历年考研高数一真题
- 格式:docx
- 大小:225.00 KB
- 文档页数:40
考研数一真题及解析考研数学一是考研数学科目的一部分,是考研数学中的基础部分,也是很多考生备战考研的重点之一。
熟悉考研数一的真题及其解析是提高考生数学水平的重要途径。
本文将重点介绍考研数一的真题及其解析,帮助考生更好地备战考研。
一、初试真题1. 2008 年数学一真题考研数一的真题分为选择题和非选择题两部分。
选择题中包括单项选择题和多项选择题,非选择题则是需要考生展开计算、推导或证明的题目。
2. 2012 年数学一真题考研数一的真题内容主要涵盖数学分析、高等代数、概率论与数理统计、数论等多个数学学科。
考生需要具备扎实的数学基础知识和解题能力,才能顺利应对考试。
3. 2016 年数学一真题数学一考试要求考生对数学基本概念、基本原理、基本方法、基本技能进行灵活运用。
在备考期间,考生需要深入学习和掌握各种数学知识,并通过真题进行练习和巩固。
二、解析方法1. 真题解析的重要性通过对真题进行仔细分析和解析,可以帮助考生理解并掌握每个知识点的考点和解题思路。
同时,真题解析还能帮助考生总结并发现自己的薄弱环节,及时进行弥补。
2. 解题技巧解析真题时,考生应注重提高自己的解题技巧,如适当使用数学公式和定理、灵活运用数学方法、注意题目中的关键信息等。
通过不断的解析真题,考生可以提高自己的解题速度和准确性。
3. 知识的系统化整理在解析真题时,考生应注意将所学的知识进行系统化整理。
这样有助于考生在解答问题时能够将各个知识要点联系起来,形成一个完整的解题思路。
三、备考建议1. 合理安排学习时间备考考研数一需要长时间的系统性学习和练习。
考生应根据自己的实际情况合理安排学习时间,保持良好的学习节奏。
2. 制定学习计划备考过程中,考生应根据自己的时间安排和能力状况制定详细的学习计划。
合理安排每天的学习内容和任务,确保能够充分复习和巩固所学知识。
3. 做好笔记和总结备考过程中,考生应做好笔记和总结。
将重要知识点和解题思路整理成笔记,有助于备考过程中的回顾和复习。
历年考研数一真题及答案【篇一:历年考研数学一真题及答案(1987-2013)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________.(3)微分方程xy???3y??0的通解为_____________.?121?(4)已知方程组??23a?2???x1??1?x???3??1a?2???2无解,则a= ???????x3????0??_____________.(5)设两个相互独立的事件a和b都不发生的概率为19,a发生b不发生的概率与b发生a不发生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有(a)f(x)g(b)?f(b)g(x)(b)f(x)g(a)?f(a)g(x)(c)f(x)g(x)?f(b)g(b)(d)f(x)g(x)?f(a)g(a)(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有(a)??xds?4s??xdss1(b)??yds?4??xdsss1(c)??zds?4??xdsss1(d)??xyzds?4??xyzdsss1(3)设级数??un收敛,则必收敛的级数为n?1(a)??(?1)nun (b)??u2nn?1nn?1(c)??(u2n?1?u2n)n?1(d)??(un?un?1)n?1(a)e(x)?e(y)(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2(c)e(x2)?e(y2) (d)e(x2)?[e(x)]2?e(y2)?[e(y)]2三、(本题满分6分) 1求lim(2?exx??4?sinx).1?exx四、(本题满分5分) 设z?f(xy,xy)?g(xy),其中f具有二阶连续偏导数,g具有二阶连续导数,求?2z?x?y.五、(本题满分6分) 计算曲线积分i??xdy?ydxl4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有??xf(x)dydz?xyf(x)dzdx?e2xzdxdy?0,其中函数f(x)在s(0,??)内具有连续的一阶导数,且xlim?0?f(x)?1,求f(x).七、(本题满分6分)求幂级数??1xnn?13n?(?2)nn的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分) 设函数f(x)在[0,?]上连续,且???f(x)dx?0,?0f(x)cosxdx?0.试证:在(0,?)内至少存在两个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)??1000?000? 设矩阵a的伴随矩阵a*??1??1010??,且?0?308??aba?1?ba?1?3e,其中e为4阶单位矩阵,求矩阵b.十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?y??. ?n(1)求??xn?1?与??xn?的关系式并写成矩阵形?y?n?1??y?n?式:??xn?1??xn?y??a???. n?1??yn??1??是a的两个线性无关的特征向量,并求出相应的特征值.?1?(3)当??x1??2?时,求??y?????xn?1??. 1???1??yn?1??2??十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分) 设某种元件的使用寿命x的概率密度为?2e?2(x??)x??f(x;?)??x???0x1,x2,,其中??0为未知参数.又设,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)r?x2?y2?z2,则div(gradr)(1,?2,2)=_____________.(3)交换二次积分的积分次序:?01?y?1dy?2f(x,y)dx=_____________. (4)设a2?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}? _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a)(b)(c)【篇二:2000年-2016年考研数学一历年真题完整版(word版)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________. (3)微分方程xy???3y??0的通解为_____________.1??x1??1??12??????(4)已知方程组23a?2x2?3无解,则a=_____________. ????????1a?2????x3????0??(5)设两个相互独立的事件a和b都不发生的概率为生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有 (a)f(x)g(b)?f(b)g(x) (c)f(x)g(x)?f(b)g(b)(b)f(x)g(a)?f(a)g(x) (d)f(x)g(x)?f(a)g(a)1,a发生b不发生的概率与b发生a不发9(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有 (a)(c) ??xds?4??xdsss1(b)(d)??yds?4??xdsss1ss1??zds?4??xdsss1??xyzds?4??xyzds(3)设级数?un?1?n收敛,则必收敛的级数为u(a)?(?1)nnn?1n?(b)?un?1?2n(c)?(un?1?2n?1?u2n)(d)?(un?1?n?un?1)(5)设二维随机变量(x,y)服从二维正态分布,则随机变量??x?y 与 ??x?y不相关的充分必要条件为(a)e(x)?e(y)(c)e(x2)?e(y2)三、(本题满分6分)(d)e(x2)?[e(x)]2?e(y2)?[e(y)]2(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2求lim(x??2?e1?e1x4x?sinx). x四、(本题满分5分)xx?2z设z?f(xy,)?g(),其中f具有二阶连续偏导数,g具有二阶连续导数,求. yy?x?y五、(本题满分6分)计算曲线积分i?xdy?ydx??l4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有???xsx?0?(f)x?dyd(z)x?2xyfex?dzd0x,f(x)在z(0,d??x)内具有连续的一阶导数dy其中函数,且limf(x)?1,求f(x).七、(本题满分6分)八、(本题满分7分)1xn求幂级数?n的收敛区间,并讨论该区间端点处的收敛性. n3?(?2)nn?1?设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分)设函数f(x)在[0,?]上连续,且??f(x)dx?0,?f(x)cosxdx?0.试证:在(0,?)内至少存在两?个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)?10?01*?设矩阵a的伴随矩阵a??10??0?300100?0??,?1?1且aba?ba?3e,其中e为4阶单位矩阵,求0??8?矩阵b.十一、(本题满分8分)1熟练工支援其他生产部62门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第5某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?1??xn??xn?1??xn?与的关系式并写成矩阵形式:?a???????.?yn?1??yn??yn?1??yn??xn??. ?yn?(1)求??4???1??1??1??1??x1??2??xn?1?(3)当?????时,求??.y1y?1????n?1????2?十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分)?2e?2(x??)x??设某种元件的使用寿命x的概率密度为f(x;?)??,其中??0为未知参数.又设x???0x1,x2,?,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)r?x2?y2?z2,则div(gradr)(1,?2,2)= _____________.(3)交换二次积分的积分次序:?0?1dy?1?y2f(x,y)dx=_____________.2(4)设a?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}?_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a) (b)(c) (d)(2)设f(x,y)在点(0,0)的附近有定义,且fx?(0,0)?3,fy?(0,0)?1则(a)dz|(0,0)?3dx?dy(b)曲面z?f(x,y)在(0,0,f(0,0))处的法向量为{3,1,1}(c)曲线z?f(x,y)在(0,0,f(0,0))处的切向量为{1,0,3}y?0z?f(x,y)(d)曲线在(0,0,f(0,0))处的切向量为{3,0,1}y?0(3)设f(0)?0则f(x)在x=0处可导?f(1?cosh)(a)lim存在2h?0h(c)limh?0f(1?eh)(b) lim存在h?0h(d)limh?0f(h?sinh)存在h2111111111??4??1?0,b???01???1??00000000f(2h)?f(h)存在h?1?(4)设a??1?1??10??0?,则a与b 0??0?(a)合同且相似 (c)不合同但相似(b)合同但不相似 (d)不合同且不相似(5)将一枚硬币重复掷n次,以x和y分别表示正面向上和反面向上的次数, 则x和y相关系数为(a) -1 (c)(b)0 (d)11 2三、(本题满分6分)arctanex. 求?e2x四、(本题满分6分)【篇三:历年考研数学一真题及答案(1987-2015)】1987-2014 (经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?2z?11?1?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为此基底下的坐标是_____________.二、(本题满分8分) 求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)1(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中?301?a???110?,求矩阵 ?4?b.?01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处(a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极大值(c)f(x)取得极小值 (d)f(x)的导数不存在 (2)设f(x)为已知连续函数s,i?t?t0f(tx)dx,其中t?0,s?0,则i的值(a)依赖于s和t (b)依赖于s、t和x(c)依赖于t、x,不依赖于s (d)依赖于s,不依赖于t (3)设常数?k?0,则级数?(?1)nk?nn2n?1(a)发散(b)绝对收敛2(c)条件收敛(d)散敛性与k的取值有关(4)设a为n阶方阵,且a的行列式|a|?a?0,而a*六、(本题满分10分)求幂级数?a1n?1的收敛域,并求其和函数. xnn?2n?1?是a的伴随矩阵,则|a*|等于(a)a (b)1 (c)an?1七、(本题满分10分)求曲面积分i???x(8y?1)dydz?2(1?y2)dzdx?4yzdxdy,?(d)an??z?1?y?3f(x)?其中?是由曲线绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于?. ?2x?0??八、(本题满分10分)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f?(x)?1,证明在(0,1)内有且仅有一个x,使得f(x)?x.九、(本题满分8分)3问a,b为何值时,现线性方程组?x2?x3?x4?02?2x3?2x4?1x2?(a?3)x3?2x4?bx1?2x2?x3?ax4?? 1有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件a发生的概率为p,现进行n次独立试验,则a至少发生一次的概率为____________;而事件a至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量____________.4x的概率密度函数为f(x)??x2?2x?1,则x的数学期望为____________,x的方差为十一、(本题满分6分)设随机变量x,y相互独立,其概率密度函数分别为fx(x)?10?x?1,fy(y)? y?0,求z?2x?y的概率密度函数.?y其它y?05。
2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)1202x x dx -⎰=_____________.(2)曲面2222321x y z ++=在点(1,2,2)--的法线方程为_____________. (3)微分方程30xy y '''+=的通解为_____________.(4)已知方程组12312112323120x a x a x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦无解,则a = _____________.(5)设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 、()g x 是恒大于零的可导函数,且()()()()0f x g x f x g x ''-<,则当a xb <<时,有(A)()()()()f x g b f b g x > (B)()()()()f x g a f a g x >(C)()()()()f x g x f b g b >(D)()()()()f x g x f a g a >(2)设22221:(0),S x y z a z S ++=≥为S 在第一卦限中的部分,则有 (A)14SS xdS xdS =⎰⎰⎰⎰(B)14SS ydS xdS =⎰⎰⎰⎰(C)14SS zdS xdS =⎰⎰⎰⎰(D)14SS xyzdS xyzdS =⎰⎰⎰⎰(3)设级数1nn u∞=∑收敛,则必收敛的级数为(A)1(1)nn n un ∞=-∑(B)21nn u∞=∑(C)2121()n n n uu ∞-=-∑(D)11()nn n uu ∞+=+∑(4)设n 维列向量组1,,()m m n <αα 线性无关,则n 维列向量组1,,m ββ 线性无关的充分必要条件为(A)向量组1,,m αα 可由向量组1,,m ββ 线性表示 (B)向量组1,,m ββ 可由向量组1,,m αα 线性表示(C)向量组1,,m αα 与向量组1,,m ββ 等价 (D)矩阵1(,,)m =A αα 与矩阵1(,,)m =B ββ 等价(5)设二维随机变量(,)X Y 服从二维正态分布,则随机变量X Y ξ=+与 X Y η=-不相关的充分必要条件为(A)()()E X E Y =(B)2222()[()]()[()]E X E X E Y E Y -=-(C)22()()E X E Y =(D)2222()[()]()[()]E X E X E Y E Y +=+三、(本题满分6分)求142e sin lim().1exx xxx→∞+++四、(本题满分5分)设(,)()x xz f xy g y y =+,其中f 具有二阶连续偏导数,g 具有二阶连续导数,求2.z x y∂∂∂五、(本题满分6分)计算曲线积分224L xdy ydxI x y -=+⎰ ,其中L 是以点(1,0)为中心,R 为半径的圆周(1),R >取逆时针方向.六、(本题满分7分)设对于半空间0x >内任意的光滑有向封闭曲面,S 都有2()()e 0,x Sxf x dydz xyf x dzdx zdxdy --=⎰⎰其中函数()f x 在(0,)+∞内具有连续的一阶导数,且0lim ()1,x f x +→=求()f x .七、(本题满分6分) 求幂级数113(2)nn nn x n ∞=+-∑的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为R 的球体0,P 是此球的表面上的一个定点,球体上任一点的密度与该点到0P 距离的平方成正比(比例常数0k >),求球体的重心位置.九、(本题满分6分)设函数()f x 在[0,]π上连续,且()0,()cos 0.f x dx f x xdx ππ==⎰⎰试证:在(0,)π内至少存在两个不同的点12,,ξξ使12()()0.f f ξξ==十、(本题满分6分)设矩阵A 的伴随矩阵*10000100,10100308⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦A 且113--=+ABA BA E ,其中E 为4阶单位矩阵,求矩阵B .十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n 年1月份统计的熟练工与非熟练工所占百分比分别为n x 和,n y 记成向量.n n x y ⎛⎫ ⎪⎝⎭(1)求11n n x y ++⎛⎫ ⎪⎝⎭与n n x y ⎛⎫ ⎪⎝⎭的关系式并写成矩阵形式:11.n n n n x x y y ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A(2)验证1241,11-⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭ηη是A 的两个线性无关的特征向量,并求出相应的特征值.(3)当111212x y ⎛⎫⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭时,求11.n n x y ++⎛⎫ ⎪⎝⎭十二、(本题满分8分)某流水线上每个产品不合格的概率为(01)p p <<,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X ,求X 的数学期望()E X 和方差()D X .十三、(本题满分6分)设某种元件的使用寿命X 的概率密度为2()2e (;)0x x f x x θθθθ-->⎧=⎨≤⎩,其中0θ>为未知参数.又设12,,,n x x x 是X 的一组样本观测值,求参数θ的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设e (sin cos )(,x y a x b x a b =+为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)222z y x r ++=,则(1,2,2)div(grad )r -= _____________.(3)交换二次积分的积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设24+-=A A E O ,则1(2)--A E = _____________.(5)()2D X =,则根据车贝晓夫不等式有估计≤≥-}2)({X E X P _____________. 二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数)(x f 在定义域内可导,)(x f y =的图形如右图所示,则)(x f y '=的图形为(A) (B)(C) (D)(2)设),(y x f 在点(0,0)的附近有定义,且1)0,0(,3)0,0(='='y x f f 则 (A)(0,0)|3dz dx dy =+(B)曲面),(y x f z =在(0,0,(0,0))f 处的法向量为{3,1,1}(C)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{1,0,3}(D)曲线(,)0z f x y y ==在(0,0,(0,0))f 处的切向量为{3,0,1}(3)设0)0(=f 则)(x f 在x =0处可导⇔(A)20(1cos )lim h f h h→-存在(B) 0(1e )lim h h f h→-存在(C)2(sin )limh f h h h →-存在(D)hh f h f h )()2(lim-→存在(4)设1111400011110000,11110000111100⎛⎫⎛⎫⎪ ⎪⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A B ,则A 与B (A)合同且相似 (B)合同但不相似 (C)不合同但相似(D)不合同且不相似(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数, 则X 和Y 相关系数为(A) -1 (B)0(C)12(D)1三、(本题满分6分)求2arctan e e xxdx ⎰.四、(本题满分6分) 设函数),(y x f z =在点(1可微,且3)1,1(,2)1,1(,1)1,1(='='=y x f f f ,)),(,()(x x f x f x =ϕ,求13)(=x x dxd ϕ.五、(本题满分8分)设()f x = 21a r c t a n 010x x x x x +≠=,将)(x f 展开成x 的幂级数,并求∑∞=--1241)1(n n n的和.六、(本题满分7分) 计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰ ,其中L 是平面 2=++z y x 与柱面1=+y x 的交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f .证明:(1)对于)1,0()0,1( -∈∀x ,存在惟一的)1,0()(∈x θ,使 )(x f =)0(f +))((x x f x θ'成立.(2)5.0)(lim 0=→x x θ.八、(本题满分8分)设有一高度为t t h )((为时间)的雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(系数为0.9),问高度为130厘米的雪堆全部融化需多少时间?