工程流体力学答案(陈卓如)第一章
- 格式:docx
- 大小:121.76 KB
- 文档页数:5
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时33/9800/1000mN m kg ==水水γρ 相对密度:水水γγρρ==d所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ 1-2. 甘油在温度0ºC 时密度为1.26g/cm 3,求以国际单位表示的密度和重度。
解:33/1000/1m kg cmg = g ργ=333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ1-3. 水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?解:dpVdV Pa E p p-==ββ)(1MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5.用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp pV dT T V dV ∂∂+∂∂=00V T V T V V T T ββ=∂∂⇒∂∂=00V pVp V V p p ββ-=∂∂⇒∂∂-= 所以,dp V dT V dp pVdT T V dV p T 00ββ-=∂∂+∂∂= 从初始状态积分到最终状态得:LL L V p p E V T T V V dpV dT V dV T p pp T T T VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kg V V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2) V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s? 解:s Pa P sPa s mPa P cP ⋅=⋅=⋅==--1.0110110132()c S t St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/sμ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s 1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章流体静力学2-1. 如图所示的U形管中装有水银与水,试求:(1)A、C两点的绝对压力及表压各为多少?(2)A、B两点的高度差为多少?解:①p A表=γh水=0.3mH2O=0.03at=0.3×9800Pa=2940Pap A绝=p a+p A表=(10+0.3)mH2O=1.03at=10.3×9800Pa=100940Pa p C表=γhg h hg+p A表=0.1×13.6m H2O+0.3mH2O=1.66mH2O=0.166at=1.66×9800Pa=16268Pap C绝=p a+p C表=(10+1.66)mH2O=11.66 mH2O=1.166at=11.66×9800Pa=114268Pa② 30c mH2O=13.6h cmH2O h=30/13.6cm=2.2cm题2-2 题2-32-2. 水银压力计装置如图。
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数1t dV V dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp V V ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=t V V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
(完整版)工程流体力学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d )【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故d d t γτμ=。
(b )【1.3】流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
第一章 流体及其物理性质1-1 已知油的重度为7800N/m 3,求它的密度和比重。
又,0.2m 3此种油的质量和重量各为多少?已已知知::γ=7800N/m 3;V =0.2m 3。
解解析析::(1) 油的密度为 3kg/m 79581.97800===gγρ; 油的比重为 795.01000795OH 2===ρρS (2) 0.2m 3的油的质量和重量分别为 kg 1592.0795=⨯==V M ρ N 15602.07800=⨯==V G γ1-2 已知300L(升)水银的质量为4080kg ,求其密度、重度和比容。
已已知知::V =300L ,m =4080kg 。
解解析析::水银的密度为 33kg/m 13600103004080=⨯==-V m ρ 水银的重度为3N/m 13341681.913600=⨯==g ργ水银的比容为 kg /m 10353.7136001135-⨯===ρv1-3 某封闭容器内空气的压力从101325Pa 提高到607950Pa ,温度由20℃升高到78℃,空气的气体常数为287.06J/k g ·K 。
问每kg 空气的体积将比原有体积减少多少?减少的百分比又为多少?已已知知::p 1=101325Pa ,p 2=607950Pa ,t 1=20℃,t 2=78℃,R =287.06J/k g ·K 。
解解析析::由理想气体状态方程(1-12)式,得 kg /m 83.0101325)27320(06.2873111=+⨯==p RT v kg /m 166.0607950)27378(06.2873222=+⨯==p RT v kg /m 664.0166.083.0321=-=-v v%80%10083.0166.083.0%100121=⨯-=⨯-v v v每kg 空气的体积比原有体积减少了0.664m 3;减少的百分比为80%。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]第二章 流体静力学2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。
⼯程流体⼒学课后习题答案第⼀章绪论1-1.20℃的⽔,当温度升⾄80℃时,其体积增加多少 [解] 温度变化前后质量守恒,即2211V V ρρ= ⼜20℃时,⽔的密度31/23.998m kg =ρ 80℃时,⽔的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ则增加的体积为3120679.0m V V V =-=?1-2.当空⽓温度从0℃增加⾄20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动⼒粘度µ增加多少(百分数) [解] 原原ρννρµ)1.01()15.01(-+==Θ原原原µρν035.1035.1==035.0035.1=-=-原原原原原µµµµµµΘ此时动⼒粘度µ增加了%1-3.有⼀矩形断⾯的宽渠道,其⽔流速度分布为µρ/)5.0(002.02y hy g u -=,式中ρ、µ分别为⽔的密度和动⼒粘度,h 为⽔深。
试求m h 5.0=时渠底(y =0)处的切应⼒。
[解] µρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρµτ当h =,y =0时)05.0(807.91000002.0-??=τPa 807.9=1-4.⼀底⾯积为45×50cm 2,⾼为1cm 的⽊块,质量为5kg ,沿涂有润滑油的斜⾯向下作等速运动,⽊块运动速度u=1m/s ,油层厚1cm ,斜坡⾓(见图⽰),求油的粘度。
[解] ⽊块重量沿斜坡分⼒F 与切⼒T 平衡时,等速下滑yuATd sinµθ= = 001 .0145 .0 4.0 62 .22 sin 8.9 5 sin==δθµuA mg s Pa 1047 .0?1-5.已知液体中流速沿y⽅向分布如图⽰三种情况,试根据⽜顿内摩擦定律yuddµτ=,定性绘出切应⼒沿y⽅向的分布图。
