opencv 人脸识别 (二)训练和识别
- 格式:docx
- 大小:69.29 KB
- 文档页数:7
基于opencv的人脸识别开题报告一、选题背景随着人工智能技术的不断发展,人脸识别技术逐渐成为了热门研究领域。
人脸识别技术可以应用于安全监控、人脸支付、人脸解锁等多个领域,具有广阔的应用前景。
而OpenCV作为一个开源的计算机视觉库,提供了丰富的图像处理和分析工具,被广泛应用于人脸识别领域。
本文将基于OpenCV,探讨人脸识别技术的实现原理和应用。
二、研究目的本研究旨在通过OpenCV实现人脸识别技术,探索其在实际应用中的可行性和效果。
具体目标如下:1. 研究OpenCV中人脸识别的基本原理和算法;2. 实现基于OpenCV的人脸检测和识别功能;3. 评估所实现的人脸识别系统的准确性和稳定性;4. 探讨人脸识别技术在安全监控、人脸支付等领域的应用前景。
三、研究内容和方法1. 研究内容本研究将主要包括以下内容:(1)OpenCV中人脸识别的基本原理和算法研究:了解OpenCV中人脸识别的基本原理,包括人脸检测、特征提取和匹配等关键步骤。
(2)基于OpenCV的人脸检测和识别功能实现:利用OpenCV提供的函数和工具,实现人脸检测和识别功能,并进行算法优化和性能测试。
(3)人脸识别系统的准确性和稳定性评估:通过对已知人脸数据集的测试,评估所实现的人脸识别系统的准确性和稳定性,并进行性能分析和改进。
(4)人脸识别技术的应用前景探讨:结合实际应用场景,探讨人脸识别技术在安全监控、人脸支付等领域的应用前景,提出相应的建议和改进方案。
2. 研究方法本研究将采用以下方法进行实施:(1)文献调研:通过查阅相关文献和资料,了解人脸识别技术的发展历程、基本原理和算法。
(2)编程实现:利用OpenCV提供的函数和工具,使用Python或C++等编程语言,实现人脸检测和识别功能。
(3)数据集准备:收集和整理包含人脸图像的数据集,用于训练和测试人脸识别系统。
(4)系统评估:通过对已知人脸数据集的测试,评估所实现的人脸识别系统的准确性和稳定性,并进行性能分析和改进。
基于opencv的人脸识别毕业设计一、引言人脸识别技术是一种通过对图像或视频中的人脸进行识别和验证的技术。
随着计算机视觉和深度学习技术的发展,人脸识别技术已被广泛应用于安防监控、人脸支付、智能门禁等领域。
本文将以基于opencv 的人脸识别技术为研究对象,设计一种高效、准确的人脸识别方案,作为毕业设计的主题。
二、背景介绍1. 人脸识别技术发展历程人脸识别技术的发展经历了传统图像处理、特征提取、模式识别等阶段,近年来,随着深度学习技术的成熟,人脸识别技术取得了突破性进展。
基于深度学习的人脸识别算法不仅能够实现高精度的人脸检测和识别,还能适应不同光照、姿态和表情下的人脸识别任务。
2. opencv在人脸识别中的应用opencv是一个开源的计算机视觉库,提供了丰富的图像处理和机器视觉算法库。
opencv的简单易用、跨评台兼容等特性,使其成为人脸识别技术开发中的重要工具。
许多经典的人脸检测、人脸识别算法都有基于opencv的实现。
三、研究内容与目标本文拟以基于opencv的人脸识别技术为研究对象,结合深度学习技术和opencv图像处理算法,设计一种高效、准确的人脸识别方案。
具体研究内容和目标如下:1. 掌握opencv图像处理和人脸识别的基本原理与算法;2. 分析深度学习在人脸识别中的应用,并结合opencv实现深度学习模型;3. 设计并实现一个基于opencv的人脸检测和识别系统;4. 评估所设计系统的准确性、鲁棒性和实时性,并与市面上主流的人脸识别系统进行性能比较。
四、研究方法与流程1. 研究方法本研究将采用文献调研、实验分析和系统设计等方法,通过阅读相关文献,深入了解深度学习和opencv在人脸识别中的应用;结合实际数据集,分析人脸识别算法的性能和特点;基于opencv和深度学习框架,设计实现人脸识别系统,并进行性能评估。
2. 研究流程(1)文献综述:梳理文献,了解人脸识别领域的研究现状和发展趋势;(2)数据准备:收集人脸图像数据集,用于实验分析和算法训练;(3)算法实现:基于opencv和深度学习框架,实现人脸检测和识别算法;(4)系统设计:设计一个基于opencv的人脸识别系统,包括图像预处理、特征提取和匹配识别等模块;(5)性能评估:通过实验评估所设计系统的准确性、鲁棒性和实时性,并与市面上主流的人脸识别系统进行性能比较;(6)撰写毕业设计论文。
实现一个简单的人脸识别程序人脸识别技术在现代社会中广泛应用于安保、监控、人脸支付等领域。
本文将介绍如何实现一个简单的人脸识别程序,包括数据采集、特征提取、分类器训练和测试等步骤。
一、数据采集人脸识别程序的第一步是采集人脸图像数据,以便后续的特征提取和分类器训练。
数据采集有许多方法,例如使用相机、视频录像、人脸数据库等。
在本文中,我们将使用Python语言的OpenCV库来实现数据采集。
具体步骤如下:1.使用OpenCV库中的cv2.VideoCapture()函数打开摄像头,并设置视频分辨率和帧率。
2.使用while循环读取每一帧的图像,并用cv2.imshow()函数显示出来。
3.当用户按下键盘上的“q”键时,程序终止,并将采集到的人脸图像保存在本地。
二、特征提取在数据采集之后,我们需要从图像中提取出能够表征人脸特征的信息。
通常使用的特征包括颜色直方图、Haar-like特征、LBP特征等。
在本文中,我们将使用Haar-like特征来描述人脸的特征。
Haar-like特征是一种计算速度较快,效果也较好的特征提取方法。
可以通过OpenCV库的cv2.CascadeClassifier()函数来获取Haar-like特征分类器。
三、分类器训练在特征提取之后,我们需要使用机器学习算法来训练分类器,以便将人脸图像与非人脸图像进行区分。
通常使用的分类器包括SVM、KNN、随机森林等。
在本文中,我们将使用支持向量机(SVM)来训练分类器。
SVM是一种二分类器,通过寻找一个最优的超平面将样本分为两个类别。
分类器训练的步骤如下:1.将采集到的人脸图像和非人脸图像分别划分为训练集和测试集。
2.将训练集中的人脸图像和非人脸图像进行特征提取。
3.将特征向量和标签传入SVM进行训练。
四、测试在分类器训练完成之后,我们需要对训练好的分类器进行测试,以评估分类器的准确率。
通常使用的评估指标包括准确率、召回率、F1值等。
在本文中,我们将使用测试集来评估分类器的准确率。
opencv人脸识别原理OpenCV(开源计算机视觉库)是一个广泛使用的计算机视觉库,其中包含了很多用于处理图像和视频的函数和算法。
在OpenCV中,人脸识别是一个重要的应用领域。
其原理主要包括以下几个步骤:1. 图像预处理:首先,将输入的图像转换为灰度图像,这是因为灰度图像只有一个通道,便于加速运算。