九、(本题满分6分)设12,,,s ααα 为线性方程组=AX O 的一个基础解系,1112221223121,,,s s t t t t t t =+=+=+βααβααβαα ,其中21,t t 为实常数,试问21,t t 满足什么条件时12,,,s βββ 也为=AX O 的一个基础解系?十、(本题满分8分)已知三阶矩阵A 和三维向量x ,使得2,,A A x x x 线性无关,且满足3232=-A A A x x x .(1)记2(,,),=P A A x x x 求B 使1-=A PBP . (2)计算行列式+A E .十一、(本题满分7分)设某班车起点站上客人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p <<且中途下车与否相互独立.Y 为中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率. (2)二维随机变量(,)X Y 的概率分布.十二、(本题满分7分)设2~(,)X N μσ抽取简单随机样本122,,,(2),n X X X n ≥样本均值∑==ni i X n X 2121,∑=+-+=ni i n i X X X Y 12)2(,求().E Y2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.(2)已知2e 610y xy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒① (B)③⇒②⇒① (C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim =∞→n n u n ,则级数)11()1(11+++-∑n n n u u 为(A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(l i m ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数 (C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.三、(本题满分6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(本题满分7分) 已知两曲线)(x f y =与2arctan 0e x t y dt -=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分22max{,}e x y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y yx dx xy f y y I ]1)([)](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数∑∞==03)!3()(n nn x x y (+∞<<∞-x )满足微分方程e x y y y '''++=.(2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为()f x = 1c o s 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体X 的概率分布为X0 1 2 3P2θ)1(2θθ-2θθ21-其中θ(102θ<<)是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(cos lim x x x +→ = .(2)曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 . (5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立 (B)n n c b <对任意n 成立 (C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim 2220,0=+-→→y x xyy x f y x ,则 (A)点(0,0)不是(,)f x y 的极值点 (B)点(0,0)是(,)f x y 的极大值点 (C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点 (4)设向量组I:12,,,r ααα 可由向量组II:12,,,s βββ 线性表示,则 (A)当s r <时,向量组II 必线性相关 (B)当s r>时,向量组II 必线性相关(C)当s r <时,向量组I 必线性相关(D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题: ① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是 (A)①② (B)①③(C)②④(D)③④(6)设随机变量21),1)((~XY n n t X =>,则 (A)2~()Y n χ (B)2~(1)Y n χ-(C)~(,1)Y F n(D)~(1,)Y F n三、(本题满分10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V .四、(本题满分12分)将函数x x x f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n nn 的和.五 、(本题满分10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证: (1)sin sin sin sin ee e e yx y xLLx dy y dx x dy y dx ---=-⎰⎰ .(2)sin sin 2e e 2.y x Lx dy y dx π--≥⎰六 、(本题满分10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深? (2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(本题满分12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dyx d 变换为()y y x =满足的微分方程.(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解.八 、(本题满分12分) 设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九 、(本题满分10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(本题满分8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(本题满分8分) 设总体X 的概率密度为()f x =2()2e 0x θ--x x θ>≤其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1)求总体X 的分布函数()F x . (2)求统计量θˆ的分布函数)(ˆx F θ.(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=ttydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f -(D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110(12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σnn Y X D +=+(D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时)(17)(本题满分12分) 计算曲面积分,)1(322233d x d y z d z d x y d y d z x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1n n x α∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,n n n a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点(D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数(B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222xu y x u ∂∂=∂∂∂(10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z = (11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ(C)01=λ(D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为X Y0 1 0 0.4a 1b0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b ==(D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n(B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明: (1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx yφ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx y φ+=+⎰.(2)求函数)(y ϕ的表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =10 01,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-. (2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)22120(,)x xdx f x y dy -⎰⎰(B)22120(,)x dx f x y dy -⎰⎰(C)22120(,)y ydy f x y dx -⎰⎰(C)22120(,)y dy f x y dx -⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性相关 (B)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性无关(C)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性相关 (D)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A >(B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. (16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x 的幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且()22z fx y =+满足等式22220z zx y∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u 的表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰ .(20)(本题满分9分)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解. (21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X 的概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.2007年全国硕士研究生入学统一考试数学(一)试卷一、选择题(本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当0x +→时,与x 等价的无穷小量是(A)1ex-(B)1ln1xx+-(C)11x +-(D)1cos x -(2)曲线1ln(1e )x y x=++,渐近线的条数为 (A)0 (B)1 (C)2(D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设()()xF x f t dt =⎰.则下列结论正确的是(A)3(3)(2)4F F =-- (B)5(3)(2)4F F =(C)3(3)(2)4F F =(D)5(3)(2)4F F =--(4)设函数()f x 在0x =处连续,下列命题错误的是 (A)若0()limx f x x→存在,则(0)0f =(B)若0()()limx f x f x x→+- 存在,则(0)0f =(C)若0()limx f x x→ 存在,则(0)0f '=(D)若0()()limx f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,n u f n n == 则下列结论正确的是(A)若12u u >,则{n u }必收敛(B)若12u u >,则{n u }必发散(C)若12u u <,则{n u }必收敛(D)若12u u <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是(A)(,)x y dx Γ⎰(B)(,)f x y dy Γ⎰(C)(,)f x y ds Γ⎰(D)'(,)'(,)x y f x y dx f x y dy Γ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是 (A),,122331---αααααα (B),,122331+++αααααα (C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,100010000⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则A 与B(A)合同,且相似(B)合同,但不相似 (C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p -(B)26(1)p p -(C)223(1)p p -(D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)XYf x y 为(A)()X f x(B)()Y f y(C)()X f x ()Y f y (D)()()X Y f x f y二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______.(12)设(,)f u v 为二元可微函数,(,)y x z f x y =,则zx∂∂=______. (13)二阶常系数非齐次线性方程2''4'32e x y y y -+=的通解为y =____________. (14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰=_____________.(15)设矩阵01000010********⎛⎫⎪⎪= ⎪⎪⎝⎭A ,则3A 的秩为________.(16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________.三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤) (17)(本题满分11分)求函数 2222(,)2f x y x y x y =+-在区域22{(,)|4,0}D x y x y y =+≤≥上的最大值和最小值.(18)(本题满分10分) 计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中∑为曲面221(01)4y z x z =--≤≤的上侧.(19)(本题满分11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=. (20)(本题满分10分) 设幂级数nn n a x∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0) 1.y xy y y y ''''--===(1)证明:22,1,2,.1n n a a n n +==+ (2)求()y x 的表达式. (21)(本题满分11分)设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321,x x x a ++=-有公共解,求a 的值及所有公共解. (22)(本题满分11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)T λλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B A A E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(本题满分11分)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他 (1)求{2}.P X Y >(2)求Z X Y =+的概率密度. (24)(本题满分11分)设总体X 的概率密度为1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他12,,n X X X 是来自总体x 的简单随机样本,X 是样本均值(1)求参数θ的矩估计量ˆθ.(2)判断24X 是否为2θ的无偏估计量,并说明理由.。
历年考研数学一真题1987-2014(经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x =_____________时,函数2x y x =⋅取得极小值. (2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+2z t=+及121111x y z +++==都平行且过原点的平面方程为_____________. (4)设L为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰= _____________.(5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x∂∂∂∂ (2)设矩阵A和B满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处(A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值(C)()f x 取得极小值 (D)()f x 的导数不存在 (2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x(C)依赖于t 、x ,不依赖于s (D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)n n k n n∞=+-∑(A)发散 (B)绝对收敛(C)条件收敛 (D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于(A)a (B)1a(C)1n a - (D)na六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量X 的概率密度函数为221(),xx f x-+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y- 00y y >≤, 求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域.(3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上)(1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是(A)与x ∆等价的无穷小 (B)与x∆同阶的无穷小(C)比x ∆低阶的无穷小 (D)比x∆高阶的无穷小 (2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处(A)取得极大值 (B)取得极小值(C)某邻域内单调增加 (D)某邻域内单调减少 (3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则(A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处(A)条件收敛 (B)绝对收敛(C)发散 (D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤ααα线性无关的充要条件是(A)存在一组不全为零的数12,,,,s k k k 使11220s s k k k +++≠ααα(B)12,,,s ααα中任意两个向量均线性无关(C)12,,,s ααα中存在一个向量不能用其余向量线性表示(D)12,,,s ααα中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x y u yf xg yx=+其中函数f 、g 具有二阶连续导数,求222.u u x y x x y∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,x y y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x =六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M 沿直线y =(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y (2)求一个满足1-=P AP B的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分) 设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =-的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________. (2)设()f x 是连续函数,且10()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lxy ds +⎰=_____________.(4)向量场div u在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1sin y x x=(A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线 (D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是(A)(1,1,2)- (B)(1,1,2)- (C)(1,1,2) (D)(1,1,2)-- (3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是(A)11223c y c y y ++ (B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +--- (D)1122123(1)c y c y c c y ++-- (4)设函数2(),01,f x x x =≤<而1()sin ,,n n S x b n x x π∞==-∞<<+∞∑其中12()sin ,1,2,3,,n b f x n xdx n π==⎰则1()2S -等于(A)12- (B)14-(C)14(D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例(C)必有一列向量是其余列向量的线性组合 (D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y∂∂∂ (2)设曲线积分2()c xy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分)将函数1()arctan 1x f x x+=-展为x 的幂级数.