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0.70的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0.0006K -1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少?【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=t t dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆tp VV ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=tV V dT得1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
(完整版)⼯程流体⼒学习题及答案第1章绪论选择题【1.1】按连续介质的概念,流体质点是指:(a )流体的分⼦;(b )流体内的固体颗粒;(c )⼏何的点;(d )⼏何尺⼨同流动空间相⽐是极⼩量,⼜含有⼤量分⼦的微元体。
解:流体质点是指体积⼩到可以看作⼀个⼏何点,但它⼜含有⼤量的分⼦,且具有诸如速度、密度及压强等物理量的流体微团。
(d )【1.2】与⽜顿内摩擦定律直接相关的因素是:(a )切应⼒和压强;(b )切应⼒和剪切变形速度;(c )切应⼒和剪切变形;(d )切应⼒和流速。
解:⽜顿内摩擦定律是d d v y τµ=,⽽且速度梯度d d vy 是流体微团的剪切变形速度d d t γ,故d d t γτµ=。
(b )【1.3】流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )⽆黏性;(d )符合RTp =ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当⽔的压强增加⼀个⼤⽓压时,⽔的密度增⼤约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当⽔的压强增加⼀个⼤⽓压时,其密度增⼤约95d 1d 0.51011020 000k p ρρ-===。
【1.6】从⼒学的⾓度分析,⼀般流体和固体的区别在于流体:(a )能承受拉⼒,平衡时不能承受切应⼒;(b )不能承受拉⼒,平衡时能承受切应⼒;(c )不能承受拉⼒,平衡时不能承受切应⼒;(d )能承受拉⼒,平衡时也能承受切应⼒。
解:流体的特性是既不能承受拉⼒,同时具有很⼤的流动性,即平衡时不能承受切应⼒。
(c )【1.7】下列流体哪个属⽜顿流体:(a )汽油;(b )纸浆;(c )⾎液;(d )沥青。
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时33/9800/1000m N m kg ==水水γρ 相对密度:水水γγρρ==d 所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm 3,求以国际单位表示的密度和重度。
解:33/1000/1m kg cm g = g ργ=333/123488.91260/1260/26.1m Ng m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?解:dpVdV Pa E p p-==ββ)(1MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5.用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp pV dT T V dV ∂∂+∂∂=00V TVT V V T T ββ=∂∂⇒∂∂=00V p V p V V p p ββ-=∂∂⇒∂∂-= 所以,dp V dT V dp pVdT T V dV p T 00ββ-=∂∂+∂∂=从初始状态积分到最终状态得:LL L V p p E V T T V V dpV dT V dV T p pp T T T VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kg V V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2)V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?解:s Pa P sPa s mPa P cP ⋅=⋅=⋅==--1.0110110132()c S t St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少?解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/s μ=νρ=0.4×10-4×890=3.56×10-2Pa ·s 1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C表=γhgh hg + p A表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。
(完整版)工程流体力学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d )【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故d d t γτμ=。
(b )【1.3】流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m Ng m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5. 用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp pVdT T V dV ∂∂+∂∂=00V TVT V V T T ββ=∂∂⇒∂∂=00V p V p V V p p ββ-=∂∂⇒∂∂-= 所以,dp V dT V dp pVdT T V dV p T 00ββ-=∂∂+∂∂=从初始状态积分到最终状态得:LL L V p p E V T T V V dpV dT V dV T p pp T T T VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kg V V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2) V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()c S t St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/sμ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s 1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhgh hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。
[陈书1-15] 图轴在滑动轴承中转动,已知轴的直径cm D 20=,轴承宽度cm b 30=,间隙cm 08.0=δ。
间隙中充满动力学粘性系数s Pa 245.0⋅=μ的润滑油。
若已知轴旋转时润滑油阻力的损耗功率W P 7.50=,试求轴承的转速?=n 当转速m in 1000r n =时,消耗功率为多少?(轴承运动时维持恒定转速)
【解】轴表面承受的摩擦阻力矩为:2D M A
τ= 其中剪切应力:dr
du ρντ= 表面积:Db A π=
因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故径向流速梯度:
δ
ω2D dr du = 其中转动角速度:n πω2= 所以:2322nD D D nb M Db πμπμπδδ
== 维持匀速转动时所消耗的功率为:3322D n b P M M n μπωπδ
=== 所以:Db
P D n μπδπ1= 将:
s Pa 245.0⋅=μ m cm D 2.020==
m cm b 3.030==
m cm 410808.0-⨯==δ
W P 7.50=
14.3=π 代入上式,得:m in r 56.89s r 493.1==n 当s r 3
50min r 1000==n 时所消耗的功率为: W b n D P 83.6320233==δ
μπ
[陈书1-16]两无限大平板相距mm 25=b 平行(水平)放置,其间充满动力学粘性系数s Pa 5.1⋅=μ的甘油,在两平板间以m 15.0=V 的恒定速度水平拖动一面积为
2m 5.0=A 的极薄平板。
如果薄平板保持在中间位置需要用多大的力?如果置于距一板10mm 的位置,需多大的力?