然后,可以对图像进行一些预处理操作,如直方图均衡化、高斯滤波等,以提高识别效果。
2. 面部检测:OpenCV使用级联分类器(Cascade Classifier)来进行面部检测。
这是一种基于机器学习的方法,通过训练一个分类器来识别面部特征。
级联分类器是由多个简单特征分类器级联而成,使用Haar特征提取器和Adaboost训练技术来实现。
3. 特征提取:一旦检测到面部区域,OpenCV会使用特征提取算法来提取面部的特征。
这些特征可以是面部区域的几何特征,如眼睛、鼻子、嘴巴的位置和形状等,也可以是纹理特征,如局部二值模式(LBP)、小波变换等。
4. 特征匹配:接下来,OpenCV将使用已知的特征模板与提取到的面部特征进行匹配。
这可以通过比较特征向量之间的距离或使用分类器来完成。
匹配过程将对输入的面部特征与已知的人脸特征进行比对,以确定识别结果。
5. 人脸识别:最后,OpenCV将根据匹配结果进行人脸识别。
如果匹配率达到预设的阈值,则认为是同一个人。
否则,将确定为其他人或无法识别。
总的来说,OpenCV的人脸识别原理是通过面部检测、特征提取和特征匹配等步骤来实现的。
通过这些步骤,OpenCV能够准确地识别并区分不同的人脸。
OpenCV⼈脸识别C++实例代码#include <opencv2/highgui/highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <opencv2/core/core.hpp>#include <opencv2/objdetect/objdetect.hpp>using namespace cv;using namespace std;void detectAndDraw( Mat& img, CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale, bool tryflip );int main(){//VideoCapture cap(0); //打开默认摄像头//if(!cap.isOpened())//{// return -1;//}Mat frame;Mat edges;CascadeClassifier cascade, nestedCascade;bool stop = false;//训练好的⽂件名称,放置在可执⾏⽂件同⽬录下cascade.load("D:\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");nestedCascade.load("D:\\opencv\\sources\\data\\haarcascades\\haarcascade_eye.xml");frame = imread("E:\\tmpimg\\hezhao.jpg");detectAndDraw( frame, cascade, nestedCascade,2,0 );waitKey();//while(!stop)//{// cap>>frame;// detectAndDraw( frame, cascade, nestedCascade,2,0 );// if(waitKey(30) >=0)// stop = true;//}return0;}void detectAndDraw( Mat& img, CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale, bool tryflip ){int i = 0;double t = 0;//建⽴⽤于存放⼈脸的向量容器vector<Rect> faces, faces2;//定义⼀些颜⾊,⽤来标⽰不同的⼈脸const static Scalar colors[] = {CV_RGB(0,0,255),CV_RGB(0,128,255),CV_RGB(0,255,255),CV_RGB(0,255,0),CV_RGB(255,128,0),CV_RGB(255,255,0),CV_RGB(255,0,0),CV_RGB(255,0,255)} ;//建⽴缩⼩的图⽚,加快检测速度//nt cvRound (double value) 对⼀个double型的数进⾏四舍五⼊,并返回⼀个整型数!Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );//转成灰度图像,Harr特征基于灰度图cvtColor( img, gray, CV_BGR2GRAY );imshow("灰度",gray);//改变图像⼤⼩,使⽤双线性差值resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );imshow("缩⼩尺⼨",smallImg);//变换后的图像进⾏直⽅图均值化处理equalizeHist( smallImg, smallImg );imshow("直⽅图均值处理",smallImg);//程序开始和结束插⼊此函数获取时间,经过计算求得算法执⾏时间t = (double)cvGetTickCount();//检测⼈脸//detectMultiScale函数中smallImg表⽰的是要检测的输⼊图像为smallImg,faces表⽰检测到的⼈脸⽬标序列,1.1表⽰//每次图像尺⼨减⼩的⽐例为1.1,2表⽰每⼀个⽬标⾄少要被检测到3次才算是真的⽬标(因为周围的像素和不同的窗⼝⼤//⼩都可以检测到⼈脸),CV_HAAR_SCALE_IMAGE表⽰不是缩放分类器来检测,⽽是缩放图像,Size(30, 30)为⽬标的//最⼩最⼤尺⼨cascade.detectMultiScale( smallImg, faces,1.1, 2, 0//|CV_HAAR_FIND_BIGGEST_OBJECT//|CV_HAAR_DO_ROUGH_SEARCH|CV_HAAR_SCALE_IMAGE,Size(30, 30));//如果使能,翻转图像继续检测if( tryflip ){flip(smallImg, smallImg, 1);imshow("反转图像",smallImg);cascade.detectMultiScale( smallImg, faces2,1.1, 2, 0//|CV_HAAR_FIND_BIGGEST_OBJECT//|CV_HAAR_DO_ROUGH_SEARCH|CV_HAAR_SCALE_IMAGE,Size(30, 30) );for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ ){faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));}}t = (double)cvGetTickCount() - t;// qDebug( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ ){Mat smallImgROI;vector<Rect> nestedObjects;Point center;Scalar color = colors[i%8];int radius;double aspect_ratio = (double)r->width/r->height;if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ){//标⽰⼈脸时在缩⼩之前的图像上标⽰,所以这⾥根据缩放⽐例换算回去center.x = cvRound((r->x + r->width*0.5)*scale);center.y = cvRound((r->y + r->height*0.5)*scale);radius = cvRound((r->width + r->height)*0.25*scale);circle( img, center, radius, color, 3, 8, 0 );}elserectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),color, 3, 8, 0);if( nestedCascade.empty() )continue;smallImgROI = smallImg(*r);//同样⽅法检测⼈眼nestedCascade.detectMultiScale( smallImgROI, nestedObjects,1.1, 2, 0//|CV_HAAR_FIND_BIGGEST_OBJECT//|CV_HAAR_DO_ROUGH_SEARCH//|CV_HAAR_DO_CANNY_PRUNING|CV_HAAR_SCALE_IMAGE,Size(30, 30) );for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ ) {center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);radius = cvRound((nr->width + nr->height)*0.25*scale);circle( img, center, radius, color, 3, 8, 0 );}}imshow( "识别结果", img );}opencv 连接器配置[debug]opencv_ml2413d.libopencv_calib3d2413d.libopencv_contrib2413d.libopencv_core2413d.libopencv_features2d2413d.lib opencv_flann2413d.libopencv_gpu2413d.libopencv_highgui2413d.libopencv_imgproc2413d.libopencv_legacy2413d.libopencv_objdetect2413d.lib opencv_ts2413d.libopencv_video2413d.libopencv_nonfree2413d.libopencv_ocl2413d.libopencv_photo2413d.libopencv_stitching2413d.lib opencv_superres2413d.lib opencv_videostab2413d.lib [release]opencv_ml2413.libopencv_calib3d2413.libopencv_contrib2413.libopencv_core2413.libopencv_features2d2413.lib opencv_flann2413.libopencv_gpu2413.libopencv_highgui2413.libopencv_imgproc2413.libopencv_legacy2413.libopencv_objdetect2413.libopencv_ts2413.libopencv_video2413.libopencv_nonfree2413.libopencv_ocl2413.libopencv_photo2413.libopencv_stitching2413.libopencv_superres2413.libopencv_videostab2413.lib// 根据你的版本批量替换2413版本号。
基于OpenCV的人脸识别系统本文针对课题要求,将Visual C++作为开发工具,在开源计算机视觉平台OpenCV上进行大量的研究和测试,所涉及的内容有:视频图像的采集、人脸图像的预处理、数学形态学图像处理、人脸定位和经典的AdaBoosting算法等。
进而为研究人脸识别技术提供参考依据。
标签:识别系统视频识别OpenCV1 研究背景近年来,在安全入口控制、金融贸易等方面,随着应用需求的增长,生物统计识别技术受到社会的普遍关注。
目前,微电子和视觉系统有了新的进展,在一定程度上使得高性能自动识别技术的实现代价不断降低。
而人脸检测是所有的生物识别方法中应用最广泛的技术之一,人脸检测最初来源于人脸识别。
人脸检测的目的是检测一张图像是否有人脸,如果有人脸,就把它从图像背景中分离出来,然后对特征进行人脸识别。
而在视频中的人脸检测在信息处理中,已经成为一项相当难突破的技术,越来越受到计算机视觉界的广泛关注,作为一个有价值课题,已经渗透到各不同领域中。
2 视频识别功能详细设计2.1 本系统的人脸检测算法2.1.1 基于Haar特征的人脸检测算法。
本系统开发过程中使用的人脸检测算法为基于Haar特征的人脸检测算法,Haar特征定义:HAAR 算法是一种基于特征(feature)的算法,而不是基于像素的算法。
利用Haar特征分类器实现人脸识别,其特点主要表现为检测速度快,性能好,实现流程如图1所示:对于每个特定分类器来说,通常情况下用形状、感兴趣区域中的位置以及比例系数来定义其特征。
在浏览了几种经典的人脸检测算法后,回到本系统中使用的人脸检测算法上。
基于Haar特征的人脸检测算法是最近几年被引用较多,较典型的人脸检测算法。
2.1.2 积分图像。
积分图是Haar分类器能够实时检测人脸的保证。
积分图像是数字图像的一种表示方法,对(x,y)点处的像素值,代表所有左上角像素的总和。
其中g(i,j)是原始的图像,i(x,y)是积分图像。
人脸识别代码详细解读人脸识别代码详细解读随着科技的不断进步,人脸识别技术已经逐步应用到了生活的各个领域,比如安防监控、人脸支付、智能门禁等,可以说已经成为了一种不可或缺的技术。
那么,在这些应用中,人脸识别又是如何实现的呢?这就要涉及到人脸识别的代码实现。