五、(本题满分7分)设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln exx π=-⎰在区间(0,)+∞内有且仅有两个不同实根.七、(本题满分6分)问λ为何值时,线性方程组13x x λ+= 123422x x x λ++=+1236423x x x λ++=+有解,并求出解的一般形式. 八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值.(2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件AB的概率()P AB =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y服从标准正态分布.试求随的概率密度函数.机变量23Z X Y=-+1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线 34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim()x x x a x a→∞+-=_____________.(3)设函数()f x =111x x ≤>,则[()]f f x =_____________.(4)积分2220e y x dx dy -⎰⎰的值等于_____________. (5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xx F x f t dt -=⎰则()F x '等于 (A)e (e )()x x f f x ---- (B)e (e )()x x f f x ---+(C)e (e )()x x f f x --- (D)e (e )()x x f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x + (B)1[()]n n f x +(C)2[()]n f x (D)2![()]n n f x(3)设a 为常数,则级数21sin()[n na n∞=∑(A)绝对收敛 (B)条件收敛(C)发散 (D)收敛性与a 的取值有关 (4)已知()f x 在x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x (A)不可导 (B)可导,且(0)0f '≠(C)取得极大值 (D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα (C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分) (1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e x y y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数0(21)n n n x ∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分) 设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分) 求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分) 质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞ 则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设 21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1ex x y --+=-(A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线 (D)既有水平渐近线又有铅直渐近线 (2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)eln 2x(B)2eln 2x(C)e ln 2x+(D)2eln 2x+(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7 (C)8 (D)9 (4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰ (B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰ (D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E(C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20lim .x π+→(2)设n 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220y z x ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分) 设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分) 已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y的密度函数为(,) f x y=(2)2e 0,0 0x y x y-+>>其它求随机变量2Z X Y=+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设函数()y y x=由方程e cos()0x y xy++=确定,则dydx=_____________.(2)函数222ln()u x y z=++在点(1,2,2)M-处的梯度gradMu=_____________.(3)设()f x=211x-+xxππ-<≤<≤,则其以2π为周期的傅里叶级数在点xπ处收敛于_____________.(4)微分方程tan cosy y x x'+=的通解为y=_____________.(5)设111212121212,nnn n n na b a b a ba b a b a ba b a b a b⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A其中0,0,(1,2,,).i ia b i n≠≠=则矩阵A的秩()r A=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x→时,函数1211e1xxx---的极限(A)等于2 (B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos)(nn a n∞=--∑常数0)a>(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与a有关(3)在曲线23,,x t y t z t==-=的所有切线中,与平面24x y z++=平行的切线(A)只有1条(B)只有2条(C)至少有3条(D)不存在(4)设32()3,f x x x x=+则使()(0)nf存在的最高阶数n为(A)0 (B)1(C)2 (D)3(5)要使12100,121⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX0的解,只要系数矩阵A为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分) (1)求x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.zx y∂∂∂ (3)设()f x= 21exx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e x y y y -'''+-=的通解.五、(本题满分8分) 计算曲面积分323232()()(),xaz dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分) 设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzizxj xyk=++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β (1)将β用123,,ξξξ线性表出. (2)求(n n A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X E X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)x F x dt x =>⎰的单调减少区间为_____________.(2)2232120x y z +==绕y轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为1(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小(C)高阶无穷小 (D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰ (B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π (B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x L f t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x--(B)e e 2x x--(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1 (B)6t =时P的秩必为2(C)6t ≠时P 的秩必为1 (D)6t ≠时P的秩必为2三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sin cos ).x x x x→∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.ba ab >七、(本题满分8分) 已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分) 设随机变量X的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X与X的协方差,并问X与X是否不相关?(3)问X与X是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)011lim cot ()sin x x x π→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________. (3)设e sin ,xxu y-=则2ux y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件 (3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c = (D)4a c =- (5)已知向量组1234,,,αααα线性无关,则向量组1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011lim cot ()sin x x xπ→-= _____________.(2)曲面e 23x z xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________. (5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则nA =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M << (B)MP N<<(C)N MP <<(D)P MN<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件 (D)既非充分条件又非必要条件 (3)设常数0,λ>且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散 (B)条件收敛(C)绝对收敛 (D)收敛性与λ有关 (4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =-(C)4a c = (D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设 2221cos()cos()t x t y t t udu ==-⎰,求dy dx 、22d y dx 在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数. (3)求.sin(2)2sin dxx x+⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdyx y z +++⎰⎰其中S是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分) 设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim 0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=AA 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分) 设随机变量X和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+(1)求Z 的数学期望EZ 和DZ 方差. (2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx ⎰= _____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R=_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π (D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x在0x =处可导的(A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件 (4)设(1)ln(1n n u =-则级数 (A)1n n u ∞=∑与21nn u ∞=∑都收敛 (B)1n n u ∞=∑与21nn u ∞=∑都发散(C)1n n u ∞=∑收敛,而21nn u ∞=∑发散 (D)1n n u ∞=∑收敛,而21nn u ∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B (D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.z ϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求110()().x dx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)L xydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分) 假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥= 则{max(,)0}P X Y ≥=____________.十一、(本题满分6分) 设随机变量X 的概率密度为()X f x = e 0x- 00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设2lim()8,x x x a x a →∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e x y y y '''-+=的通解为_____________. (4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1 (D)2 (2)设()f x 具有二阶连续导数,且()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值 (C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >=且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a nλ∞=-∑(A)绝对收敛 (B)条件收敛(C)发散 (D)散敛性与λ有关 (4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式1122334400000000a b a b a b b a 的值等于 (A)12341234a a a a b b b b - (B)12341234a a a a b b b b +(C)12123434()()a a b b a a b b -- (D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数. (2)设1110,1,2,),n x x n +===试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay=-=+可把方程2222260z z zx x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.。
考研数学一(高等数学)历年真题试卷汇编24(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(89年)设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y”+p(x)y’+q(x)y=f(x)的解,c1,c2是任意常数,则该非齐次方程的通解是A.c1y1+c2y2+y3B.c1y1+c2y2一(c1+c2)y3C.c1y1+c2y2一(1一c1一c2)y3D.c1y1+c2y2+(1一c1一c2)y3正确答案:D解析:由于(D)中的y=C1y1+C2y2+(1一C1一C2)y3=C1(y1—y3)+C2(y2—y3)+y3其中y1一y3和y2一y3是对应的齐次方程的两个解,且y1一y3与y2—y3线性无关.事实上,若令A(y1一y3)+B(y2—y3)=0即Ay1+By2一(A+B)y3=0由于y1,y2,y3线性无关,则A=0,B=0,一(A+B)=0.因此y1—y3与y2一y3线性无关,故y=C1y1+C2y2+(1一C1一C2)y3是原方程通解.知识模块:高等数学2.(91年)若连续函数f(x)满足关系式f(x)=+ln2,则f(x)等于A.exln2B.e2xln2C.ex+ln2D.e2x+ln2正确答案:B解析:等式f(x)=+ln2两边求导得f’(x)=2f(x)解此方程得f(x)=Ce2x由原方程可知f(0)=ln2,代入f(x)=Ce2x得C=ln2.故f(x)=e2xln2 知识模块:高等数学3.(93年)设曲线积分∫L[f(x)一ex]sinydx-f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于A.B.C.D.正确答案:B解析:f’(x)+f(x)=ex 知识模块:高等数学4.(98年)已知函数y=y(x)在任意点x处的增量.且当△x→0时,α是△x 的高阶无穷小,y(0)=π,则y(1)等于A.2πB.πC.D.正确答案:D解析:由于,且当△x→0时,α是△x的高阶无穷小,由微分的定义可知两边积分得ln|y|=arctanx+C1,y=Cearetanx由y(0)=π知,C=π,于是知识模块:高等数学填空题5.(92年)微分方程y’+ytanx=cosx的通解为y=_________.正确答案:(x+c)cosx.解析:由线性方程通解公式得y=e-∫p(x)dx[∫Q(x)e∫p(x)dxdx+C]=e-∫tanxdx[∫cosx.e∫tanxdxdx+C]=cosx(x+C) 知识模块:高等数学6.(96年)微分方程y”一2y’+2y=ex的通解为_____.正确答案:y=ex(C1cosx+C2sinx+1)解析:特征方程为λ2一2λ+2=0,解得λ1,2=1±i,则齐次方程通解为y=ex(C1cosx+C2sinx)易观察出y=ex是非齐次方程的一个特解.则原方程通解为y=ex(C1cosx+C2sinx)+ex 知识模块:高等数学7.(99年)y”一4y=e2x的通解为y=________.正确答案:C1e-2x+C2e2x+解析:特征方程为λ2一4=0,则λ1=一2,λ2=2,从而齐次方程的解为由于λ=2为特征方程单根,则非齐次待定特解可设为y*=Axe2x代入原方程得故所求通解为知识模块:高等数学8.(00年)微分方程xy”+3y’=0的通解为_______.正确答案:解析:令y’=p,则y”=p’,代入原方程得知识模块:高等数学9.(01年)设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________.正确答案:y”一2y’+2y=0.解析:所求方程的特征根为λ1,2=1+i则其特征方程为λ2一2λ+2=0故所求方程为y”一2y’+2y=0 知识模块:高等数学10.(02年)微分方程yy”+y’2=0满足初始条件的特解是_______.正确答案:y2=x+1或解析:知识模块:高等数学11.(04年)欧拉方程(x>0)的通解为______.正确答案:解析:令x=et 代入原方程所得新方程的特征方程为ρ(ρ一1)+4ρ+2=0 解得ρ1=1,ρ2=一2则新方程通解为y=C1e-t+C2e-2t,将x=et代入得原方程通解为知识模块:高等数学12.(05年)微分方程xy’+2y=xlnx满足y(1)=的解为______.正确答案:解析:方程xy’+2y=xlnx是一阶线性方程,方程两端同除以x得:则通解为知识模块:高等数学解答题解答应写出文字说明、证明过程或演算步骤。
