⎜⎟⎜⎟−⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠五、(10分)讨论λ为何值时,方程组⎪⎩⎪⎨⎧=+++=+++=+++λλλλ321321321)1(3)1(0)1(x x x x x x x x x广东工业大学试卷用纸,共3页,第3页(1)有唯一解?(2)无解?(3)有无穷多解?并在此时求出其通解。
六、(10分)已知R 3中的向量组321,,ααα线性无关,向量组112223,b k b αααα=−=+,331b k αα=+线性相关,求k 值。
学院:专业:学号:姓名:装 订 线 广东工业大学考试试卷 ( A ) 课程名称: 高等数学A(2) 试卷满分 100 分 考试时间:2012年 7 月 2 日 (第 20 周 星期 一 ) 题 号 一 二 三 四 五 六 七 总分 1 2 3 评卷得分 评卷签名 复核得分 复核签名 考生注意:请把所有答案直接写在试卷上,卷面务必保持清洁。
一、填空题(每小题4分,共20分) 1.向量}1,2,2{=→b 在向量}4,3,4{-=→a 上的投影为 。
2.函数 u xyz = 在点(5,1,2)处沿从点(5,1,2)到点(9,4,14)的方向导数 为 。
3.交换二次积分⎰⎰x x dy y x f dx 220),(的顺序后为 。
4.设f 具有二阶连续偏导数, ⎝⎛⎪⎪⎭⎫=y x x,f z ,则y z ∂∂= 。
5 设区域D 是由圆周x 2+y 2=4所围成的闭区域,则=+⎰⎰σd e y x D 22 。
二、选择题(每小题4分,共20分) 1.周期为2的函数f(x)在一个周期内的表达式为5.01-1x 0.5 ,1,≤≤<<⎩⎨⎧x x ,则它的傅里叶 级数在5.3-=x 处的和为( ).A .0.75 B. 0 C .0.35 D. -0.75广东工业大学试卷用纸,共5页,第1页 2. 无穷级数∑∞=-2ln )1(n nn 为( )。
A. 绝对收敛 B. 条件收敛 C .发散 D. 无法确定3.对于二元函数22x xy y) f(x, y +=,极限)y ,(lim )0,0(),(x f y x →为( ). A. 不存在 B. 0 C. 1 D. 无穷大4. 曲面922=++z y x 在点(1, 2, 4)处的切平面方程为( )。
A -14z 4y 2x =++B 14z 4y 2x =++C -14z -4y 2x =+D 14z 4y 2x =+-5. 直线x+y+3z=0,x-y-z=0与平面x-y-z+1=0的夹角为( )A 4πB 2πC 0D 3π 三、计算题(每小题8分,共32分)1. 设方程组⎩⎨⎧=+-+-=--+010u 222xy v u y x v 确定隐函数),(),,(v u y v u x x ==,求u x ∂∂,u y ∂∂。
《 线性代数 》课程试题(附答案)一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。
二、 计算行列式的值。
(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。
(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。
(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。
六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。
(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。
(15分)《线性代数》课程试题参考答案一、 填空。
(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。
2020-2021《线性代数》期末课程考试试卷A1考试时间: 类型:闭卷 时间:120分钟 总分:100分 专业:农学、动科等一、填空题(共9空,每空2分,共18分) 1、排列12453的逆序数 。
2、两个向量,线性相关的充分必要条件是 。
3、向量组的正交化向量为 。
4、设则= 。
5、设矩阵为正交矩阵,则;。
6、设方阵满足,为单位阵,则= 。
7、设,则= 。
8、如果阶行列式中等于零的元素个数大于,则此行列式的值为 。
二、选择题 (共5题,每题2分,共10分)1、设为矩阵,齐次线性方程组有非零解的充要条件是( )A 、的列向量组线性相关B 、的列向量组线性无关C 、的行向量组线性相关D 、的行向量组线性无关 2、设为阶可逆方阵,则下列结论成立的是( )。
A 、B 、C 、D 、3、设是矩阵,,则( )。
A 、中的4阶子式都不为0;B 、中存在不为0的4阶子式C 、中的3阶子式都不为0;D 、中存在不为0的3阶子式 4、若矩阵相似,下面结论不正确的是( ) A 、; B 、矩阵的特征值相等;C 、 ;D 、矩阵对应于相同特征值的特征向量相同5、已知是的基础解系,则( )也是该方程组的基础解系 A、;B、C、D、三、计算题(共4题,每题5分,共20分)1、 2、3、4、院系: 专业班级: 姓名: 学号: 装 订 线 内 不 准 答 题 装 订 线四、设,的元的代数余子式记作ijA(1)求的值;求(8分)五.已知阶方阵的特征值为,为的伴随矩阵,为单位阵,求. (8分)六、设,(1)化矩阵A为行最简形矩阵;(2)求矩阵A的秩;(3)求出的列向量组的一个最大无关组;(4)将不属于最大无关组的列向量用(3)中的最大无关组线性表示。