一、代码概述人脸识别的实现需要借助于计算机视觉技术和机器学习技术,有多种不同的实现方法,其中比较常用的是使用OpenCV库和Python语言进行编程。
本文将以使用OpenCV 和Python编程实现人脸识别为例进行讲解。
OpenCV是一个开源的计算机视觉库,提供了多种图像处理和计算机视觉相关的函数,包括人脸检测、人脸识别、目标跟踪、图像分割等。
Python是一种高级编程语言,易于学习和使用,已经成为了计算机视觉领域最为流行的编程语言之一。
二、代码实现步骤1. 导入所需的库和模块首先需要导入OpenCV库以及一些相关的模块,比如cv2模块、numpy模块等,如下所示:import cv2 import numpy as np2. 人脸检测接下来需要对输入的图像进行人脸检测。
OpenCV提供了多种人脸检测的方法,其中最常用的是基于Haar特征的级联分类器检测方法。
该方法使用训练好的分类器对输入的图像进行扫描,当图像中检测到具有特定特征的区域时,即认为该区域包含人脸。
以下是基于Haar特征的级联分类器人脸检测的代码实现:faceCascade =cv2.CascadeClassifier('haarcascade_frontalface_defa ult.xml') img = cv2.imread('test.jpg') gray =cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))其中,faceCascade是已经训练好的级联分类器模型,通过调用detectMultiScale函数可以对输入图像进行人脸检测,scaleFactor控制图像缩放比例,minNeighbors 控制人脸检测的参数,minSize表示人脸检测的最小尺寸。
《基于OpenCV的人脸识别系统设计》篇一一、引言随着科技的快速发展,人脸识别技术已经成为现代计算机视觉领域的一个重要研究方向。
人脸识别系统能够自动识别和验证人的身份,广泛应用于安全监控、门禁系统、支付验证等众多领域。
本文将详细介绍基于OpenCV的人脸识别系统的设计。
二、系统需求分析1. 功能需求:人脸检测、人脸特征提取、人脸识别比对等。
2. 性能需求:高识别率、实时响应、系统稳定。
3. 环境需求:操作系统兼容性强,设备要求合理。
三、系统设计概述基于OpenCV的人脸识别系统主要包括预处理、特征提取和匹配三个部分。
通过图像处理和机器学习技术,实现人脸检测和识别的功能。
四、系统架构设计1. 数据预处理模块:主要完成图像的输入、格式转换、尺寸调整等操作,以满足后续处理的需球。
同时对图像进行去噪和锐化处理,提高识别的准确性。
2. 人脸检测模块:利用OpenCV中的人脸检测算法(如Haar 级联分类器或深度学习模型)进行人脸检测,确定图像中的人脸位置。
3. 特征提取模块:通过OpenCV的深度学习模型(如OpenCV DNN模块中的卷积神经网络)提取人脸特征,如面部关键点信息等。
4. 人脸比对模块:将提取的特征与数据库中已有人脸特征进行比对,找出相似度最高的匹配结果。
根据设定的阈值,判断是否为同一人。
五、关键技术实现1. 人脸检测算法:采用OpenCV中的人脸检测算法,如Haar 级联分类器或深度学习模型,实现对图像中人脸的快速定位。
2. 特征提取算法:利用OpenCV的深度学习模型(如OpenCV DNN模块中的卷积神经网络)进行特征提取,包括面部关键点信息等。
3. 人脸比对算法:采用相似度算法(如欧氏距离、余弦相似度等)进行人脸比对,找出相似度最高的匹配结果。
六、系统实现与测试1. 系统实现:根据设计架构,逐步实现各模块功能。
采用C++编程语言,利用OpenCV库进行开发。
2. 系统测试:对系统进行严格的测试,包括功能性测试、性能测试和稳定性测试等。
opencv 项目案例OpenCV是一个开源的计算机视觉库,它提供了丰富的函数和算法,用于处理和分析图像和视频数据。
下面是一些基于OpenCV的项目案例以及相关参考内容,希望对您有所帮助。
1. 人脸识别人脸识别是计算机视觉领域的一项重要任务,可以应用于安防监控、人机交互等领域。
参考内容可以包括:- 人脸检测:使用OpenCV的人脸检测器(如Haar级联分类器)对输入图像进行人脸检测。
- 特征提取:使用OpenCV的特征提取算法(如局部二值模式直方图)从人脸图像中提取特征向量。
- 训练分类器:使用OpenCV的机器学习算法(如支持向量机)来训练一个人脸分类器。
- 人脸识别:使用训练好的分类器对新的人脸图像进行识别。
2. 手势识别手势识别可以应用于人机交互、虚拟现实等领域。
参考内容可以包括:- 手势检测:使用OpenCV的背景减除算法和运动跟踪算法对输入视频中的手部进行检测和跟踪。
- 手势识别:根据手势的形状、轮廓、手指数量等特征,使用OpenCV的图像处理和机器学习算法对手势进行识别。
- 手势控制:根据识别出的手势,实现对计算机或设备的控制(如控制鼠标、游戏操作等)。
3. 目标检测与跟踪目标检测与跟踪可以应用于安防监控、自动驾驶等领域。
参考内容可以包括:- 目标检测:使用OpenCV的目标检测器(如级联分类器、深度学习模型)对输入图像或视频中的目标进行检测。
- 目标跟踪:根据检测到的目标,使用OpenCV的运动跟踪算法(如卡尔曼滤波、均值漂移)对目标进行跟踪。
- 多目标跟踪:对于多个目标,使用OpenCV的多目标跟踪算法(如多种滤波方法的组合)进行跟踪与管理。
4. 图像处理与增强图像处理与增强可以应用于图像编辑、美颜相机等领域。
参考内容可以包括:- 图像滤波:使用OpenCV的滤波算法(如均值滤波、高斯滤波)对图像进行平滑处理或边缘增强。
- 图像增强:使用OpenCV的直方图均衡化、自适应直方图均衡化等算法对图像进行增强。
133●基金项目:广西高校中青年教师基础能力提升项目(2019KY0623; 2020KY15015);广西高校“嵌入式技术与智能信息处理”重点实验室开放基金(2016-02-20)。
1 引言人脸识别[1]是基于人的脸部特征信息进行身份识别的一种生物特征识别技术,简单来说就是用电子设备(如:相机、摄像头)收集到人脸图片或视频,从收集到的人脸图片或视频中查找人脸,如果找到就定位人脸的位置,然后根据位置截取人脸并对人脸进行特征提取,再把提取到的特征与特征数据库进行验证识别的一门技术。
在国家公共安全、商业安全及社会安全等众多领域也有很多应用,其中之一就是部分高校用于门禁管理和教学点名系统[2]。
但现实识别场景的多样性和背景的复杂性,需要研究出更高效、更精确的人脸检测和识别算法来满足未来更多的应用场景。
文献[3]提出了在人脸图像预处理阶段采用了灰度直方图均衡化的技术,在构建特征脸的阶段选取了光照锥法进行光照补偿,以便于削弱系统中的光照影响。
文献[4]研究了将人脸识别技术应用于移动端平台,通过Haar 特征训练人脸图像,利用Open CV 与LBPH 算法相结合完成人脸识别。