考研数学一(高等数学)-试卷11(总分62, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设,则g[f(x)]为SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 2答案:D2.当x→0时,变量是SSS_SINGLE_SELA 无穷小.B 无穷大.C 有界的,但不是无穷小.D 无界的,但不是无穷大.该题您未回答:х该问题分值: 2答案:D3.设数列xn 与yn满足,则下列断言正确的是SSS_SINGLE_SELA若xn 发散,则yn必发散.B若xn 无界,则yn必无界.C若xn 有界,则yn必为无穷小.D若为无穷小,则yn必为无穷小.该题您未回答:х该问题分值: 2答案:D4.设f(x)=2 x +3 x一2,则当x→0时SSS_SINGLE_SELA f(x)与x是等价无穷小.B f(x)与x是同阶但非等价无穷小.C f(x)是比x较高阶的无穷小.D f(x)是比x较低阶的无穷小.该题您未回答:х该问题分值: 2答案:B5.设x→0时,e tanx一e x是与x n同阶的无穷小,则n为SSS_SINGLE_SELA 1B 2C 3D 4该题您未回答:х该问题分值: 2答案:C6.设对任意的x,总有φ(x)≤f(x)≤g(x),且lim[g(x)一φ(x)]=0,则SSS_SINGLE_SELA 存在且一定等于零.B 存在但不一定为零.C 一定不存在.D 不一定存在.该题您未回答:х该问题分值: 2答案:D7.设函数在(一∞,+∞)内连续,且=0,则常数a,b满足SSS_SINGLE_SELA a<0,b<0.B a>0,b>0.C a≤0,b>0.D a≥0,b<0.该题您未回答:х该问题分值: 2答案:D8.设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则SSS_SINGLE_SELA φ[f(x)]必有间断点.B[φ(x)] 2必有间断点.C f[φ(x)]必有间断点.D 必有间断点.该题您未回答:х该问题分值: 2答案:D9.设函数f(x)=,讨论函数f(x)的间断点,其结论为SSS_SINGLE_SELA 不存在间断点.B 存在间断点x=1.C 存在间断点x=0.D 存在间断点x=一1.该题您未回答:х该问题分值: 2答案:B2. 填空题1.已知f(x)=sinx,f[φ(x)]=1一x 2,则φ(x)=___________的定义域为_____________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:arcsin(1一x 2 ),2.=__________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:3.设函数f(x)=a x (a>0,a≠1),则=_____________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:4.=____________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:5.=____________SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:26.若f(x)=____________在(一∞,+∞)上连续,则a=___________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:一23. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
考研数学一(高等数学)历年真题试卷汇编25(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(08年)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是A.y”‘+y”一4y’一4y=0.B.y”‘+y”+4y’+4y=0.C.y”‘一y”一4y’+4y=0.D.y”‘一y”+4y’一4y=0.正确答案:D解析:由原题设知所求方程的特征方程的根为ρ1=1,ρ2,3=±2i则其特征方程为(ρ一1)(ρ2+4)=0,故所求方程应为y”‘一y”+4y’一4y=0故(D).知识模块:高等数学2.(15年)设y=是二阶常系数非齐次线性微分方程y”+ay’+by=cex的一个特解,则A.a=一3,b=2,c=一1.B.a=3,b=2,c=一1.C.a=一3,b=2,c=1.D.a=3,b=2,c=1.正确答案:A解析:由是方程y”+ay’+by=cex的一个特解可知,y1=e2x,y2=ex是齐次方程的两个线性无关的解,y*=xex是非齐次方程的一个解.1和2是齐次方程的特征方程的两个根,特征方程为(ρ一1)(ρ一2)=0即ρ2—3ρ+2=0则a=一3,b=2将y=xex代入方程y”一3y’+2y=cex得c=一1.故(A).知识模块:高等数学3.(16年)若y=(1+x2)2一是微分方程y’+p(x)y=q(x)的两个解,则q(x)= A.3x(1+x2).B.一3x(1+x2).C.D.正确答案:A解析:利用线性微分方程解的性质与结构.由是微分程y’+p(x)y=q(x)的两个解,知y1=y2是y’+p(x)y=0的解.故(y1—y2)’+p(x)(y1一y2)=0,即从而得p(x)=又是微分方程y’+p(x)y=q(x)的解,代入方程,有[(1+x2)2]’+p(x)(1+x2)2=q(x),解得q(x)=3x(1+x2).因此(A).知识模块:高等数学4.(96年)4阶行列式的值等于A.a1a2a3a4一b1b2b3b4B.a1a2a3a4+b1b2b3b4C.(a1a2-b1b2)(a3a4-b3b4)D.(a2a3一b2b3)(a1a4一b1b4)正确答案:D解析:按第1行展开所求行列式D4,得=(a2a3一b2b3)(a1a4一b1b4).知识模块:线性代数5.(14年)行列式A.(ad—bc)2B.一(ad—bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:按第1列展开,得所求行列式D等于=一ad(ad一bc)+be(ad一bc)=一(ad一bc)2 知识模块:线性代数6.(87年)设A为n阶方阵,且A的行列式|A|=a≠0,而A*是A的伴随矩阵,则|A*|等于A.aB.C.an+1D.an正确答案:C解析:由AA*=|A|E两端取行列式,得|A||A*|=|A|n,因|A|=a≠0,得|A*|=|A|n-1=an-1.知识模块:线性代数7.(91年)设n阶方程A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有A.ACB=EB.CBA=EC.BAC=ED.BCA=E正确答案:D解析:因为ABC=E,即A(BC)=E,故方阵A与BC互为逆矩阵,从而有(BC)A=E,即BCA=E.知识模块:线性代数填空题8.(06年)微分方程的通解是______.正确答案:y=Cxe-x.解析:ln|y|=ln|x|—x=ln|x|+lne-x=ln|x|e-x则y=Cxe-x.知识模块:高等数学9.(07年)二阶常系数非齐次线性微分方程y”一4y’+3y=2e2x的通解为y=________.正确答案:y=C1e2+C2e3x一2e2x.解析:齐次方程特征方程为ρ2—4ρ+3=0解得ρ1=1,ρ2=3,则齐次方程通解为y=C1ex+C2e3x设非齐方程特解为代入原方程得A=一2,则原方程通解为y=C1ex+C2e3x一2e2x 知识模块:高等数学10.(08年)微分方程xy’+y=0满足条件y(1)=1的解是y=______.正确答案:解析:方程xy’+y=0是一个变量可分离方程,原方程可改写为知识模块:高等数学11.(09年)若二阶常系数线性齐次微分方程y”+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y”+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_______.正确答案:y=一xex+x+2.解析:由于y=(C1+C2x)ex是方程y”+ay’+by=0的通解,则该方程的两个特征根为λ1=λ2=1,故a=一2,b=1.设非齐次方程y”一2y’+y=x的特解为y’=Ax+B代入方程得A=1,B=2,则其通解为y=(C1+C2x)ex+x+2由y(0)=2,y’(0)=0得,C1=0,C2=一1.所以y=一xex+x+2 知识模块:高等数学12.(11年)微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=______.正确答案:e-xsinx.解析:由一阶线性方程的通解公式得y=e-∫dx[∫e-xcosx.e∫dxdx+C]=e-x[∫cosxdx+C]=e-x[sinx+C]由y(0)=0知,C=0,则y=e-xsinx 知识模块:高等数学13.(12年)若函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2ex,则f(x)=_______。
1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t =-+(1)过点(1,21)M -且与直线34y t =-垂直的平面方程是_____________.1z t =-(2)设a 为非零常数,则lim(xx x a x a→∞+-=_____________.(3)设函数()f x =1011x x ≤>,则[()]f f x =_____________.(4)积分222e y xdx dy -⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,且e ()(),xxF x f t dt -=⎰则()F x '等于(A)e (e )()xx f f x ----(B)e (e )()xx f f x ---+(C)e(e )()x x f f x ---(D)e(e )()xx f f x --+(2)已知函数()f x 具有任意阶导数,且2()[()],f x f x '=则当n 为大于2的正整数时,()f x 的n 阶导数()()n f x 是(A)1![()]n n f x +(B)1[()]n n f x +(C)2[()]nf x (D)2![()]nn f x (3)设a 为常数,则级数21sin()[n na n ∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a 的取值有关(4)已知()f x 在0x =的某个邻域内连续,且0()(0)0,lim2,1cos x f x f x→==-则在点0x =处()f x(A)不可导(B)可导,且(0)0f '≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b 的两个不同的解1,α、2α是对应其次线性方程组=AX 0的基础解析1,k 、2k 为任意常数,则方程组=AX b 的通解(一般解)必是(A)1211212()2k k -+++ββααα(B)1211212()2k k ++-+ββααα(C)1211212()2k k -+++ββαββ(D)1211212()2k k ++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求120ln(1).(2)x dx x +-⎰(2)设(2,sin ),z f x y y x =-其中(,)f u v 具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分)求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分)求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'>七、(本题满分6分)设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A 八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F 作用(见图).F的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -=== 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d y dx =_____________.(2)由方程xyz +=所确定的函数(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________.(4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线221e 1e x xy --+=-(A)没有渐近线(B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于(A)e ln 2x(B)2e ln 2x(C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3(B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy⎰⎰(B)12D xydxdy⎰⎰(C)14(cos sin )D xy x y dxdy+⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有(A)=ACB E (B)=CBA E (C)=BAC E(D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求2lim .x π+→(2)设n是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =在点P 处沿方向n 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和.六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β(1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设函数()y y x =由方程e cos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu=_____________.(3)设()f x =211x-+00x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A 其中0,0,(1,2,,).i ia b i n ≠≠= 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限(A)等于2(B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos nn a n ∞=--∑常数0)a >(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线(A)只有1条(B)只有2条(C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f 存在的最高阶数n 为(A)0(B)1(C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求0x x →(2)设22(e sin ,),x z f y x y =+其中f 具有二阶连续偏导数,求2.z x y∂∂∂(3)设()f x =21ex x -+00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分)求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =的上侧.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问:(1)1α能否由23,αα线性表出?证明你的结论.(2)(2)4α能否由123,,ααα线性表出?证明你的结论.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出.(2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________.(4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小(B)同价但非等价的无穷小(C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为(A)6π(B)4π(C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x -+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则(A)6t =时P 的秩必为1(B)6t =时P 的秩必为2(C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分)(1)求21lim(sincos ).x x x x →∞+(2)求.x dx (3)求微分方程22,x y xy y '+=满足初始条件11x y==的特解.四、(本题满分6分)计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰ 其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分)(1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点.(2)设,b a e >>证明.baa b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞(1)求X 的数学期望EX 和方差.DX (2)求X 与X 的协方差,并问X 与X 是否不相关?(3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011lim cot ()sin x x xπ→-=_____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xxu y-=则2u x y ∂∂∂在点1(2,π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有(A)N P M<<(B)M P N <<(C)N M P <<(D)P M N<<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的(A)充分条件而非必要条件(B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛(C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e-→+-=-+-其中220,a c +≠则必有(A)4b d =(B)4b d =-(C)4a c=(D)4a c=-(5)已知向量组1234,,,αααα线性无关,则向量组(A)12233441,,,++++αααααααα线性无关(B)12233441,,,----αααααααα线性无关(C)12233441,,,+++-αααααααα线性无关(D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu ==-⎰,求dy dx 、22d y dx在t =的值.(2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222S xdydz z dxdyx y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim0,x f x x→=证明级数11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +-(1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为X 01P1212则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X YZ =+(1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ(3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰=_____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn n ∞-=+-∑的收敛半径R =_____________.(5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π(B)在π上(C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是(A)(1)(0)(1)(0)f f f f ''>>-(B)(1)(1)(0)(0)f f f f ''>->(C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的(A)充分必要条件(B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-+则级数(A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散(D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分)(1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx (2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y 七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f fg g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I 十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x =e 0x -00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________.(3)微分方程22e xy y y '''-+=的通解为_____________.(4)函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于(A)-1(B)0(C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则(A)(0)f 是()f x 的极大值(B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点(3)设0(1,2,),n a n >= 且1n n a ∞=∑收敛,常数(0,2πλ∈则级数21(1)(tan nnn n a n λ∞=-∑(A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与kx 是同阶无穷小,则k 等于(A)1(B)2(C)3(D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a ab b b b -(B)12341234a a a ab b b b +(C)12123434()()a ab b a a b b --(D)23231414()()a ab b a a b b --三、(本题共2小题,每小题5分,满分10分)(1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.(2)设1110,1,2,),n x x n +=== 试证数列{}n x 极限存在,并求此极限.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z xy x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a 五、(本题满分7分)求级数211(1)2n n n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2bf c a '≤+八、(本题满分6分)设,TA =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明(1)2=A A 的充分条件是 1.T=ξξ(2)当1T=ξξ时,A 是不可逆矩阵.九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2,(1)求参数c 及此二次型对应矩阵的特征值.(2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ===又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:XY123123(2)求随机变量X 的数学期望().E X1997年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2013sin coslim(1cos )ln(1)x x x x x x →+++=_____________.(2)设幂级数1nnn a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为_____________.(3)对数螺线e θρ=在点2(,)(e ,)2ππρθ=处切线的直角坐标方程为_____________.(4)设12243,311t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦A B 为三阶非零矩阵,且,=AB O 则t =_____________.