【解】平板匀速运动,受力平衡。
题中给出平板“极薄”,故无需考虑平板的体积、重量及边缘效应等。
本题应求解的水平方向的拖力。
水平方向,薄板所受的拖力与流体作用在薄板上下表面上摩擦力平衡。
作用于薄板上表面的摩擦力为:
A dz du A F u
u u μτ== 题中未给出流场的速度分布,且上下两无限大平板的间距不大,不妨设为线性分布。
设薄板到上面平板的距离为h ,则有:
h
V dz du u = 所以:A h
V F u μ= 同理,作用于薄板下表面的摩擦力为:
A h
b V F d -=μ 维持薄板匀速运动所需的拖力:
⎪⎭
⎫ ⎝⎛-+=+=h b h AV F F F d u 11μ 当薄板在中间位置时,m 105.12mm 5.123
-⨯==h
将m 1025mm 253-⨯==b 、s m 15.0=V 、2m 5.0=A 和s Pa 5.1⋅=μ代入,得: N 18=F
如果薄板置于距一板(不妨设为上平板)10mm 的位置,则:
m 1010mm 103-⨯==h
代入上式得:N 75.18=F
[陈书1-17]一很大的薄板放在m 06.0=b 宽水平缝隙的中间位置,板上下分别放有不同粘度的油,一种油的粘度是另一种的2倍。
当以m 3.0=V 的恒定速度水平拖动平板时,每平方米受的总摩擦力为N 29=F 。
求两种油的粘度。
【解】平板匀速运动,受力平衡。
题中给出 薄板”,故无需考虑平板的体积、重量及边缘效应等。
本题应求解的水平方向的拖力。
水平方向,薄板所受的拖力与流体作用在薄板上下表面上摩擦力平衡。
不妨先设平板上面油的粘度为μ,平板下面油的粘度为μ2。
作用于薄板上表面的摩擦力为:
A dz du A F u
u u μτ== 题中未给出流场的速度分布,且上下两无限大平板的间距不大,不妨设为线性分布。
薄板到上面平板的距离为2b ,所以:
b
V dz du u 2= 所以:b
V A
F u 2μ=
同理,作用于薄板下表面的摩擦力为: b
V A F d 4μ= 维持薄板匀速运动所需的拖力: b AV F F F d u μ6=
+= 所以:
AV
Fb 6=μ 将m 06.0=b 、s m 3.0=V 、2m 1=A 和N 29=F 代入,得平板上面油的粘度为:
s Pa 967.0⋅=μ
平板下面油的粘度为:s Pa 933.12⋅=μ
从以上求解过程可知,若设平板下面油的粘度为μ,平板上面油的粘度为μ2,可得出同样的结论。
[陈书1-22] 图示滑动轴承宽mm 300=b ,轴径mm 100=d ,间隙mm 2.0=δ,间隙中充满了动力学粘性系数s 0.75Pa ⋅=μ的润滑油。
试求当轴以m in r 300=n 的恒定转速转动时所需的功率。
(注:不计其他的功率消耗)
【解】轴表面承受的摩擦阻力矩为:2
d M A τ=
其中剪切应力:dr
du μτ= 表面积:db A π=
因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故径向流速梯度:
δ
ω2d dr du = 其中转动角速度:n πω2= 所以:232d nb M μπδ
= 维持匀速转动时所消耗的功率为:3322d n b P M M n μπωπδ
=== 将:
s 0.75Pa ⋅=μ m 1.0mm 100==d
m 3.0mm 300==b
m 102mm 2.04-⨯==δ
14.3=π
s r 5m in r 300==n
代入上式,得消耗的功率为: W 73.870=P
[陈书1-23]图示斜面倾角o 20=α,一块质量为25kg ,边长为1m 的正方形平板沿斜面等速下滑,平板和斜面间油液厚度为mm 1=δ。
若下滑速度s m 25.0=V ,求油的粘度。
[解]由平板等速下滑,知其受力平衡。
沿斜坡表面方向,平板下表面所受油液的粘滞力与重力沿斜面的分量平衡。
平板下表面承受的摩擦阻力为:A F τ= 其中剪切应力:dz
du μτ= 因为间隙内的流速可近似看作线性分布,而且对粘性流体,外表面上应取流速为零的条件,故垂直于斜坡表面方向的流速梯度为:
δV dz du = 所以:δ
μVA F = 而重力在平行于斜面方向的分量为:αsin mg G =
因:G F = 故:αδ
μsin mg VA =
整理得:VA mg αδμsin =
将: kg 25=m
2m 1=A m 101mm 13-⨯==δ s m 25.0=V 2m 8.9=g 代入上式,得: s Pa 335.0⋅=μ。