本文研究了特征脸(Eigenfaces)识别算法,对其原理和技术实现进行详细分析,并基于Open CV 对其进行改进和代码实现,经在多姿态人脸图像数据上验证,取得了较好的检测和识别效率和效果。
2 人脸检测改进人脸检测是指对电子设备采集到的图像进行搜索,找到所有可能是人脸的位置,并返回人脸位置和大小的过程。
人脸识别流程主要可分为训练部分和搜索部分,其中搜索部分是基于人脸检测所检测的人脸在人脸库进行搜索,所以人脸检测是人脸识别的关键环节之一,检测效果的好坏直接影响到人脸识别的效率。
而OpenCV 库中的级联检测器只能直接检测正脸和左侧脸,对于其他姿态(如:遮挡脸,仰头脸)人脸检测效果差,检测耗时较长。
因此,本人从三方面对人脸检测算法进行了改进,第一,检测范围方面,在OpenCV 库的环境上,基于HAAR 级联分类器实现了对正脸、左侧脸、右侧脸的检测,并结合鼻子和嘴巴实现了对五官脸的检测,使改进之后的人脸检测算法对于正脸、侧脸、仰脸、垂头脸、遮挡脸等不同姿态的人脸都有较好的检测效果;第二,检测结果方面,设置筛选算法过滤掉人脸结果中的重复人脸和非人脸;第三,检测时间方面,本人在确保对检测效果影响较小的前提下,通过图像缩放牺牲一定的图片质量来缩短检测时间。
一、实训背景随着计算机视觉和人工智能技术的飞速发展,人脸识别技术已经广泛应用于安防、支付、门禁等领域。
为了提高学生对人脸识别技术的理解与应用能力,我们开展了为期一个月的人脸识别实训课程。
本次实训旨在让学生了解人脸识别的基本原理、常用算法,并能够将人脸识别技术应用于实际项目中。
二、实训内容1. 人脸识别技术概述首先,我们对人脸识别技术进行了简要的介绍,包括人脸识别的发展历程、基本分类以及应用领域。
人脸识别技术主要包括人脸检测、人脸特征提取和人脸比对三个环节。
2. 人脸检测人脸检测是人脸识别的基础,其目的是从图像中定位人脸的位置。
在实训中,我们学习了基于Haar特征的Adaboost算法和基于深度学习的卷积神经网络(CNN)进行人脸检测。
通过实验,掌握了使用OpenCV库进行人脸检测的方法。
3. 人脸特征提取人脸特征提取是将人脸图像转化为可以用于识别的特征向量。
在实训中,我们学习了基于局部二值模式(LBP)特征、局部二值模式直方图(LBPH)特征以及深度学习(如VGGFace)提取人脸特征的方法。
通过实验,掌握了不同特征提取方法的应用。
4. 人脸比对人脸比对是将待识别的人脸与数据库中的人脸进行相似度比较,从而实现人脸识别。
在实训中,我们学习了基于距离度量(如欧氏距离、余弦相似度)的人脸比对方法。
通过实验,掌握了OpenCV库中的人脸比对函数的使用。
5. 人脸识别项目实战为了让学生更好地将所学知识应用于实际项目,我们选择了一个人脸识别门禁系统项目进行实战。
在项目中,我们需要完成以下任务:(1)采集人脸图像数据:从网上下载公开的人脸数据集,并进行预处理,如归一化、裁剪等。
(2)训练人脸识别模型:使用训练集数据训练人脸识别模型,包括人脸检测、特征提取和人脸比对。
(3)测试模型性能:使用测试集数据评估人脸识别模型的准确率、召回率等指标。
(4)构建门禁系统:使用训练好的模型构建门禁系统,实现人脸识别、权限控制等功能。
基于C语言的人脸识别系统人脸识别技术是一种通过计算机对人脸图像进行特征提取和匹配,从而实现对人脸进行身份鉴别和认证的技术。
在现代社会中得到了广泛的应用,如门禁系统、手机解锁等多个领域。
本文将介绍基于C语言开发的人脸识别系统的原理和实现方法。
一、人脸识别系统的原理人脸识别系统的原理主要包括图像获取、人脸检测、特征提取和识别匹配四个主要步骤。
1. 图像获取图像获取是指通过摄像头或者其他设备获取到待识别的人脸图像。
在C语言中,可以通过调用图像处理库的相关函数来实现图像的读取和显示。
2. 人脸检测人脸检测是指通过算法对图像进行处理,找出其中的人脸区域。
常用的人脸检测算法包括Haar特征检测、卷积神经网络等。
3. 特征提取特征提取是指从人脸图像中提取出表征该人脸的特征信息。
常用的特征提取方法有主成分分析(PCA)、线性判别分析(LDA)等。
4. 识别匹配识别匹配是指将提取到的特征信息与存储的人脸数据库中的特征信息进行比对,找出最匹配的结果。
匹配算法常用的有欧氏距离、余弦相似度等。
二、基于C语言的人脸识别系统的实现方法1. 图像处理库的选择在C语言中,可以使用开源的图像处理库OpenCV来实现人脸识别系统。
OpenCV是一个跨平台的计算机视觉库,提供了许多用于图像处理的函数和工具。
2. 数据集的收集为了训练人脸识别系统,首先需要收集一定数量的人脸图像数据集。
可以通过调用摄像头,让用户自行拍摄不同角度、不同表情的人脸图像。
3. 数据预处理收集到的人脸图像需要进行预处理,包括图像裁剪、尺寸调整、灰度化等操作,以便后续的人脸检测和特征提取。
4. 人脸检测与特征提取调用OpenCV库中的相关函数,对预处理后的人脸图像进行人脸检测和特征提取操作。
根据选定的算法,提取出人脸图像的特征信息,并存储起来供后续的识别匹配使用。
5. 识别匹配对于待识别的人脸图像,同样进行与第四步相同的人脸检测和特征提取操作。
然后将提取到的特征信息与存储的人脸数据库中的信息进行匹配,找出最相似的结果。
opencv 人脸识别原理人脸识别是计算机视觉领域中的一项重要技术,它可以通过计算机自动识别和验证人脸图像的身份信息。
在人脸识别技术中,OpenCV 是一个非常常用的开源计算机视觉库,提供了丰富的图像处理和分析函数,便于进行人脸识别算法的实现。
人脸识别的原理是将人脸图像中的特征提取出来,然后通过比对特征与数据库中的特征进行匹配,从而实现对人脸身份的识别。
在OpenCV中,人脸识别主要包括以下几个步骤:人脸检测、人脸对齐、特征提取和特征匹配。
人脸检测是人脸识别的第一步,它使用级联分类器或深度学习模型对图像中的人脸进行检测。
在OpenCV中,常用的人脸检测算法有Haar级联分类器和基于深度学习的人脸检测模型。
这些算法能够快速准确地检测出图像中的人脸区域。
接下来,人脸对齐是为了保证不同图像中的人脸位置和姿态的一致性。
由于人脸在不同的图像中可能存在一定的旋转、倾斜和缩放,因此需要将人脸对齐到一个标准的位置和尺寸。
在OpenCV中,可以使用人脸关键点检测算法来定位人脸的关键点,然后通过仿射变换或透视变换将人脸对齐到标准位置。
然后,特征提取是人脸识别的核心步骤,它将对人脸图像进行特征提取,得到一个能够描述人脸特征的向量。
常用的人脸特征提取算法有主成分分析(PCA)、线性判别分析(LDA)和局部二值模式(LBP)等。
在OpenCV中,可以使用这些算法提取人脸的特征向量。
特征匹配是将提取到的人脸特征与数据库中的特征进行比对,从而判断人脸的身份。
常用的特征匹配算法有欧氏距离和余弦相似度等。