(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)二元函数(,)f x y =22(,)(0,0)0(,)(0,0)xyx y x y x y ≠+=,在点(0,0)处(A)连续,偏导数存在(B)连续,偏导数不存在(C)不连续,偏导数存在(D)连续,偏导数不存在(2)设在区间[,]a b 上()0,()0,()0.f x f x f x '''><>令1231(),()(),[()()](),2ba S f x dx S fb b a S f a f b b a ==-=+-⎰则(A)123S S S <<(B)213S S S <<(C)312S S S <<(D)231S S S <<(3)设2sin ()e sin ,x t xF x tdt π+=⎰则()F x (A)为正常数(B)为负常数(C)恒为零(D)不为常数(4)设111122232333,,,a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ααα则三条直线1112223330,0,0a x b y c a x b y c a x b y c ++=++=++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是:(A)123,,ααα线性相关(B)123,,ααα线性无关(C)秩123(,,)r =ααα秩12(,)r αα(D)123,,ααα线性相关12,,αα线性无关(5)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是(A)8(B)16(C)28(D)44三、(本题共3小题,每小题5分,满分15分)(1)计算22(),I xy dv Ω=+⎰⎰⎰其中Ω为平面曲线220y zx ==绕z 轴旋转一周所成的曲面与平面8z =所围成的区域.(2)计算曲线积分()()(),cz y dx x z dy x y dz -+-+-⎰ 其中c 是曲线2212x y x y z +=-+=从z轴正向往z 轴负向看c 的方向是顺时针的.(3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为,N 在0t =时刻已掌握新技术的人数为0,x 在任意时刻t 已掌握新技术的人数为()(x t 将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求().x t 四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分)(1)设直线:l 030x y b x ay z ++=+--=在平面π上,而平面π与曲面22z x y =+相切于点(1,2,5),-求,a b 之值.(2)设函数()f u 具有二阶连续导数,而(e sin )xz f y =满足方程22222e ,xz z z x y∂∂+=∂∂求().f u五、(本题满分6分)设()f x 连续1,()(),x f xt dt ϕ=⎰且0()lim(x f x A A x→=为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11110,(1,2,),2n n na a a n a +==+= 证明(1)lim n x a →∞存在.(2)级数11(1)nn n a a ∞=+-∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分)(1)设B 是秩为2的54⨯矩阵123,[1,1,2,3],[1,1,4,1],[5,1,8,9]TTT==--=--ααα是齐次线性方程组x =B 0的解向量,求x =B 0的解空间的一个标准正交基.(2)已知111⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦ξ是矩阵2125312a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 的一个特征向量.1)试确定,a b 参数及特征向量ξ所对应的特征值.2)问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为.B (1)证明B 可逆.(2)求1.-AB 九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设再各个交通岗遇到红灯的事件是相互独立的,并且概率都是2.5设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为()f x =(1)0x θθ+01x <<其它其中1θ>-是未知参数12,,,,n X X X 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2112limx x→-=_____________.(2)设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2z x y ∂∂∂=_____________.(3)设l 为椭圆221,43x y +=其周长记为,a 则22(234)Lxy x y ds ++⎰ =_____________.(4)设A 为n 阶矩阵*,0,≠A A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值,λ则*2()+A E 必有特征值_____________.(5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 连续,则220()x d tf x t dt dx-⎰=(A)2()xf x (B)2()xf x -(C)22()xf x (D)22()xf x -(2)函数23()(2)f x x x x x =---不可导点的个数是(A)3(B)2(C)1(D)0(3)已知函数()y y x =在任意点x 处的增量2,1y xy x α∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于(A)2π(B)π(C)4eπ(D)4eππ(4)设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A)相交于一点(B)重合(C)平行但不重合(D)异面(5)设,A B 是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有(A)(|)(|)P A B P A B =(B)(|)(|)P A B P A B ≠(C)()()()P AB P A P B =(D)()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z l --==-在平面:210x y z π-+-=上的投影直线0l 的方程,并求0l 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数,λ使在右半平面0x >上的向量42242(,)2()()x y xy x y x x y λλ=+-+A i j 为某二元函数(,)u x y 的梯度,并求(,).u x y 五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度(y 从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为,m 体积为,B 海水密度为,ρ仪器所受的阻力与下沉速度成正比,比例系数为(0).k k >试建立y 与v 所满足的微分方程,并求出函数关系式().y y v =六、(本题满分7分)计算222212(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半平面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112x n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦ 八、(本题满分5分)设正向数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11(1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1)试证存在0(0,1),x ∈使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积.(2)又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=可以经过正交变换x y z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦P 化为椭圆柱面方程2244,ηξ+=求,a b 的值和正交矩阵.P 十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数,k 使线性方程组kx =A 0有解向量,α且1.k -≠A α0证明:向量组1,,,k -αAαAα 是线性无关的.十二、(本题满分5分)已知方程组(Ⅰ)1111221,222112222,221122,22000n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=+++=+++=的一个基础解析为11121,221222,212,2(,,,),(,,,),,(,,,).TTTn n n n n n b b b b b b b b b 试写出线性方程组(Ⅱ)1111221,222112222,221122,22000n n n n n n n n nb y b y b y b y b y b y b y b y b y +++=+++=+++=的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附:标准正态分布表22()t zx dt -Φ=⎰z1.28 1.645 1.962.33()x Φ0.9000.9500.9750.990十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附:t 分布表{()()}p P t n t n p≤=0.950.97535 1.6896 2.0301361.68832.02811999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2011lim(tan x x x x→-=_____________.(2)20sin()x d x t dt dx-⎰=_____________.(3)24e xy y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是_____________.(5)设两两相互独立的三事件,A B和C满足条件:1,()()(),2ABC P A P B P C =∅==<且已知9(),16P A B C =则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则(A)当()f x 是奇函数时,()F x 必是偶函数(B)当()f x 是偶函数时,()F x 必是奇函数(C)当()f x 是周期函数时,()F x 必是周期函数(D)当()f x 是单调增函数时,()F x 必是单调增函数(2)设20()() 0x f x x g x x >=≤⎩,其中()g x 是有界函数,则()f x 在0x =处(A)极限不存在(B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩,01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑其中102()cos n a f x n xdx π=⎰(0,1,2,)n = ,则5()2S -等于(A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式||0≠AB (B)当m n >时,必有行列式||0=AB (C)当n m >时,必有行列式||0≠AB (D)当n m >时,必有行列式||0=AB (5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则(A)1{0}2P X Y +≤=(B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=三、(本题满分6分)设(),()y y x z z x ==是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求.dz dx四、(本题满分5分)求(e sin ())(e cos ),x x LI y b x y dx y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线y =到点(0,0)O 的弧.五、(本题满分6分)设函数()(0)y x x ≥二阶可导且()0,(0) 1.y x y '>=过曲线()y y x =上任意一点。
高数1考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,求f(2)的值为:A. 1B. -1C. 3D. 5答案:A2. 已知函数y=ln(x)的导数为:A. 1/xB. xC. ln(x)D. e^x答案:A3. 计算定积分∫(0到1) x dx的值为:A. 0B. 1/2C. 1D. 2答案:B4. 求极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. 2D. ∞答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^3-6x^2+11x-6,求f'(x)的导数为______。
答案:3x^2-12x+112. 计算不定积分∫x^2 dx的值为______。
答案:x^3/3 + C3. 设函数g(x)=e^x,求g'(x)的导数为______。
答案:e^x4. 计算定积分∫(1到2) (x^2-2x) dx的值为______。
答案:2三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+2在x=1处的切线方程。
答案:首先求导数f'(x)=3x^2-6x,然后计算f'(1)=-3,f(1)=0。
切线方程为y=-3(x-1),即y=-3x+3。
2. 计算定积分∫(0到π) sin(x) dx。
答案:利用定积分的性质,∫(0到π) sin(x) dx = -cos(x)|_0^π = 2。
3. 已知函数y=x^2-4x+c,求c的值,使得曲线y=x^2-4x+c与x轴相切。
答案:令y=0,得到x^2-4x+c=0,判别式Δ=16-4c=0,解得c=4。
4. 求极限lim(x→∞) (1+1/x)^x的值。
答案:利用指数函数极限的性质,lim(x→∞) (1+1/x)^x = e。
5. 计算二重积分∫∫D (x^2+y^2) dxdy,其中D为x^2+y^2≤1的区域。
答案:利用极坐标变换,得到∫∫D (x^2+y^2) dxdy = ∫(0到2π)∫(0到1) r^3 drdθ = π。
考研高数历年真题考研高数是每年考研数学科目中的重点,掌握历年真题对于备考非常重要。
本文将为大家整理一些考研高数的历年真题,并附上详细的解析,帮助大家提升高数的应试能力。
1. 2007年考研高数真题题目1:设函数 f(x) 在 (-∞, +∞) 上可导,且满足f(1)=5, f'(x)>0, 求函数 f(x) 在区间(1, +∞) 上的取值范围。
解析:由题意可知,函数 f(x) 在 (-∞, +∞) 上可导,且 f'(x)>0。
因此f(x) 在整个实数轴上单调递增。
同时,已知 f(1)=5,所以 f(x) 在区间 (1, +∞) 上的取值范围是[5, +∞)。
2. 2012年考研高数真题题目2:设函数 f(x) 为连续函数,且满足 f(x+1) - f(x) = e^x + 1,求f(0) 的值。
解析:根据题意,可以得到 f(x+1) - f(x) = e^x + 1。
考虑对等式两边从 0 积分得到 f(x+1) - f(x) = ∫(e^x+1)dx,即f(x) = ∫(e^x+1)dx。
对此定积分进行计算,可以得到 f(x) = e^x + x + C,其中 C 为常数。
由于函数 f(x) 为连续函数,所以 f(x+1) = f(x)。
代入 f(x) = e^x + x + C 可得 e^x + x + 1 + C = e^x + x + C。
经过整理可得 C = 1。
因此,f(0) = e^0 + 0 + 1 + 1 = 3。
3. 2015年考研高数真题题目3:设 A 和 B 为两个 n 阶实矩阵,并满足 A^2 = A,B^2 = B,则 A + B 的秩最大是多少?解析:根据题意可得 A^2 = A,B^2 = B。
根据矩阵的性质,矩阵 A 和 B 都是投影矩阵。
因为 A 和 B 为实矩阵,所以它们的秩均不大于 n。
因此,A + B 的秩最大不大于 2n。
另一方面,A 和 B 的和为 (A + B)^2 = A^2 + AB + BA + B^2 = A + AB + BA + B。
考研数学一(高等数学)历年真题试卷汇编5(总分:62.00,做题时间:90分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.当x→1(分数:2.00)A.等于2.B.等于0.C.为∞.D.不存在但不为∞.√3.设,其中a 2 +c 2≠0,则必有(分数:2.00)A.b=4dB.b=一4dC.a=4cD.a=一4c √4.设{a n },{b n },{c n }均为非负数列,且(分数:2.00)A.a n<b n对任意n成立.B.b n<c n对任意n成立.√解析:解析:由于即极限故应选(D).5.当x→0 +时,与等价的无穷小量是(分数:2.00)A.B. √C.D.解析:解析:直接法.(B).6.设函数f(x)在(一∞,+∞)内单调有界,{x n }为数列,下列命题正确的是(分数:2.00)A.若{x n }收敛,则{f(x n )}收敛.B.若{x n )单调,则{f(x n )}收敛.√C.若{f(x n )}收敛,则{x n }收敛.D.若{f(x n )}单调,则{x n }收敛.解析:解析:由于f(x)在(一∞,+∞)上单调有界,若{x n}单调,则{f(x n)}是单调有界数列,故{f(x n)}收敛,事实上(A)(C)(D)都是错误的,若令,显然,即{x n }收敛,令,显然f(x)在(一∞,+∞)上单调有界,但{f(x n )}不收敛.由于f(x n )= ,所以不存在,故(A)不正确.若令x n =n,f(x)=arctanx.显然{f(x n )}收敛且单调,但x n =n不收敛,故(c)和(D)不正确. 7.当x→0时,f(x)=x—sinax与g(x)=x 2 ln(1一bx)是等价无穷小,则(分数:2.00)A.a=1,√B.a=1,C.a=一1,D.a=一1,解析:解析:由于当x→0时,f(x)=x—sinax与y(x)=x 2ln(1一bx)是等价无穷小,则(A).8.(分数:2.00)A.1.B.e.C.e a-b.√D.e b-a.解析:解析:由于=e a-b9.k,c为常数,且c≠0,则(分数:2.00)A.k=2,B.k=2,C.k=3,D.k=3,√二、填空题(总题数:10,分数:20.00)10.设函数f[f(x)]= 1.(分数:2.00)解析:解析:由x有|f(x)|≤1,则f[f(x)]=1.11.设a(分数:2.00)填空项1:__________________ (正确答案:正确答案:e 2a.)12.已知当x→0cosx一1是等价无穷小,则常数a= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由于x→0时则(分数:2.00)填空项1:__________________ (正确答案:正确答案:e 6.)解析:解析:由于=6,则6.14.,则a= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:ln2)解析:解析:由于又 e 3a =8 知a=ln2.(分数:2.00)填空项1:__________________ (正确答案:正确答案:3/2)16.(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])。
xxx+ +考研数学一试题分析、详解和评注一、选择题:(本题共 8 小题,每小题 4 分,共 32 分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)2(1)设函数 f (x ) = ⎰ln(2 +t )dt ,则 f '(x ) 的零点个数为【 】 (A) 0. (B) 1.(C) 2. (D) 3.【答案】应选(B).【详解】 f '(x ) = ln(2 + x 2) ⋅ 2x = 2x ln(2 + x 2) .显然 f '(x ) 在区间(-∞, +∞) 上连续,且 f '(-1) ∙ f '(1) = (-2ln 3) ∙ (2ln 3) < 0 ,由零点定理,知 f '(x ) 至少有一个零点.又 f ''(x ) = 2 ln(2 + x 2) + 4x 22 + x 2> 0 ,恒大于零,所以 f '(x ) 在 (-∞, +∞) 上是单调递增的.又因为 f '(0) = 0 ,根据其单调性可知, f '(x ) 至多有一个零点. 故 f '(x ) 有且只有一个零点.故应选(B). (2)函数 f (x , y ) = arctanx 在点(0,1)处的梯度等于【 】y(A)i (B)- i .(C)j . (D) - j .【答案】 应选(A).1 - x ∂f=y=y ∂f=y 2=-x 【详解】因为∂x 21 y2 . x 2+ y2∂y21 y2 .x 2+ y 2∂f所以∂x (0,1)= 1,(0,1)= 0 ,于是grad f (x , y )(0,1)= i .故应选(A).(3)在下列微分方程中,以 y = C e x + C cos 2x + C sin 2x ( C ,C ,C 为任意的常数)为通解的是【】123123(A)y ' + y ' - 4y ' - 4y = 0 . (B) y ' + y ' + 4y ' + 4y = 0 .(C)y ' - y ' - 4y ' + 4y = 0 .(D) y ' - y ' + 4y ' - 4y = 0 .【答案】 应选(D).∂f∂y⎪ z【详解】由 y = C e x+ C cos 2x + C sin 2x ,可知其特征根为123λ1 = 1, λ2,3 = ±2i ,故对应的特征值方程为(λ - 1)(λ + 2i )(λ - 2i ) = (λ - 1)(λ2 + 4)= λ3 + 4λ - λ2 - 4= λ3 - λ2 + 4λ - 4所以所求微分方程为 y ' - y ' + 4y ' - 4y = 0 .应选(D).(4)设函数 f (x ) 在(-∞, +∞) 内单调有界,{x n }为数列,下列命题正确的是【】.(A) 若{x n }收敛,则{ f (x n )} 收敛(B) 若{x n } 单调,则{ f (x n )} 收敛(C) 若{ f (x n )} 收敛,则{x n }收敛. (D) 若{ f (x n )} 单调,则{x n }收敛.【答案】 应选(B).【详解】若{x n } 单调,则由函数 f (x ) 在(-∞, +∞) 内单调有界知,若{ f (x n )} 单调有界, 因此若{ f (x n )} 收敛.故应选(B).(5)设 A 为n 阶非零矩阵, E 为 n 阶单位矩阵.若 A 3= 0 ,则【 】则下列结论正确的是:(A) E - A 不可逆,则 E + A 不可逆.(B) E - A 不可逆,则 E + A 可逆. (C) E - A 可逆,则 E + A 可逆. (D) E - A 可逆,则 E + A 不可逆.【答案】应选(C). 【详解】故应选(C).(E - A )(E + A + A 2 ) = E - A 3 = E , (E + A )(E - A + A 2 ) = E + A 3 = E . 故 E - A , E + A 均可逆.故应选(C).