(10分)七、设。
求。
(10分) 八、设是矩阵,为矩阵,其中,是阶单位矩阵,若,证明的列向量组线性无关。
(6分)九、设,问为何值时,此方程组有唯一解;无解;或有无穷多个解?并在有无穷多个解时求出其通解(10分)2020-2021《线性代数》期末课程考试试卷A1答案考试时间:2011.5类型:闭卷 时间:120分钟 总分:100分 专业:农学、动科等一、填空题(共9空,每空2分,共18分) 1、排列12453的逆序数 2 。
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数自考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为()。
A. -1/2B. 1/2C. 2D. -22. 若向量α=(1, 2, 3),则向量α的模长为()。
A. √14B. √13C. 6D. √153. 设A为3×3矩阵,且|A|=0,则下列说法正确的是()。
A. A可逆B. A不可逆C. A的秩为3D. A的秩为24. 若A是n阶方阵,且A^2=I(单位矩阵),则A的特征值只能是()。
A. 0B. ±1C. 2D. -25. 设A为3阶方阵,且A的行列式为-1,则A的迹为()。
A. -1B. 1C. 0D. 3二、填空题(每题4分,共20分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置矩阵为\[\begin{bmatrix}1 & 3 \\ 2 &4\end{bmatrix}\]。
2. 若向量组α1=(1, 0, 0),α2=(0, 1, 0),α3=(0, 0, 1),则向量组α1,α2,α3是线性__的。
3. 设A为3阶方阵,且A的特征多项式为f(λ)=λ(λ-1)(λ+2),则矩阵A的特征值为__。
4. 设A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],B=\[\begin{bmatrix}-1 & 0 \\ 0 & 1\end{bmatrix}\],则矩阵A与B的乘积AB为\[\begin{bmatrix}-1 & 2 \\ 3 & 4\end{bmatrix}\]。
5. 若矩阵A的特征值为2,3,则矩阵A的迹为__。
三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{bmatrix}2 & 1 \\ 1 & 2\end{bmatrix}\],求矩阵A的逆矩阵。
2. 解:函数的定义域为: ),(∞+0,ln x x x y 224-=' (1分)121102224-==''+=''ex y x y 得令,ln (3分)列表讨论如下:x(0,1211-e)1211-e(1211-e, +∞)y ''- 0+ y凸61118--e凹(5分)区间 (0, 1211-e] 为曲线的凸区间, 区间 [1211-e , +) 为曲线的凹区间,曲线有拐点: (1211-e , 61118--e ) (7分)3. 解:因为][cos 223ππ,x x -为 上连续的奇函数,所以0223=⎰-ππdx x x cos(2分) ⎰-+22223ππx d x x x cos )sin ( =⎰-2222ππx d x x cos sin=⎰202221πx d x sin =⎰-24141πx d x )cos ( (5分)= 84414120ππ=-)sin (x x (7分)六、(7分)证明: 设,sin )()(x x f x F = (3分)由题目所给条件知: F (x )在[0,]上连续,在(0,)内可导,且00==)()(F F π,所以由罗尔定理,至少存在一点),(πξ0∈,使得:0=')(ξF (5分)又 ξξ=+'='x x x f x x f F ]cos )(sin )([)( 所以 0=+'ξξξξcos )(sin )(f f因为 ),(πξ0∈,所以0≠ξsin ,从而有 ξξξξξξcot )(sin cos )()(f f f -=-=' 证毕(7分) 七、(9分)解: (1) 所求旋转体的体积为⎰∞+-=0dx xaa V a xπ)( (2分)⎰∞+--=0ax xdaaa πln⎰∞+-+∞-+⎥⎥⎦⎤⎢⎢⎣⎡-=0dx aa axa a a a xa xππln ln =2⎪⎭⎫⎝⎛a a ln π(5分) (2)aa a a V 312ln )(ln )(-='π,令,)(0='a V 得e a a ==,ln 1 (7分) 当e a <<1时,)(,)(a V a V 0<' 单调减少, 当e a >时,)(,)(a V a V 0>' 单调增加, 所以当e a =时,V 最小,最小体积为。