在OpenCV中,可以根据特征向量之间的距离或相似度进行特征匹配,并将其与数据库中的人脸特征进行比对,得到人脸的身份信息。
OpenCV人脸识别的原理主要包括人脸检测、人脸对齐、特征提取和特征匹配等步骤。
通过这些步骤的组合,可以实现对人脸图像的自动识别和验证,广泛应用于人脸门禁、人脸支付、人脸签到等领域。
随着深度学习技术的发展,基于深度学习的人脸识别算法也得到了广泛应用,为人脸识别技术的进一步发展提供了新的可能性。
人脸检测实训内容及过程简易
人脸检测实训通常涉及以下几个关键步骤:
1. 数据收集:首先,需要收集用于训练的人脸数据。
这些数据可以来自各种不同的来源,例如公共数据库、个人照片库或者实时视频流。
确保数据集具有足够的多样性和代表性,以便算法能够准确识别各种不同的人脸特征。
2. 预处理:对收集到的图像进行必要的预处理,包括灰度化、大小归一化等。
这些步骤可以帮助提高人脸检测的准确性和效率。
3. 特征提取:使用适当的算法从图像中提取特征。
这可以基于手工设计的特征(如Haar特征)或基于深度学习的特征(如卷积神经网络)。
4. 训练分类器:使用提取的特征和标记的人脸/非人脸数据集训练分类器。
这通常涉及选择一个适当的机器学习算法(如Adaboost、随机森林等)并对其进行调整以获得最佳性能。
5. 检测阶段:在测试阶段,将分类器应用于输入的图像,以检测和定位人脸。
这可能涉及滑动窗口方法或使用更复杂的算法,如深度学习方法。
6. 结果评估:最后,评估检测算法的性能,例如通过计算准确率、召回率、F1分数等指标。
根据评估结果,可能需要进行进一步的调整和优化。
在整个实训过程中,理解和应用适当的机器学习算法是关键。
此外,由于人脸检测是一个具有挑战性的任务,需要仔细调整和优化算法参数以获得最佳性能。
同时,实时性和准确性也是需要考虑的重要因素,特别是在实际应用中。
一、实验背景随着人工智能技术的飞速发展,人脸识别技术作为生物识别领域的重要分支,已广泛应用于安防监控、智能门禁、手机解锁等领域。
本实验旨在通过人脸识别技术,实现对人脸图像的自动识别与分类,并验证所采用算法的有效性。
二、实验目的1. 熟悉人脸识别技术的基本原理和流程。
2. 掌握人脸图像预处理、特征提取和分类的方法。
3. 评估不同人脸识别算法的性能,并选择最优算法。
4. 实现人脸识别系统的搭建和测试。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 依赖库:OpenCV、dlib、scikit-learn4. 数据集:LFW(Labeled Faces in the Wild)人脸数据集四、实验步骤1. 数据集准备从LFW数据集中选取一定数量的人脸图像,并将其分为训练集和测试集。
其中,训练集用于训练人脸识别模型,测试集用于评估模型性能。
2. 人脸图像预处理对人脸图像进行预处理,包括人脸检测、图像归一化、特征点定位等步骤。
具体操作如下:- 使用OpenCV库中的Haar特征分类器进行人脸检测,提取人脸图像。
- 将检测到的人脸图像进行归一化处理,使图像尺寸统一。
- 使用dlib库进行特征点定位,提取人脸关键点信息。
3. 特征提取采用多种特征提取方法,包括HOG(Histogram of Oriented Gradients)、LBP(Local Binary Patterns)、Eigenfaces等。
将提取到的特征向量存储到训练集中。
4. 分类器选择与训练选择支持向量机(SVM)作为分类器,利用训练集对SVM进行训练。
通过调整参数,优化模型性能。
5. 模型评估使用测试集对训练好的模型进行评估,计算识别准确率、召回率、F1值等指标。
6. 实验结果分析分析不同特征提取方法和分类器的性能,找出最优方案。
五、实验结果1. 特征提取方法比较通过对比HOG、LBP和Eigenfaces三种特征提取方法的性能,发现HOG和LBP在人脸识别任务中表现较好。
opencv人脸识别中train()函数训练数据的原理OpenCV是一种通用计算机视觉库,可以用于各种用途,例如人脸识别。
该技术利用机器学习算法从图像中提取数据并识别人脸。
train()函数是OpenCV库中用于训练人脸识别数据的关键函数。
以下是train()函数训练数据的原理:1. 准备训练样本数据train()函数需要一组训练图像来训练分类器。
这些图像必须包含不同人的正面面部照片。
对于每个图像,需要确定哪个区域包含人脸区域。
可以通过手动标记或使用其他算法进行自动检测。
2. 准备标签为了训练分类器,每个训练图像都需要一个与之对应的标签。
标签是具有唯一标识符的方式,以便将其与训练图像相关联。
标识符可以是数字或字符串,应对每个类分别进行指定。
3. 训练分类器一旦准备完毕,可以使用train()函数将训练数据提供给分类器进行学习。
在这个过程中,算法将分析训练数据并学习如何将它们分类。
这一过程可能需要一段时间,并且具体时间会受到训练数据集的大小和复杂度的影响。
4. 存储分类器学习完成后,分类器可以用于识别新图像中的人脸。
为了确保在之后有效地使用分类器,需要将其保存在硬盘上。
可以使用OpenCV提供的其他函数,例如 save(),将分类器保存在指定位置。
总结:train()函数是OpenCV中的一个重要函数,用于训练人脸识别数据。
在这个过程中,需要准备训练图像、标识标签,并使用train()函数将它们提供给分类器进行学习。
分类器通过分析训练集中的数据模式来学习如何将它们分类。
最后,保存分类器以备后用。
这个过程可以直观地理解为人脑中的“学习”过程,大量的样本数据被提供到大脑神经元中,神经元进行分析训练数据,学习数据模式,识别人脸的过程便是一个类似于人脑学习的过程。
基于OpenCV的人脸识别技术研究与实现人脸识别技术是近年来备受关注的热门领域之一,随着人工智能和计算机视觉技术的不断发展,人脸识别技术在各个领域都有着广泛的应用。
OpenCV作为一个开源的计算机视觉库,提供了丰富的图像处理和分析工具,被广泛应用于人脸识别技术的研究与实现中。
本文将深入探讨基于OpenCV的人脸识别技术,包括其原理、算法、应用场景以及实现步骤等内容。
一、人脸识别技术概述人脸识别技术是一种通过对图像或视频中的人脸进行检测、识别和验证的技术。
它主要包括人脸检测、人脸特征提取、人脸匹配等步骤。
在计算机视觉领域,人脸识别技术是一项具有挑战性的任务,需要克服光照变化、姿态变化、表情变化等因素对识别准确性的影响。
二、OpenCV简介OpenCV是一个开源的计算机视觉库,提供了丰富的图像处理和分析工具,支持多种编程语言如C++、Python等。
OpenCV包含了大量用于图像处理和计算机视觉任务的函数和类,可以帮助开发者快速实现各种视觉应用。
三、基于OpenCV的人脸检测在OpenCV中,人脸检测是人脸识别技术中的重要一环。