⎛ x ⎫(6)设 A 为 3 阶实对称矩阵,如果二次曲面方程(x y z ) A y ⎪ = 1在正交变换下的标⎪ ⎝ ⎭准方程的图形如图,则 A 的正特征值个数为【】 (A) 0.(B) 1.(C) 2.(D) 3.1【答案】 应选(B).x 2y 2 + z 2【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为 - a 2c 2特征值个数为 1.故应选(B).= 1 .故 A 的正 (7) 设随机变量 X ,Y 独立同分布且 X 的分布函数为 F (x ) ,则 Z = max{ X , Y } 的分布函数为【】(A) F 2(x ) .(B) F (x )F ( y ) . (C) 1 - [1 - F (x )]2 . (D) [1 - F (x )][1 - F ( y )].【答案】应选(A).【详解】 F (z ) = P (Z ≤ z ) = P {max{X ,Y } ≤ z }= P ( X ≤ z ) P (Y ≤ z ) = F (z )F (z ) = F 2 (z ) .故应选(A).(8)设随机变量 XN (0,1) , Y N (1, 4) , 且相关系数 ρXY = 1,则【】(A) P {Y = -2X - 1} =1 (B) P {Y = 2X - 1} = 1(C) P {Y = -2X + 1} =1 (D) P {Y = 2X +1} = 1【答案】应选 (D).【详解】用排除法.设Y = aX + b .由 ρXY = 1 ,知 X , Y 正相关,得a > 0 .排除(A ) 和(C ).由 XN (0,1) , Y N (1, 4) ,得EX = 0, EY = 1, E (aX + b ) = aEX + b .1 = a ⨯ 0 + b , b = 1 .从而排除(B).故应选 (D).二、填空题:(9-14 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.) (9)微分方程 xy ' + y = 0 满足条件 y (1) = 1的解是 y = .【答案】 应填 y = .x【详解】由dy=- y,得 dx x dy =- dx.两边积分,得ln | y |= -ln | x | +C . y x1 y ( 11 ) 已知幂级数∑a (x + 2) ∑a (x - 2) 的收敛域为.以∑a (x - 2) 的收敛域为(1,5] .⎰⎰⎰ ydV +⎰⎰代入条件 y (1) = 1,得C = 0 .所以 y =.x(10)曲线sin(xy ) +ln( y - x ) = x 在点(0,1) 的切线方程为.【答案】 应填 y = x +1.【详解】设 F (x , y ) = sin(xy ) +ln( y - x ) - x ,则-11 F x (x , y ) = y cos(xy ) +y - x-1, F x (x , y ) = x cos(xy ) +y - x,F '(0,1) F x (0,1) = -1, F y (0,1) = 1.于是斜率k = - x= 1.F '(0,1)故所求得切线方程为 y = x +1.∞n在 x = 0 处收敛, 在 x = -4 处发散, 则幂级数 n =0∞ nn n =0【答案】 (1,5] .∞∞【详解】由题意,知∑a (x + 2)n的收敛域为(-4, 0] ,则∑ a xn的收敛域为(-2, 2].所n n =0nn =0∞nn n =0(12) 设 曲面∑是z的 上 侧 , 则⎰⎰ xydydz + xdzdx + x 2dxdy = .∑【答案】 4π .【详解】作辅助面∑1 : z = 0 取下侧.则由高斯公式,有⎰⎰ xydydz + xdzdx + x 2dxdy∑= ⎰⎰ xydydz + xdzdx + x 2dxdy - ⎰⎰ xydydz + xdzdx + x 2dxdy∑∑1=Ωx 2 + y 2 ≤4x 2dxdy .n16 = 4π ⎝⎭ { }= 0 +1⎰⎰(x 2 + y 2 )dxdy =1⎰ 2πd θ ⎰ 2 r 2∙ rdr = π .2 x 2+ y 2≤42 0 0 4(13) 设 A 为 2 阶矩阵,α1,α2 为线性无关的 2 维列向量,A α1 = 0 ,A α2 = 2α1 + α2 .则 A 的非零特征值为.【答案】应填 1.⎛ 0 2⎫【详解】根据题设条件,得 A (α1 ,α2 ) = ( A α1 , A α2 ) = (0, 2α1 + α2 ) = (α1 ,α2 ) 0 1⎪ .记 P = (α1 ,α2 ) ,因α1,α2 线性无关,故 P = (α1 ,α2 ) 是可逆矩阵.因此⎛ 0 2 ⎫ -1⎛ 0 2⎫ ⎛ 0 2 ⎫ AP = P 0 1 ⎪ ,从而 P AP = 0 1 ⎪ .记 B = 0 1 ⎪ ,则 A 与B 相似,从而有 ⎝ ⎭ ⎝ ⎭ ⎝ ⎭相同的特征值.λ -2因为| λE - B |== λ(λ - 1) , λ = 0 , λ = 1.故 A 的非零特征值为 1.0 λ - 1(14) 设随机变量 X 服从参数为 1 的泊松分布,则 P {X = EX 2 }= .1【答案】应填.2e【详解】因为 X 服从参数为 1 的泊松分布,所以 EX = DX = 1 .从而由 DX = EX 2 - (EX )2得 EX 2= 2 .故 P X = EX 2 = P {X = 2} =1.2e三、解答题:(15-23 小题,共 94 分. )(15)(本题满分 10 分) [sin x - sin(sin x )]sin x求极限limx →0x 4【详解 1】lim x →0[sin x - sin(sin x )]sin x x 4= limx →0[sin x - sin(sin x )] x 3= lim x →0 cos x - cos(sin x )cos x 3x 2= lim x →0 1 - cos(sin x ) 3x 2 1 (sin x )2 = lim sin(sin x )cos x (或= lim 2 1 sin 2 x + o (sin 2 x ),或= lim 2 ) x →0 6x x →0 3x 2 x →0 3x 2⎰⎰ π ππ 2 21π sin x ππ0 0= 1 . 6【详解 2】lim [sin x - sin(sin x )]sin x 4 = lim [sin x - sin(sin x )]sin x 4x →0xx →0sin xt 2 = lim t - sin t = lim 1 - cos t = lim 2 (或= lim sin t) t →0 t 3 t →0 3t 2 t →0 3t 2 t →0 6t= 1. 6(16)(本题满分 9 分)计算曲线积分 sin 2xdx + 2(x 2-1) ydy ,其中 L 是曲线 y = sin x 上从(0, 0) 到(π , 0)L的一段.【详解 1】按曲线积分的计算公式直接计算.sin 2xdx + 2(x 2-1) ydy L= ⎰ [sin 2xdx + 2(x 2 -1) sin x cos x ]dx = ⎰ x 2 sin 2xdxx 2 cos 2x ππ 2π= - + ⎰0 0x cos 2xdx = -2+ ⎰0 x cos 2xdxπ 2 x sin 2xππsin 2x = -+22π 2- ⎰0dx=- .2【详解 2】添加辅助线,按照 Green 公式进行计算.设 L 1 为 x 轴上从点(π , 0) 到(0, 0) 的直线段. D 是 L 1 与 L 围成的区域⎰L +L = - sin 2xdx + 2(x 2 -1) ydy⎡ ∂(2(x 2-1) y - ∂ sin 2x ⎤= -⎰⎰⎰⎰ ⎢∂x∂y ⎥dxdy 4xydxdyD⎣⎦D= -⎰ ⎰ 4xydydx = -⎰ 2x sin 2 xdx = -⎰ x (1- cos 2x )dxx 22 1+ 2 - = ⎰= 2⎰1 2Lπ⎰ 2 =⎰ 2⎰π 2 = -+ ⎰ 2⎩ πππ 2x sin 2x ππsin 2x = - + ⎰0x cos 2xdx = - + 2 2- ⎰0dxπ 2=- .2因为 ⎰L 0sin 2xdx 2(x 1) ydy sin 2xdx 0π故 ⎰L sin 2xdx + 2(x π 21) ydy =-2【详解 3】令 I = sin 2xdx + 2(x 2-1) y dyL= ⎰ sin 2xdx - 2 ydy + 2x 2ydy = I + I∂P ∂P对于 I 1 ,记 P = sin 2x ,Q = -2y .因为 ∂y = ∂x= 0 ,故 I 1 与积分路径无关.I 1 = ⎰0 sin 2xdx = 0 .对于 I 2 ,I 2 = 2x 2ydy = L π2x sin x cos xdx 0 πx sin 2xdx 0x 2cos 2x π = - + ⎰0 0x cos 2xdxπ 2πx cos 2xdx2π 2 x sin 2xππsin 2x = -+22π 2- ⎰0dx=-.2故⎰L sin 2xdx + 2(xπ21) ydy =-2⎧ x 2 + y 2 - 2z 2 = 0, 17(本题满分 11 分)已知曲线C : ⎨ x + y + 3z = 5,求C 上距离 xoy 面最远的点和最近的点.【详解 1】 点(x , y , z ) 到 xoy 面的距离为| z | ,故求C 上距离 xoy 面最远的点和最近的点的2- - 2⎪ ⎩ ⎩⎛ 4 ⎫ ⎪ ⎛ 4 ⎫ 坐标等价于求函数 H = z 2 在条件 x 2 + y 2 - 2z 2= 0, x + y + 3z = 5 下的最大值点和最小值点.构造拉格朗日函数L (x , y , z , λ, μ) = z 2 + λ(x 2 + y 2 - 2z 2 ) + μ(x + y + 3z - 5) ,⎧L x ' = 2λ x + 2μ = 0, ⎪L ' = 2λ y + μ = 0, ⎪⎪ y由⎨L z' = 2z - 4λ z + 3μ = 0, ⎪x 2 + y 2 - 2z 2 = 0, ⎪⎩x + y + 3z = 5.得 x = y ,⎧2x 2 - 2z 2 = 0, ⎧x = -5, ⎪ ⎧x = 1, ⎪ 从而⎨ 解得⎨ y = -5, 或⎨ y = 1,⎩2x + 3z = 5. ⎪z = 5. ⎪z = 1.根据几何意义,曲线 C 上存在距离 xoy 面最远的点和最近的点,故所求点依次为(-5, -5, 5) 和(1,1,1) .【详解 2】 点(x , y , z ) 到 xoy 面的距离为| z | ,故求C 上距离 xoy 面最远的点和最近的点的⎛ x + y - 5 ⎫2坐标等价于求函数 H = x 2 + y 2 在条件 x 2 + y 2- 2 ⎪ = 0 下的最大值点和最小 值点.构造拉格朗日函数⎝ 3 ⎭L (x , y , z , λ) = x 2 + y 2 + λ ⎛ x 2 + y 2 - 2 (x + y - 5)2 ⎫,9 ⎪ ⎝ ⎭⎧ L ' = 2x + λ 2x - (x + y - 5) = 0, ⎪ x 9⎪ ⎪⎝ ⎭ 由 L ' = 2 y + λ 2 y - (x + y - 5) = 0, ⎨ y 9⎪ ⎪ ⎝ ⎭ ⎪ ⎛ x + y - 5 ⎫2⎪x 2 + y 2 - 2 ⎪ = 0. ⎩⎪⎝ 3 ⎭ 得 x = y ,从而2x 2- 2x - 5)2= 0 .9解得⎩ ⎩3 + 2(cos θ + sin θ )⎩ ⎩xx 2⎧x = -5, ⎧x = 1, ⎪ y = -5, 或⎪ y = 1, ⎨ ⎪z = 5. ⎨ ⎪z = 1.根据几何意义,曲线 C 上存在距离 xoy 面最远的点和最近的点,故所求点依次为(-5, -5, 5) 和(1,1,1) .【详解 3】由 x 2 + y 2 - 2z 2= 0 得⎧⎪x = ⎨ ⎪⎩ y = 2z cos θ ,2z sin θ.代入 x + y + 3z = 5 ,得z =5所以只要求 z = z (θ ) 的最值. 令 z '(θ ) =5 2(- sin θ + cos θ )= 0 ,得cos θ = sin θ ,解得θ = π , 5π.从而(3 + 2(cos θ + sin θ ))24 4⎧x = -5, ⎧x = 1, ⎪ y = -5, 或⎪ y = 1, ⎨ ⎪z = 5. ⎨ ⎪z = 1. 根据几何意义,曲线 C 上存在距离 xoy 面最远的点和最近的点,故所求点依次为(-5, -5, 5) 和(1,1,1) .(18)(本题满分 10 分)设 f (x ) 是连续函数,(I )利用定义证明函数 F (x ) =⎰f (t )dt 可导,且 F '(x ) =f (x ) ;(II )当 f (x ) 是以 2 为周期的周期函数时,证明函数G (x ) = 2⎰也是以 2 为周期的周期函数. f (t )dt - x ⎰0f (t )dtx +∆x x(I )【证明】 F '(x ) = limF (x + ∆x ) - F (x )= lim⎰f (t )dt - ⎰0 f (t )dt∆x →0∆x∆x →0∆x⎰ 2 2 x 2 x x +∆x = limxf (t )dt = lim f (ξ )∆x = lim f (ξ ) = f (x )∆x →0∆x ∆x →0 ∆xx +∆x ∆x →0 【注】不能利用 L ’Hospital 法则得到 lim⎰xf (t )dt = limf (x + ∆x ) .(II) 【证法 1】根据题设,有∆x →0∆x∆x →0 ∆xG '(x + 2) = ⎡2⎰ x + 2 f (t )dt - (x + 2)⎰ 2f (t )dt ⎤' = f (x + 2) - ⎰f (t )dt , ⎣⎢ 0 0 ⎥⎦G '(x ) = ⎡2⎰ x f (t )dt - x ⎰ 2 f (t )dt ⎤' = 2 f (x ) - ⎰ 2f (t )dt . ⎣⎢ 0 0 ⎥⎦当 f (x ) 是以 2 为周期的周期函数时, f (x + 2) = f (x ) .从而G '(x + 2) = G '(x ) .因而G (x + 2) - G (x ) = C .取 x = 0 得, C = G (0 + 2) - G (0) = 0 ,故 G (x + 2) - G (x ) = 0 .即G (x ) = 2⎰f (t )dt - x ⎰0f (t )dt 是以 2 为周期的周期函数.【证法 2】根据题设,有x +22G (x + 2) = 2⎰0f (t )dt - (x + 2)⎰0 f (t )dt ,2x +222x + 2= 2⎰0 f (t )dt + x ⎰2 f (t )dt - x ⎰0 f (t )dt -2⎰0 f (t )dt .对于⎰2f (t )dt ,作换元t = u + 2 ,并注意到 f (u + 2) = f (u ) ,则有x +2xxx⎰2f (t )dt = ⎰0 f (u + 2)du = ⎰0 f (u )du = ⎰0 f (t )dt ,x +22因而 x ⎰2f (t )dt - x ⎰0 于是x f (t )dt = 0 .2G (x + 2) = 2⎰0 f (t )dt - x ⎰0 f (t )dt = G (x ) .即G (x ) = 2⎰f (t )dt - x ⎰0f (t )dt 是以 2 为周期的周期函数【证法 3】根据题设,有x +22G (x + 2) = 2⎰0f (t )dt - (x + 2)⎰0 f (t )dt ,xx +222= 2⎰0 f (t )dt + 2⎰xf (t )dt - x ⎰0 f (t )dt -2⎰0 f (t )dtx0 ⎰⎰= ⎰ 2x⎰ ⎰ π nx2x +22= 2⎰0 f (t )dt - x ⎰0 f (t )dt + 2⎰xf (t )dt -2⎰0 f (t )dt= G (x ) + 2(⎰x +2f (t )dt - ⎰ 2f (t )dt ).当 f (x ) 是以 2 为周期的周期函数时,必有事实上x + 2d ( 2x +22xf (t )dt 0f (t )dt )f (t )dt . dx所以x + 2 = f (x + 2) - f (x ) = 0 ,⎰2f (t )dt ≡ C .0+22取 x = 0 得, C ≡ ⎰2f (t )dt = ⎰2 所以x f (t )dt .2G (x + 2) = 2⎰0 f (t )dt - x ⎰0 f (t )dt = G (x ) .即G (x ) = 2⎰f (t )dt - x ⎰0 f (t )dt 是以 2 为周期的周期函数(19)(本题满分 11 分)∞(-1)n -1将函数 f (x ) = 1 - x 2(0 ≤ x ≤ π ) 展开成余弦级数,并求级数∑的和.n =1n【详解】将 f (x ) 作偶周期延拓,则有b n = 0, n = 1,.a 0 = 2 ⎰ π ⎛ (1 - x 2)d x = 2 1 - π 2 ⎫ ⎪ .πa = 20 ⎝ 3 ⎭ πf (x )cos nxdxnπ ⎰02 ⎡ = ⎢π π cos nxdx -⎤ πx 2 cos nxdx ⎥ π ⎣ 0 0 2 ⎡ π ⎤ π⎦ -2 ⎡ 0x 2sin nx π 2x sin nx ⎤ = ⎢ 0 - ⎰ x 2cos nxdx ⎥ = ⎢ - ⎰ dx ⎥π ⎣ 0 ⎦ 0 π ⎣ 0 0 n ⎦= 2 2π (-1)n -1 =4(-1)n -1 .π n2n2n =⎪ a∞π2∞(-1)n -1所以 f (x ) = 1 - x 2= 0 +∑a cos nx = 1 -+ 4∑cos nx , 0 ≤ x ≤ π .2n =1π2n∞(-1)n -13n =1n 2令 x=0,有 f (0) = 1 -+ 4∑2n =1又 f (0) = 1 ,所以∑n =1(-1)n -1π 2.n212(20)(本题满分 10 分)设α , β 为 3 维列向量,矩阵 A = ααT + ββ T ,其中α T , β T 分别是α , β 得转置.证明: (I )秩r ( A ) ≤ 2 ;(II )若α , β 线性相关,则秩r ( A ) < 2 .【详解】(I )【证法 1】r ( A ) = r (ααT+ ββ T) ≤ r (ααT) + r (ββ T) ≤ r (α ) + r (β ) ≤ 2 .【证法 2】因为 A = ααT+ ββ T, A 为3⨯ 3 矩阵,所以r ( A ) ≤3 . 因为α , β 为 3 维列向量,所以存在向量ξ ≠ 0 ,使得αT ξ = 0, β T ξ = 0于是A ξ = ααT ξ + ββ T ξ = 0所以 Ax = 0 有非零解,从而r ( A ) ≤ 2 .【证法 3】因为 A = ααT+ ββ T,所以 A 为3⨯ 3 矩阵.⎛ α T ⎫又因为 A = αα T + ββ T = (α β 0) β T ⎪,0 ⎪所以| A |=| αβ ⎝ ⎭a T0 | β T = 0故r ( A ) ≤ 2 .( II ) 【 证 法 】 由 α , β 线 性 相 关 , 不 妨 设 α = k β . 于 是r ( A =) αr (αT + βTβ =() r 2(+1 k ) T β )β ≤ r .(21) (本题满分 12 分).设n 元线性方程组 Ax = b ,其中∞ 3⎪ ⎪ ⎪ - aD ⎛ 2a 1 a 22a 1 ⎫ ⎪ ⎛ x ⎫ ⎛ 1 ⎫ ⎪ 1 a 2 2a 1 ⎪ x ⎪ 0 ⎪ A = ⎪ , x = 2 ⎪ , b = ⎪ .a 2 2a 1 ⎪x ⎪ 0 ⎪ ⎝ n ⎭ ⎝ ⎭ a 2 2a ⎪⎝ ⎭(I )证明行列式| A |= (n + 1)a n ;(II )当a 为何值时,该方程组有惟一解,并求 x 1 . (III )当a 为何值时,该方程组有无穷多解,并求其通解.2a 1 a 2 2a a 2 【详解】(I )【证法 1】数学归纳法.记 D n =| A |=以下用数学归纳法证明 D n = (n + 1)a . n当 n = 1时, D 1 = 2a ,结论成立.2a 当 n = 2 时, D 2 =a 21= 3a 22a,结论成立.假设结论对小于n 的情况成立.将 D n 按第一行展开得a 2 1 D n = 2aD n -1 -0 2a a 2= 2aD n -12 n -2= 2ana n -1 - a 2 (n - 1)a n -2= (n + 1)a n故A = ( n + 1 )a n.12a 1a 2 2a 1a 2 2a n12a 1a 2 2a 1a 2 2a n -1n == 2aD n -1 - a D 【 注 】 本 题 ( 1 ) 也 可 用 递 推 法 . 由 D 2n -2D - aD = a (D - aD ) == a n -2 (D - a n -2 D ) = a n .于是 D = (n + 1)a nnn -1n -1n -221n2a 1a 2 2a (I )【证法 2】消元法.记| A |= a2a 1 03a 2a 22a 1 03 a12 04a 3a 2=12a 1a 2 2a 1a 2 2a nr - 1 ar 22 1 1 2a 1a 2 2a 1a 2 2a nr - 2 ar 33 2得 ,2 1 2a 1a 2 2a 1a 2 2a nr - n - 1 arnnn -1 2a 0= (n + 1)a n .1 3 a124a 13n a n - 1 01 n + 1a n n(II )【详解】当a ≠ 0 时,方程组系数行列式 D n ≠ 0 ,故方程组有惟一解.由克莱姆法则,将 D n 得第一列换成b ,得行列式为1 10 2a a 2 D n -1= na n -1所以, x 1 = D n -1 =D n a . (n + 1)a(III )【详解】 当a = 0 时,方程组为⎛ 0 1 ⎫ ⎛ x 1 ⎫ ⎛ 1 ⎫0 1 ⎪ x ⎪ 0 ⎪⎪ 2 ⎪ ⎪ 0 ⎪⎪ = ⎪ 1 ⎪x ⎪ 0 ⎪⎪ n -1 ⎪ ⎪ 0 ⎪ x ⎪ 0 ⎪ ⎝ ⎭ ⎝ n ⎭ ⎝ ⎭ 此时方程组系数矩阵得秩和增广矩阵得秩均为n - 1 ,所以方程组有无穷多组解,其通解为x = (0 10)T+ k (1 00)T,其中k 为任意常数.(22) (本题满分 11 分)设随机变量 X 与Y 相互独立, X 的概率密度为 P ( X = i ) =1(i = -1, 0,1) , Y 的概率 312a a 2 2a 1=1 2a a2 12a 1= a 2 2a a 2 1a 2 2a 12a na 2 2a n -1⎩2 ⎛ =z z⎪ ⎪ 密度为f ( y ) =⎧1, 0 ≤ y < 1,记 Z = X + Y .⎛ 1 Y⎨0, 其它.⎫(I )求 P Z ≤ 2 X = 0⎪ ;⎝ ⎭(II )求 Z 的概率密度 f Z (z ) . (I )【详解】解法 1.⎛ 1 ⎫ ⎛ 1 ⎫ P Z ≤ 2 X = 0 ⎪ = P X + Y ≤ 2 X = 0 ⎪⎝ ⎭ ⎝ ⎭=⎛ 1 ⎫ ⎛ 1 ⎫ 1P Y ≤ 2 X = 0 ⎪ = P Y ≤ 2 ⎪ = 2 .解法 2.⎝ ⎭ ⎝ ⎭ ⎛ 1 ⎫⎛ 1 ⎫ P X + Y ≤ 2 , X = 0 ⎪P Z ≤ X = 0 ⎪ = ⎝ ⎭⎝ 2 ⎭P ( X = 0) ⎛ 1 ⎫ P Y ≤ , X = 0 ⎪ = ⎝⎭ = PY ≤ 1 ⎫ 1 .(II )解法 1.P ( X = 0)F Z ( z ) = P {Z ≤ z } = P { X + Y ≤ z }⎝2 ⎭ 2 =P{X+Y ≤ z,X=-1}+P{X+Y ≤ z,X=0}+P{X+Y ≤ z,X=1} =P{Y ≤ z+1,X=-1}+P{Y ≤ z,X=0}+P{Y ≤ z-1,X=1}=P{Y ≤ z+1}P{X=-1}+P{Y ≤ z}P{X=0}+P{Y ≤ z-1}P{X=1} = 1[P {Y ≤ z+1} + P{Y ≤ z} + P{Y ≤ z-1}] 3 = 1[F ( z + 1) + F ( z ) + F ( z - 1)]3 YY Yf ( z ) = F ' ( z ) = 1 ⎡ f( z + 1) + f (z ) + f ⎧ 1 , -1 < z < 2;(z - 1)⎤ = 3解法 2.3 ⎣ YY Y⎦ ⎨ ⎪⎩0, 其它.n ∑i11-∑ Xin (n - 1) ∑ jkf Z (z ) = ∑ P ( X = i ) f Y (z - i )i =-11⎧ 1, -1 < z < 2;= ⎡ f (z + 1) + f (z ) + f(z - 1)⎤ = ⎪33⎣ Y Y Y⎦ ⎨ ⎪⎩0, 其它.(23)(本题满分 11 分)21 n设 X 1, X 2 X n 是来自总体 N (μ σ, 的简单随机样本 ,记 X =∑ X i ,i =1n 22 22S =( X - X ) n - 1 i =1, T = X - S . n(1)证明T 是 μ 2的无偏估计量;(2)当 μ = 0, σ = 1 时,求 DT . . 【详解 1】(1)首先T 是统计量.其次E (T ) = E ( X 2 ) - 1ES 2n= D ( X 2 ) + (EX )2 - 1 ES 2 = 1 σ 2 + μ2 - 1σ 2 = μ 2n n n对一切 μ,σ 成立.因此T 是 μˆ 2的无偏估计量. 【详解 2】(1)首先T 是统计量.其次n21n2 1nT = Xn - 1n (n - 1) i =1= ∑ X j X k ,j ≠knn2ET =E ( X )(EX ) = μ ,n - 1 j ≠k对一切 μ,σ 成立.因此T 是 μˆ 2的无偏估计量.(2)解法 2.根据题意,有 N (0,1) , nX 2χ 2 (1) , (n - 1)S 2 χ 2 (n - 1) .于是 D (nX 2) = 2 , D ((n - 1)S2) = 2(n - 1) .所以 D (T ) =⎛ 2 - 1 2 ⎫D X n⎪1 nX⎝⎭=1D(nX 2 ) +n21n2 (n -1)2D ((n -1)S 2 )= 2n (n -1)。
考研数学一(高等数学)历年真题试卷汇编7(总分:88.00,做题时间:90分钟)一、选择题(总题数:10,分数:20.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________ 解析:2.设有直线则L 1与L 2的夹角为(分数:2.00)A.B.C. √D.解析:解析:直线L 1的方向向量 S 1 ={1,一2,1),直线L 2的方向向量从而直线L 1和L 2的夹角φ的余弦为因此3.设有直线Lπ:4x-2y+z-2=0,则直线L(分数:2.00)A.平行于πB.在π上.C.垂直于π.√D.与π斜交.解析:解析:由于交成直线L的两平面的法向量与π的法向量均垂直,即{1,3,2}⊥{4,一2,1} {2,一1,一10}⊥{4,一2,1} 故π的法向量与L的方向向量平行,因此直线L垂直于π.4.在曲线x=t,y=一t 2,z=t 3的所有切线中,与平面x+2y+z=4平行的切线(分数:2.00)A.只有1条.B.只有2条.√C.至少有3条.D.不存在.解析:解析:曲线x=t,y=一t 2,z=t 3的切线向量为τ={1,一2t,3t 2 ) 而平面x+2y+z=4的法线向量为 n={1,2,1} 由题设知τ⊥n,则τn=1-4t+3t 2 =0.此方程只有两个实根,所以所求切线只有两条.5.二元函数f(x,y)在点(x 0,y 0 )处两个偏导数f x "(x 0,y 0 ),f y "(x 0,y 0 )存在是f(x,y)在该点连续的(分数:2.00)A.充分条件而非必要条件.B.必要条件而非充分条件.C.充分必要条件.D.既非充分条件又非必要条件.√解析:解析:多元函数在一点上连续性与偏导数存在之间没有直接关系,即“连续”未必“偏导数存在”;“偏导数存在”亦未必“连续”,所以应选(D).6.a等于(分数:2.00)A.一1.B.0.C.1.D.2.√解析:解析:令由于Pdx+Qdy为某个函数的全微分,(a-2)x一ay=一2y,(a一2)x=(a-2)y 仅当a=2时,上式恒成立.7.(0,0)处(分数:2.00)A.连续,偏导数存在.B.连续,偏导数不存在.C.不连续,偏导数存在.√D.不连续,偏导数不存在.解析:解析:令y=kx,则当k不同时,便不同,故极限不存在,因而f(x,y)在(0,0)点处不连续,但根据偏导数的定义知同理可得 f y "(0,0)=0 由此可见,在点(0,0)处f(x,y)的偏导数存在.8.设函数f(x,y)在点(0,0)附近有定义,且f x "(0,0)=3,f y "(0,0)=1,则(分数:2.00)B.曲面z=f(x,y)在点(0,0,f(0,0))的法向量为{3,1,1}.C.(0,0,f(0,0))的切向量为{1,0,3}.√D.(0,0,f(0,0))的切向量为{3,0,1}.解析:解析:曲线的参数方程为(0,0,f(0,0))的切向量为 {1,0,f x "(0,0))={1,0,3}9.考虑二元函数的下面4条性质:①f(x,y)在点(x 0,y 0 )处连续;②f(x,y)在点(x 0,y 0 )处的两个偏导数连续;③f(x,y)在点(x 0,y 0)处可微;④f(x,y)在点(x 0,y 0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有(分数:2.00)A.②→③→①√B.③→②→①C.③→④→①D.③→①→④解析:解析:由于f(x,y)在点(x 0,y 0 )处的两个偏导数连续是f(x,y)在点(x 0,y 0 )处可微的充分条件,而f(x,y)在点(x 0,y 0 )可微是f(x,y)在点(x 0,y 0 )处连续的充分条件,故应选(A).10.已知函数f(x,y)在点(0,0)(分数:2.00)A.点(0,0)不是f(x,y)的极值点.√B.点(0,0)是f(x,y)的极大值点.C.点(0,0)是f(x,y)的极小值点.D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.解析:解析:由f(x,y)在点(0,0)的连续性及知f(0,0)=0.且f(x,y)一xy+(x 2+y 2 ) 2 +a(x 2 +y 2 ) 2令y=x,得 f(x,x)=x 2 +4x 4 +4ax 4 =x 2 +o(x 2 ) 令y=一x,得 f(x,一x)=一x 2 +4x 4 +4ax 4 =一x 2 +o(x 2 ) 从而f(x,y)在(0,0)点的邻域内始终可正可负,又f(0,0)=0,由极值定义可知f(x,y)在(0,0)点没有极值,故应选(A).二、填空题(总题数:11,分数:22.00)11.与两直线及 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:x-y+z=0.)一1*(x—0)+1*(y—0)一1*(z—0)=0 即 x—y+z=012.过点M(1,2,一1)垂直的平面方程是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:x一3y一z+4=0)解析:解析:{一1,3,1}.该向量是所求平面的一个法向量,所求平面过点M(1,2,一1),则所求平面为一(x一1)+3(y一2)+(z+1)=0 即 x一3y—z+4=013.已知两条直线的方程是L 1且平行于L 2的平面方程是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:x一3y+z+2=0.)解析:解析:平面过直线L 1,则过L 1上的点(1,2,3);平面的法向量n既垂直于L 1,又垂直于L 2,则可取则所求平面为 (x一1)一3(y一2)+(z一3)=0 即 x一3y+z+2=014.设(a×b)·c=2,则[(a+b)×(b+c)]·(c+a)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:4)解析:解析:[(a+b)×(b+c)]*(c+a)=[(a+b)×b]*(c+a)+[(a+b)×c]*a=(a×b)*c+(b×c)*a=(a×b)*c+(a×b)*c=415.设一平面经过原点及(6,一3,2),且与平面4x—y+2z=8垂直,则此平面方程为 1(分数:2.00)填空项1:__________________ (正确答案:正确答案:2x+2y一3z=0.)解析:解析:设M(x,y,z)是所求平面上任一点,则向量{x,y,z},{6,一3,2)以及向量{4,一1,2)即 2x+2y一3z=016.点(2,1,0)到平面3x+4y+5z=0的距离d= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])17.已知曲面z=4一x 2一y 2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:(1,1,2).)解析:解析:设P点的坐标为(x 0,y 0,z 0 ),则曲面在P点的法向量为 n={一2x 0,一2y 0,一1}又因为切平面平行于平面2x+2y+z-1=0,则从而可得x 0 =1,y 0 =1.代入曲面方程解得z 0 =2.18.z=z(x,y)在点(1,0,一1)处的全微分dz= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:由隐函数求导法求出19.由曲线绕y 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:旋转面方程为3(x 2 +z 2 )+2y 2 =12 令 F(x,y,z)=3(x 2 +z 2 )+2y 2一12=0 则 F x "=6x,F y "=4y,F z "=6z 从而所得旋转面在点处向外侧的法向量为20.曲面z—e x +2xy=3在点(1,2,0)处的切平面方程为 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:2x+y一4=0)解析:解析:令F(x,y,z)=z—e z +2xy一3 则 F x "=2y,F z "=1一e z,F y "=2x 曲面z—e z +2xy=3在点(1,2,0)处的法向量为 n={4,2,0} 故所求切平面方程为4(x一1)+2(y一2)=0 即 2x+y一4=021.设,则在点 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])三、解答题(总题数:22,分数:46.00)22.解答题解答应写出文字说明、证明过程或演算步骤。
历年考研数一真题及答案【篇一:历年考研数学一真题及答案(1987-2013)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________.(3)微分方程xy???3y??0的通解为_____________.?121?(4)已知方程组??23a?2???x1??1?x???3??1a?2???2无解,则a= ???????x3????0??_____________.(5)设两个相互独立的事件a和b都不发生的概率为19,a发生b不发生的概率与b发生a不发生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有(a)f(x)g(b)?f(b)g(x)(b)f(x)g(a)?f(a)g(x)(c)f(x)g(x)?f(b)g(b)(d)f(x)g(x)?f(a)g(a)(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有(a)??xds?4s??xdss1(b)??yds?4??xdsss1(c)??zds?4??xdsss1(d)??xyzds?4??xyzdsss1(3)设级数??un收敛,则必收敛的级数为n?1(a)??(?1)nun (b)??u2nn?1nn?1(c)??(u2n?1?u2n)n?1(d)??(un?un?1)n?1(a)e(x)?e(y)(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2(c)e(x2)?e(y2) (d)e(x2)?[e(x)]2?e(y2)?[e(y)]2三、(本题满分6分) 1求lim(2?exx??4?sinx).1?exx四、(本题满分5分) 设z?f(xy,xy)?g(xy),其中f具有二阶连续偏导数,g具有二阶连续导数,求?2z?x?y.五、(本题满分6分) 计算曲线积分i??xdy?ydxl4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有??xf(x)dydz?xyf(x)dzdx?e2xzdxdy?0,其中函数f(x)在s(0,??)内具有连续的一阶导数,且xlim?0?f(x)?1,求f(x).七、(本题满分6分)求幂级数??1xnn?13n?(?2)nn的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分) 设函数f(x)在[0,?]上连续,且???f(x)dx?0,?0f(x)cosxdx?0.试证:在(0,?)内至少存在两个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)??1000?000? 设矩阵a的伴随矩阵a*??1??1010??,且?0?308??aba?1?ba?1?3e,其中e为4阶单位矩阵,求矩阵b.十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?y??. ?n(1)求??xn?1?与??xn?的关系式并写成矩阵形?y?n?1??y?n?式:??xn?1??xn?y??a???. n?1??yn??1??是a的两个线性无关的特征向量,并求出相应的特征值.?1?(3)当??x1??2?时,求??y?????xn?1??. 1???1??yn?1??2??十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分) 设某种元件的使用寿命x的概率密度为?2e?2(x??)x??f(x;?)??x???0x1,x2,,其中??0为未知参数.又设,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)r?x2?y2?z2,则div(gradr)(1,?2,2)=_____________.(3)交换二次积分的积分次序:?01?y?1dy?2f(x,y)dx=_____________. (4)设a2?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}? _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a)(b)(c)【篇二:2000年-2016年考研数学一历年真题完整版(word版)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________. (3)微分方程xy???3y??0的通解为_____________.1??x1??1??12??????(4)已知方程组23a?2x2?3无解,则a=_____________. ????????1a?2????x3????0??(5)设两个相互独立的事件a和b都不发生的概率为生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有 (a)f(x)g(b)?f(b)g(x) (c)f(x)g(x)?f(b)g(b)(b)f(x)g(a)?f(a)g(x) (d)f(x)g(x)?f(a)g(a)1,a发生b不发生的概率与b发生a不发9(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有 (a)(c) ??xds?4??xdsss1(b)(d)??yds?4??xdsss1ss1??zds?4??xdsss1??xyzds?4??xyzds(3)设级数?un?1?n收敛,则必收敛的级数为u(a)?(?1)nnn?1n?(b)?un?1?2n(c)?(un?1?2n?1?u2n)(d)?(un?1?n?un?1)(5)设二维随机变量(x,y)服从二维正态分布,则随机变量??x?y 与 ??x?y不相关的充分必要条件为(a)e(x)?e(y)(c)e(x2)?e(y2)三、(本题满分6分)(d)e(x2)?[e(x)]2?e(y2)?[e(y)]2(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2求lim(x??2?e1?e1x4x?sinx). x四、(本题满分5分)xx?2z设z?f(xy,)?g(),其中f具有二阶连续偏导数,g具有二阶连续导数,求. yy?x?y五、(本题满分6分)计算曲线积分i?xdy?ydx??l4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有???xsx?0?(f)x?dyd(z)x?2xyfex?dzd0x,f(x)在z(0,d??x)内具有连续的一阶导数dy其中函数,且limf(x)?1,求f(x).七、(本题满分6分)八、(本题满分7分)1xn求幂级数?n的收敛区间,并讨论该区间端点处的收敛性. n3?(?2)nn?1?设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分)设函数f(x)在[0,?]上连续,且??f(x)dx?0,?f(x)cosxdx?0.试证:在(0,?)内至少存在两?个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)?10?01*?设矩阵a的伴随矩阵a??10??0?300100?0??,?1?1且aba?ba?3e,其中e为4阶单位矩阵,求0??8?矩阵b.十一、(本题满分8分)1熟练工支援其他生产部62门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第5某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?1??xn??xn?1??xn?与的关系式并写成矩阵形式:?a???????.?yn?1??yn??yn?1??yn??xn??. ?yn?(1)求??4???1??1??1??1??x1??2??xn?1?(3)当?????时,求??.y1y?1????n?1????2?十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分)?2e?2(x??)x??设某种元件的使用寿命x的概率密度为f(x;?)??,其中??0为未知参数.又设x???0x1,x2,?,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)r?x2?y2?z2,则div(gradr)(1,?2,2)= _____________.(3)交换二次积分的积分次序:?0?1dy?1?y2f(x,y)dx=_____________.2(4)设a?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}?_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a) (b)(c) (d)(2)设f(x,y)在点(0,0)的附近有定义,且fx?(0,0)?3,fy?(0,0)?1则(a)dz|(0,0)?3dx?dy(b)曲面z?f(x,y)在(0,0,f(0,0))处的法向量为{3,1,1}(c)曲线z?f(x,y)在(0,0,f(0,0))处的切向量为{1,0,3}y?0z?f(x,y)(d)曲线在(0,0,f(0,0))处的切向量为{3,0,1}y?0(3)设f(0)?0则f(x)在x=0处可导?f(1?cosh)(a)lim存在2h?0h(c)limh?0f(1?eh)(b) lim存在h?0h(d)limh?0f(h?sinh)存在h2111111111??4??1?0,b???01???1??00000000f(2h)?f(h)存在h?1?(4)设a??1?1??10??0?,则a与b 0??0?(a)合同且相似 (c)不合同但相似(b)合同但不相似 (d)不合同且不相似(5)将一枚硬币重复掷n次,以x和y分别表示正面向上和反面向上的次数, 则x和y相关系数为(a) -1 (c)(b)0 (d)11 2三、(本题满分6分)arctanex. 求?e2x四、(本题满分6分)【篇三:历年考研数学一真题及答案(1987-2015)】1987-2014 (经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?2z?11?1?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为此基底下的坐标是_____________.二、(本题满分8分) 求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)1(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中?301?a???110?,求矩阵 ?4?b.?01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处(a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极大值(c)f(x)取得极小值 (d)f(x)的导数不存在 (2)设f(x)为已知连续函数s,i?t?t0f(tx)dx,其中t?0,s?0,则i的值(a)依赖于s和t (b)依赖于s、t和x(c)依赖于t、x,不依赖于s (d)依赖于s,不依赖于t (3)设常数?k?0,则级数?(?1)nk?nn2n?1(a)发散(b)绝对收敛2(c)条件收敛(d)散敛性与k的取值有关(4)设a为n阶方阵,且a的行列式|a|?a?0,而a*六、(本题满分10分)求幂级数?a1n?1的收敛域,并求其和函数. xnn?2n?1?是a的伴随矩阵,则|a*|等于(a)a (b)1 (c)an?1七、(本题满分10分)求曲面积分i???x(8y?1)dydz?2(1?y2)dzdx?4yzdxdy,?(d)an??z?1?y?3f(x)?其中?是由曲线绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于?. ?2x?0??八、(本题满分10分)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f?(x)?1,证明在(0,1)内有且仅有一个x,使得f(x)?x.九、(本题满分8分)3问a,b为何值时,现线性方程组?x2?x3?x4?02?2x3?2x4?1x2?(a?3)x3?2x4?bx1?2x2?x3?ax4?? 1有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件a发生的概率为p,现进行n次独立试验,则a至少发生一次的概率为____________;而事件a至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量____________.4x的概率密度函数为f(x)??x2?2x?1,则x的数学期望为____________,x的方差为十一、(本题满分6分)设随机变量x,y相互独立,其概率密度函数分别为fx(x)?10?x?1,fy(y)? y?0,求z?2x?y的概率密度函数.?y其它y?05。
[考研类试卷]考研数学一(高等数学)历年真题试卷汇编20一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1 (00年)设S:x2+y2+z2=a2(z≥0),S1为S在第一卦限中的部分,则有二、填空题2 (93年)设数量场则div(gradu)=________.3 (94年)设区域D为x2+y2≤R2,则4 (98年)设l是椭圆其周长记为a,则(2xy+3x2+4y2)ds=_______.5 (01年)设则div(gradr)|(1,-2,2)=________.6 (01年)交换二次积分的积分次序:∫-10dy∫21-y f(x,y)dx=______.7 (04年)设L为正向圆周x2+y2=2在第一象限中的部分,则曲线积分∫L xdy一2ydx 的值为______三、解答题解答应写出文字说明、证明过程或演算步骤。
8 (91年)在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的积分∫L(1+y3)dx+(2x+y)dy 的值最小.9 (92年)计算曲面积分其中∑为上半球面的上侧.10 (92年)在变力F=yzi+xzj+xyk的作用下,质点由原点沿直线运动到椭球面=1上第一卦限点M(ξ,η,ζ),问当ξ,η,ζ取何值时,力F所作的功W最大?并求出W的最大值.11 (93年)计算2xzdydz+yzdzdx-z2dxdy。