OpenCV 提供了基于Haar级联分类器的人脸检测方法,通过训练好的分类器可以实现对图像中人脸位置的检测。
在进行人脸检测时,可以通过调整参数和优化算法来提高检测准确率和速度。
四、基于OpenCV的人脸特征提取在进行人脸识别时,通常需要提取人脸的特征信息。
OpenCV提供了多种特征提取方法,如LBP(Local Binary Patterns)、HOG (Histogram of Oriented Gradients)等。
这些方法可以帮助我们从图像中提取出具有区分性的特征信息,用于后续的人脸匹配和识别。
五、基于OpenCV的人脸匹配与识别在得到了人脸的特征信息后,接下来就是进行人脸匹配与识别。
OpenCV提供了多种匹配算法,如KNN(K-Nearest Neighbors)、SVM (Support Vector Machine)等。
使⽤OpenCV和Python进⾏⼈脸识别介绍 ⼈脸识别是什么?或识别是什么?当你看到⼀个苹果时,你的⼤脑会⽴刻告诉你这是⼀个苹果。
在这个过程中,你的⼤脑告诉你这是⼀个苹果⽔果,⽤简单的语⾔来说就是识别。
那么什么是⼈脸识别呢?我肯定你猜对了。
当你看着你的朋友⾛在街上或他的照⽚时,你会认出他是你的朋友保罗。
有趣的是,当你看你的朋友或他的照⽚时,你⾸先要看他的脸,然后再看其他东西。
你想过为什么要这么做吗?这是为了让你看他的脸就能认出他来。
好吧,这是你的⾯部识别。
但真正的问题是⼈脸识别是如何⼯作的?它⾮常简单和直观。
举⼀个现实⽣活中的例⼦,当你在⽣活中第⼀次遇见⼀个⼈,你不认识他,对吧?当他和你说话或握⼿时,你看着他的脸、眼睛、⿐⼦、嘴巴、颜⾊和整体的表情。
这是你通过收集⾯部数据来学习或训练那个⼈的⾯部识别。
然后他告诉你他叫保罗。
此时,你的⼤脑知道它刚刚学到的⾯部数据属于保罗。
现在你的头脑已经训练好了,准备在保罗的脸上做⾯部识别。
下次当你在照⽚中看到保罗或他的脸时,你会⽴刻认出他。
这就是⼈脸识别的⼯作原理。
你遇到保罗的次数越多,你的⼤脑就会收集到更多关于他的信息,尤其是他的脸,你就越能识别他。
下⼀个问题是如何⽤OpenCV编码⼈脸识别,毕竟这是你阅读这篇⽂章的唯⼀原因,对吧?那么,好吧。
你可能会说我们的⼤脑可以很容易地做这些事情,但是把它们编码到电脑⾥是很困难的吗?别担⼼,不是的。
多亏了OpenCV,编码⼈脸识别变得越来越容易。
⼈脸识别的编码步骤与我们在上⾯的实际⽰例中讨论的⼀样。
·训练数据收集:收集您想要识别的⼈的⾯部数据(本例中为⾯部图像) ·识别器的训练:将⼈脸数据(以及每个⼈脸的相应名称)输⼊⼈脸识别器,使其能够学习。
·识别:输⼊这些⼈的新⾯孔,看看你刚训练过的⼈脸识别器是否识别他们OpenCV带有内置的⼈脸识别器,你所要做的就是给它输⼊⼈脸数据。
这很简单,⼀旦我们完成了编码,它就会看起来很简单。
opencv facerecognizersf 用法以下是使用OpenCV的FaceRecognizerSF的示例代码:cpp#include <opencv2/face.hpp>#include <opencv2/core.hpp>#include <opencv2/highgui.hpp>#include <opencv2/imgproc.hpp>#include <iostream>using namespace cv;using namespace cv::face;using namespace std;int main(int argc, char** argv){// 1. 加载人脸识别器Ptr<FaceRecognizer> model = FaceRecognizerSF::createLBPHFaceRecognizer();// 2. 加载人脸样本和标签vector<Mat> images;vector<int> labels;read_csv("face_data.csv", images, labels);// 3. 训练人脸识别器model->train(images, labels);// 4. 进行人脸识别Mat image = imread("test_face.jpg");Mat gray_image;cvtColor(image, gray_image, COLOR_BGR2GRAY);Mat embedding;model->predict(gray_image, embedding);// 5. 可视化识别结果cout << "Label: " << labels[0] << " Embedding: " << endl << embedding << endl;return 0;}请注意,上述代码中使用了read_csv函数来从CSV文件中加载人脸样本和标签。
∙转为灰度和对齐是后面做训练时EigenFaceRecognizer的要求;∙归一化是防止光照带来的影响在上一篇的 2.2 Prehelper.cpp文件中加入函数void resizeandtogray(char* dir,int k, vector<Mat> &images, vector<int> &labels, vector<Mat> &testimages, vector<int> &testlabels);[cpp]view plaincopyprint?1.void resizeandtogray(char* dir,int K, vector<Mat> &images, vector<int> &labels,2. vector<Mat> &testimages, vector<int> &testlabels)3.{4. IplImage* standard = cvLoadImage("D:\\privacy\\picture\\photo\\2.jpg",CV_LOAD_IMAGE_GRAYSCALE);5. string cur_dir;6.char id[5];7.int i,j;8. for(int i=1; i<=K; i++)9. {10. cur_dir = dir;11. cur_dir.append("gray\\");12. _itoa(i,id,10);13. cur_dir.append(id);14. const char* dd = cur_dir.c_str();15. CStatDir statdir;16. if (!statdir.SetInitDir(dd))17. {18. puts("Dir not exist");19. return;20. }21. cout<<"Processing samples in Class "<<i<<endl;22. vector<char*>file_vec = statdir.BeginBrowseFilenames("*.*");23. for (j=0;j<file_vec.size();j++)24. {25. IplImage* cur_img = cvLoadImage(file_vec[j],CV_LOAD_IMAGE_GRAYSCALE);26. cvResize(cur_img,standard,CV_INTER_AREA);27. Mat cur_mat = cvarrToMat(standard,true),des_mat;28. cv::normalize(cur_mat,des_mat,0, 255, NORM_MINMAX, CV_8UC1);29. cvSaveImage(file_vec[j],cvCloneImage(&(IplImage) des_mat));30. if(j!=file_vec.size())31. {32. images.push_back(des_mat);33. labels.push_back(i);34. }35. else36. {37. testimages.push_back(des_mat);38. testlabels.push_back(i);39. }40. }41. cout<<file_vec.size()<<" images."<<endl;42. }43.}并在main中调用:[cpp]view plaincopyprint?1.int main( )2.{3. CvCapture* capture = 0;4. Mat frame, frameCopy, image;5. string inputName;6.int mode;7.8.char dir[256] = "D:\\Courses\\CV\\Face_recognition\\pic\\";9. //preprocess_trainingdata(dir,K); //face_detection and extract to file10. vector<Mat> images,testimages;11. vector<int> labels,testlabels;12. resizeandtogray(dir,K,images,labels,testimages,testlabels); //togray,normalize and resize13.14. system("pause");15. return 0;16.}2. 训练有了vector<Mat> images,testimages; vector<int> labels,testlabels; 可以开始训练了,我们采用EigenFaceRecognizer建模。
在Prehelper.cpp中加入函数Ptr<FaceRecognizer> Recognition(vector<Mat> images, vector<int>labels,vector<Mat> testimages, vector<int> testlabels);[cpp]view plaincopyprint?1.Ptr<FaceRecognizer> Recognition(vector<Mat> images, vector<int> labels,2. vector<Mat> testimages, vector<int> testlabels)3.{4. Ptr<FaceRecognizer> model = createEigenFaceRecognizer(10);//10 Principal components5. cout<<"train"<<endl;6. model->train(images,labels);7.int i,acc=0,predict_l;8. for (i=0;i<testimages.size();i++)9. {10. predict_l = model->predict(testimages[i]);11. if(predict_l != testlabels[i])12. {13. cout<<"An error in recognition: sample "<<i+1<<", predict "<<14. predict_l<<", groundtruth "<<testlabels[i]<<endl;15. imshow("error 1",testimages[i]);16. waitKey();17. }18. else19. acc++;20. }21. cout<<"Recognition Rate: "<<acc*1.0/testimages.size()<<endl;22. return model;23.}Recognization()输出分错的样本和正确率,最后返回建模结果Ptr<FaceRecognizer> model主函数改为:[cpp]view plaincopyprint?1.int main( )2.{3. CvCapture* capture = 0;4. Mat frame, frameCopy, image;5. string inputName;6.int mode;7.8.char dir[256] = "D:\\Courses\\CV\\Face_recognition\\pic\\";9. //preprocess_trainingdata(dir,K); //face_detection and extract to file10. vector<Mat> images,testimages;11. vector<int> labels,testlabels;12. //togray, normalize and resize; load to images,labels,testimages,testlabels13. resizeandtogray(dir,K,images,labels,testimages,testlabels);14. //recognition15. Ptr<FaceRecognizer> model = Recognition(images,labels,testimages,testlabels);16.char* dirmodel = new char [256];17. strcpy(dirmodel,dir); strcat(dirmodel,"model.out");18.FILE* f = fopen(dirmodel,"w");19. fwrite(model,sizeof(model),1,f);20. system("pause");21. return 0;22.}最终结果:一个错分样本,正确率93.3%文章所用代码打包链接:/detail/abcjennifer/7047853关于Computer Vision更多的学习资料将继续更新,敬请关注本博客和新浪微博RachelZhang。