其中∑是由曲面z=所围立体表面的外侧.12 (94年)计算曲面积分,其中S是由曲面x2+y2=R2及两平面z=R,z=-R(R>0)所围成立体表面的外侧.13 (95年)设函数f(x)在区间[0,1]上连续,并设∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.14 (95年)计算曲面积分其中∑为锥面在柱体x2+y2≤2x内的部分.15 (95年)设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy 求Q(x,y).16 (96年)计算曲面积分(2x+z)dydz+zdxdy,其中S为有向曲面z=x2+y2(0≤z≤1),其法向量与z轴正向的夹角为锐角.17 (97年)计算I=(x2+y2)dv,其中Ω为平面曲线绕z轴旋转一周形成的曲面与平面z=8所围成的区域.18 (97年)计算曲线积分(z一y)dx+(x—z)dy+(x—y)dz,其中c是曲线从z轴正向往z轴负向看c的方向是顺时针方向.19 (98年)确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj为某二元函数u(x,y)的梯度,求u(x,y).20 (98年)计算其中∑为下半球面的上侧,a为大于零的常数.21 (99年)求I=∫L(e x siny一b(x+y))dx+(e x cosy—ax)dy,其中a,b为正的常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.22 (99年)设S为椭球面的上半部分,点P(x,y,z)∈S,π为S在点P处的切平面,ρ(x,y,z)为点O(0,0,0)到平面π的距离,求23 (00年)计算曲线积分其中L是以点(1,0)为中心、R为半径的圆周(R>1)取逆时针方向.24 (00年)设有一半径为R的球体,P0是此球表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置.25 (01年)设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程z=h(t)一(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数为0.9),问高度为130厘米的雪堆全部融化需多少小时?26 (01年)计算I=(y2一z2)dx+(2z2一x2)dy+(3x2一y2)dz,其中L是平面x+y+z=2与柱面|x|+|y|=1的交线,从z轴正向看去,L为逆时针方向.27 (02年)计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.28 (02年)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记(1)证明曲线积分I与路径L无关;(2)当ab=cd时,求I的值.29 (03年)已知平面区域D=((x,y)|0≤x≤π,0≤y≤π},L为D的正向边界.试证:30 (03年)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2},(1)讨论F(t)在区间(0,+∞)内的单调性.(2)证明当t>0时,F(t)>。
考研高数试题及答案一、选择题(每题4分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)。
A. 3x^2-3B. 3x^2+3C. x^3-3D. x^3+3答案:A2. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1答案:A3. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,求a_5。
A. 17B. 15C. 13D. 11答案:A4. 设函数f(x)=x^2+2x+3,求f(-1)。
A. 4B. 2C. 0D. 1答案:A5. 求极限lim(x→0) (sin x)/x。
A. 0B. 1C. 2D. -1答案:B二、填空题(每题4分,共20分)6. 设函数f(x)=x^3-6x^2+11x-6,求f'(x)=______。
答案:3x^2-12x+117. 计算定积分∫(0,2) (x^2-2x+1) dx=______。
答案:48. 设数列{a_n}满足a_1=2,a_{n+1}=a_n+n,求a_5=______。
答案:159. 设函数f(x)=x^3-3x^2+2,求f'(1)=______。
答案:-110. 求极限lim(x→∞) (1+1/x)^x=______。
答案:e三、解答题(每题10分,共60分)11. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
当x<1或x>11/3时,f'(x)>0;当1<x<11/3时,f'(x)<0。
因此,x=1是极大值点,x=11/3是极小值点。
12. 计算定积分∫(1,3) (2x-1)/(x+1) dx。
答案:首先进行积分,∫(2x-1)/(x+1) dx = ∫(2-2/(x+1)) dx = 2x - 2ln|x+1| + C。
考研高数1试题及答案一、选择题(每题5分,共20分)1. 已知函数 \( f(x) = x^3 + 2x^2 - 5x + 1 \),下列选项中,\( f(x) \) 的导数正确的是:A. \( 3x^2 + 4x - 5 \)B. \( x^3 + 2x^2 - 5 \)C. \( 3x^2 + 2x - 5 \)D. \( 3x^3 + 4x^2 - 5x \)答案:A2. 设 \( A \) 是 \( 3 \times 3 \) 矩阵,\( \det(A) = 2 \),则\( \det(2A) \) 的值是:A. 4B. 8C. 16D. 32答案:B3. 计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{3} \)答案:B4. 已知 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 求定积分 \( \int_{0}^{1} (2x - 1) dx \) 的值是 _______。
答案:\( \frac{1}{2} \)2. 函数 \( y = \ln(x) \) 的定义域是 _______。
答案:\( (0, +\infty) \)3. 函数 \( y = e^x \) 的导数是 _______。
答案:\( e^x \)4. 已知 \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \),则\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是 _______。
答案:1三、解答题(每题10分,共60分)1. 求函数 \( f(x) = x^3 - 3x \) 在 \( x = 1 \) 处的切线方程。
1995一、 填空題(l)linj(l 十珂圭= _________ .⑵話(xcos 為 二 -----------(3)________________________________________ 设(axb)y = 2, PJ [(a 十E)x(b + c)]. (c 十a)二 ___________________________________________ . (4漏级数匕―“的收鈑半径R=— »-i 2K 4-(-3)(5)设三阶方阵几 呂满足关系式:A X BA = 6A ¥BA f 且4二0 |0,则£ = _______0 0 1L 7」二选择題(1)设有直J Z+3y+22 + 1= °及平面开:4x —S+"2 = 0,则直线L2x-y-\0z 十3 二 0(A)平行于兀(B)在幵上. (C)垂直于兀 (D)与幵斜交.⑵ 设在[0,l]±/(z)>0,则于(0)、/ (1).或于(0)-川1)的大小顺序是(B) /(I)〔C)/(I)-/(0) >/(I) >/ (0).⑶ 设/㈤可导,^(x)=/(x)(U|S inx|)?则/(0) = 0是只(刃在x=0处可导的(A)充分必妾条件.(B)充分条件但非必要条件. (C)必要条件但菲充分条件. (4)设乙=(-1)” lnll + 4-L 则级数 (A )ix 与都收敛»J x-1CD)既非充分条件又非必婪条件.(B )22与工":都发散.M-lW-1(C )乞均收敛而发数. »-1 »J•知 a 12 a u ~'两 如勺3 ''0 1(5)设山= 如如%宀°11a\l攵 131 0內% 抵_%+知知+牝勺.0 0(A) AP f P 2 = B(D)乞叫发散而文>/收敛.»-1 »-11 0 0 01p,= 01 0 ,则必有三r (1)设"/(兀”2),列尺此刀=0)"",其中£卩都具有一阶连续偏导数,且(2) 设函数j (兀)在区间[0,1]上连续,并设(兀” =/,求J ;必J :•/(”)dy. 四、(1)计算曲酝积分JJ 沁,其中2为链面n = +/在柱体“ +/ < 2尤內的部分.⑵将函^/(x) = x-l(0<x<2)展开成周期为4的余弦级敷£s 设曲线L 位于 © 平面的第一象限内,L 上任一点M 处的切线与丁轴总相交,崖点记为大、设函数e(^)在x6平面上具有—阶连续偏导数,曲线积分二2砂必+©(兀丿)勿与 路径无关,并且对任意(恒有J 爲2如+Q ("冷=打勿必+Q ("妙求0(5七.假设函数/(x)和gW 在血引上存在二阶导数,并且g S)羊 0,/(a)= /(Z?) = g(a) = g [b),试证:(1) 在开区间(a, b)內g(x)^O,(2)在开区间(a,b)內至少存在一点{,便4® ='黒.八、设三阶实对称矩阵月的特征值为兔二-1仏二為=1,对应于咎的特征向量为 fi=(o,i,i)r ,求 丸、设4是总阶袒阵,满S.AA^ = E 是n 阶单位阵,才是JL 的转置袒阵,同<0,求屮町 十、填空題(1)设X 表示10欢独立重复射击命中目标的次数,每次射中目标的概率为04则乂2的数学期望= _____________ :(2) 设区和卩沖两个随机变星,且P{X>^,Y> 0} = |,z D (^>0) = P{Y>0} =|■,则珂 m 盛(X 』)>0}= ________________ .AO)・+—、设随机变童X 的概率密度为以心=e求随机变的概率密度0, x<0,求匚的方程.境空題1996(1)设lim -———=8,则a = ________ .心叭丿(2)设一平面经过原点及点(6厂3,2),且与平面4"y + 2z = 8垂直,则此平面方程为(3)徽分方程” 一2/十2尸二护的通解为____ .⑷函数xln(x+如/)在4(1,0,1)点处沿/点指向的方向导数为____________________'1 0 2_(5)设/是4x3矩阵,且4的秩尸(4)=2,而&= 0 2 0 ,则尸(应戸__________ .-1 0 3_二、选择电(1)已知"十矽)彎闕为某函数的全微分,肌等于(A) -1. (B) 0. (C)L(2)设/㈤有二阶连续导数,且了・(0)丸」辄冷型(0)2. = 1J'J(A) 了(0)是/(x)的极大值.(B)/(0)是/O)的极小值.(C)(0丿(0))是曲;线尸/⑴的拐点.(D) /(0)不是/(刃的极值,(0?/(0))也不是曲线? = /(刃的拐点(3)设勺》0(之= 1,2,…),且乞务收敛,常数恥»-1,则级数办-W-1旳tan —”丿(A)绝对收敛(C)发散. (B)条件收敛. (D)敛散性与乂苞关⑷ 设于(对有连续的导数,/(0) = 0,no )",FO ) = J ;(/ —亦且当 ^0 时,F'W 是与八是同阶无穷小,贝W 等于(A ) 呦衍西可一对為妙4・ (B )向血旳引+$弘2境4・ (C ) @屁-址2)(a 3a 4 -舜』・(D )(a 佑-%)©冋-^4).三、(1)求心形线尸= N (1 + CO£&)的全长,其中d>0罡常数.(2)设再二10,和严庐云(“12…),试证数列OJ 的极限存在,并求此极限.四》(1)计算曲面积分JJ (2x+z 珈滋边,其中S 为有向曲面z = z 2+y 2(0 <z <1),5苴法向量弓Z 轴正向的夹角为锐角.(2)设变换卩r 一 °可把方程6芈4■共-字=0化简为二 =0,求常数<2.v = 7i+ay &7? dxdy dy dudvg 1丑、求级数迟―的利»-2\n - 1J 2六、 设对任意^>0,曲线7=/(x )上点(X ))处切线在y 轴上得截距等于£(讷,求 川力的一骰表达式.七、 设/(刃在[0,1]上具育二阶导数,且满足条件其中久b 都是菲负 常数,C 杲(0,1)内任意一点,证明|/ C )|£2a+#八、设A = E-if 其中E 是兀阶单位矩阵,£是诡隹菲列向星,的转暨,证明:(1)A^=A 的充要条件是= 1,⑵当严.1时,/是不可逆矩阵.九、已知二次型/ (心勺,兀3)二+ 5才+込2 - 2再x 2 + 6忑再-心2兀3的秩为2.(1) 求参数疋及此二次型对应拒阵的特征值; (2) 指出方程/ (丙,花,心)=1表示何种二次曲阪卜填空題(1)设工厂/和工厂3的产品率分别为1%和2%,现从由虫和E 的产品分别占60%和40%的一批产品中腿机抽取一件,发现是次品,则该次品属上产品的概率是 ________ •⑸四阶行列式00对 K 0J 「的值等于 a 3 0 0 a 4Q)设{力是两个相互独立且均服从正态分布N °(金)的随机变壘,则随机变壘$-乃| 的数学期望列歹-引)= ______________+•—、设密乃是两个相互独立且服从同一分布的两个随机变量,已知g的分布律为卩{§“} = +,2 1,2,3,又设叭,丫=坨皿(右再).(1)写出二维随机变壘(X,F)的分布律;(2)求随机变壘X的数学期望超(用).1997一、填空題3stn. A H- x2 cos —(1)lim ---------- 二―;~~—5 (1 + cos 力In. (1 4-x)则霧级数(X- 1)出的收敛区间为. X-1g(2)设舄级数乞耳F的收敛半径为3,(3)对数蠟鏡在点处切线的直角坐标方程为.1 2 -2(4)设/= 4 L 3』为三阶非零袒阵,且肋=0,则七=3-1 10)袋中有50个乒乓球,其中20个是黄球,兀个是白球,今有两人依空随机地丛袋中各取一球,取后不诙回,则第二个人取得黃球的概率是______ .二、选择题(1) —兀函数 * x -+y ,在点(0,0)处0,(兀巧二(0,0)(A )连续,偏导数存在. (B )连续,偏导数不存在. (C )不连续,偏导数存在.(D )不连缤,偏导数不存在.(2) 设在区间[<2,Z J ]±/(J ) > 0,/(x ) < 0,/' (x )> 0,令 国*®)。
高数1考研试题及答案模拟试题:高等数学一一、选择题(每题3分,共30分)1. 下列函数中,满足f(-x) = f(x)的是()。
A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 曲线y = x^3在点(1,1)处的切线斜率为()。
A. 0B. 3C. 2D. 13. 设函数f(x)在点x=a处连续且可导,若lim (x→a) [f(x) - f(a)]/(x-a) = 3,则f'(a)的值为()。
A. 2B. 3C. 4D. 54. 定积分∫[0,1] x^2 dx的值为()。
A. 1/3B. 1/2C. 2/3D. 3/45. 设数列{an}满足a1 = 1,an+1 = √(an) + 1,若lim (n→∞) an = a,则a的值为()。
A. 1B. 2C. 3D. 46. 设函数f(x)在区间[a, b]上单调递增,若f(x)在x=c处取得最大值,则c()。
A. 一定等于aB. 一定等于bC. 属于区间(a, b)D. 可能属于[a, b],也可能属于(a, b]7. 二阶常系数线性微分方程y'' - 3y' + 2y = 0的特征方程为()。
A. r^2 - 3r + 2 = 0B. r^2 - 3r = 0C. r^2 + 2r - 3 = 0D. r^2 - 2r - 3 = 08. 设函数f(x)在点x=x0处可导,且f'(x0) ≠ 0,则f(x)在点x=x0处()。
A. 一定连续B. 一定不可导C. 一定是极值点D. 一定是拐点9. 利用分部积分法计算定积分∫[0,π] sin(x) dx,得到的结果为()。
A. -cos(x)|0^πB. 2C. -2D. π10. 设函数f(x)在区间[a, b]上连续,要使∫[a, b] f(x) dx存在,则必须有()。
A. f(x)在[a, b]上可导B. f(x)在[a, b]上单调递增C. f(x)在[a, b]上无间断点D. f(x)在[a, b]上的每一点都有定义答案:1. B2. B3. B4. A5. B6. D7. A8. A9. A10. D二、填空题(每题4分,共20分)11. 设函数f(x) = x^2 - 4x,则f(x)的最小值是________。
1995一、 填空題(l)linj(l 十珂圭= _________ .⑵話(xcos 為 二 -----------(3)________________________________________ 设(axb)y = 2, PJ [(a 十E)x(b + c)]. (c 十a)二 ___________________________________________ . (4漏级数匕―“的收鈑半径R=— »-i 2K 4-(-3)(5)设三阶方阵几 呂满足关系式:A X BA = 6A ¥BA f 且4二0 |0,则£ = _______0 0 1L 7」二选择題(1)设有直J Z+3y+22 + 1= °及平面开:4x —S+"2 = 0,则直线L2x-y-\0z 十3 二 0(A)平行于兀(B)在幵上. (C)垂直于兀 (D)与幵斜交.⑵ 设在[0,l]±/(z)>0,则于(0)、/ (1).或于(0)-川1)的大小顺序是(B) /(I)〔C)/(I)-/(0) >/(I) >/ (0).⑶ 设/㈤可导,^(x)=/(x)(U|S inx|)?则/(0) = 0是只(刃在x=0处可导的(A)充分必妾条件.(B)充分条件但非必要条件. (C)必要条件但菲充分条件. (4)设乙=(-1)” lnll + 4-L 则级数 (A )ix 与都收敛»J x-1CD)既非充分条件又非必婪条件.(B )22与工":都发散.M-lW-1(C )乞均收敛而发数. »-1 »J•知 a 12 a u ~'两 如勺3 ''0 1(5)设山= 如如%宀°11a\l攵 131 0內% 抵_%+知知+牝勺.0 0(A) AP f P 2 = B(D)乞叫发散而文>/收敛.»-1 »-11 0 0 01p,= 01 0 ,则必有三r (1)设"/(兀”2),列尺此刀=0)"",其中£卩都具有一阶连续偏导数,且(2) 设函数j (兀)在区间[0,1]上连续,并设(兀” =/,求J ;必J :•/(”)dy. 四、(1)计算曲酝积分JJ 沁,其中2为链面n = +/在柱体“ +/ < 2尤內的部分.⑵将函^/(x) = x-l(0<x<2)展开成周期为4的余弦级敷£s 设曲线L 位于 © 平面的第一象限内,L 上任一点M 处的切线与丁轴总相交,崖点记为大、设函数e(^)在x6平面上具有—阶连续偏导数,曲线积分二2砂必+©(兀丿)勿与 路径无关,并且对任意(恒有J 爲2如+Q ("冷=打勿必+Q ("妙求0(5七.假设函数/(x)和gW 在血引上存在二阶导数,并且g S)羊 0,/(a)= /(Z?) = g(a) = g [b),试证:(1) 在开区间(a, b)內g(x)^O,(2)在开区间(a,b)內至少存在一点{,便4® ='黒.八、设三阶实对称矩阵月的特征值为兔二-1仏二為=1,对应于咎的特征向量为 fi=(o,i,i)r ,求 丸、设4是总阶袒阵,满S.AA^ = E 是n 阶单位阵,才是JL 的转置袒阵,同<0,求屮町 十、填空題(1)设X 表示10欢独立重复射击命中目标的次数,每次射中目标的概率为04则乂2的数学期望= _____________ :(2) 设区和卩沖两个随机变星,且P{X>^,Y> 0} = |,z D (^>0) = P{Y>0} =|■,则珂 m 盛(X 』)>0}= ________________ .AO)・+—、设随机变童X 的概率密度为以心=e求随机变的概率密度0, x<0,求匚的方程.境空題1996(1)设lim -———=8,则a = ________ .心叭丿(2)设一平面经过原点及点(6厂3,2),且与平面4"y + 2z = 8垂直,则此平面方程为(3)徽分方程” 一2/十2尸二护的通解为____ .⑷函数xln(x+如/)在4(1,0,1)点处沿/点指向的方向导数为____________________'1 0 2_(5)设/是4x3矩阵,且4的秩尸(4)=2,而&= 0 2 0 ,则尸(应戸__________ .-1 0 3_二、选择电(1)已知"十矽)彎闕为某函数的全微分,肌等于(A) -1. (B) 0. (C)L(2)设/㈤有二阶连续导数,且了・(0)丸」辄冷型(0)2. = 1J'J(A) 了(0)是/(x)的极大值.(B)/(0)是/O)的极小值.(C)(0丿(0))是曲;线尸/⑴的拐点.(D) /(0)不是/(刃的极值,(0?/(0))也不是曲线? = /(刃的拐点(3)设勺》0(之= 1,2,…),且乞务收敛,常数恥»-1,则级数办-W-1旳tan —”丿(A)绝对收敛(C)发散. (B)条件收敛. (D)敛散性与乂苞关⑷ 设于(对有连续的导数,/(0) = 0,no )",FO ) = J ;(/ —亦且当 ^0 时,F'W 是与八是同阶无穷小,贝W 等于(A ) 呦衍西可一对為妙4・ (B )向血旳引+$弘2境4・ (C ) @屁-址2)(a 3a 4 -舜』・(D )(a 佑-%)©冋-^4).三、(1)求心形线尸= N (1 + CO£&)的全长,其中d>0罡常数.(2)设再二10,和严庐云(“12…),试证数列OJ 的极限存在,并求此极限.四》(1)计算曲面积分JJ (2x+z 珈滋边,其中S 为有向曲面z = z 2+y 2(0 <z <1),5苴法向量弓Z 轴正向的夹角为锐角.(2)设变换卩r 一 °可把方程6芈4■共-字=0化简为二 =0,求常数<2.v = 7i+ay &7? dxdy dy dudvg 1丑、求级数迟―的利»-2\n - 1J 2六、 设对任意^>0,曲线7=/(x )上点(X ))处切线在y 轴上得截距等于£(讷,求 川力的一骰表达式.七、 设/(刃在[0,1]上具育二阶导数,且满足条件其中久b 都是菲负 常数,C 杲(0,1)内任意一点,证明|/ C )|£2a+#八、设A = E-if 其中E 是兀阶单位矩阵,£是诡隹菲列向星,的转暨,证明:(1)A^=A 的充要条件是= 1,⑵当严.1时,/是不可逆矩阵.九、已知二次型/ (心勺,兀3)二+ 5才+込2 - 2再x 2 + 6忑再-心2兀3的秩为2.(1) 求参数疋及此二次型对应拒阵的特征值; (2) 指出方程/ (丙,花,心)=1表示何种二次曲阪卜填空題(1)设工厂/和工厂3的产品率分别为1%和2%,现从由虫和E 的产品分别占60%和40%的一批产品中腿机抽取一件,发现是次品,则该次品属上产品的概率是 ________ •⑸四阶行列式00对 K 0J 「的值等于 a 3 0 0 a 4Q)设{力是两个相互独立且均服从正态分布N °(金)的随机变壘,则随机变壘$-乃| 的数学期望列歹-引)= ______________+•—、设密乃是两个相互独立且服从同一分布的两个随机变量,已知g的分布律为卩{§“} = +,2 1,2,3,又设叭,丫=坨皿(右再).(1)写出二维随机变壘(X,F)的分布律;(2)求随机变壘X的数学期望超(用).1997一、填空題3stn. A H- x2 cos —(1)lim ---------- 二―;~~—5 (1 + cos 力In. (1 4-x)则霧级数(X- 1)出的收敛区间为. X-1g(2)设舄级数乞耳F的收敛半径为3,(3)对数蠟鏡在点处切线的直角坐标方程为.1 2 -2(4)设/= 4 L 3』为三阶非零袒阵,且肋=0,则七=3-1 10)袋中有50个乒乓球,其中20个是黄球,兀个是白球,今有两人依空随机地丛袋中各取一球,取后不诙回,则第二个人取得黃球的概率是______ .二、选择题(1) —兀函数 * x -+y ,在点(0,0)处0,(兀巧二(0,0)(A )连续,偏导数存在. (B )连续,偏导数不存在. (C )不连续,偏导数存在.(D )不连缤,偏导数不存在.(2) 设在区间[<2,Z J ]±/(J ) > 0,/(x ) < 0,/' (x )> 0,令 国*®)。
—町吗二 £[了⑷则 (A )色 <^2 <足. ①)禺 <s 3(C)易⑶设F (x) = C ,则F (x)(A )为正常数.(D )不为常数(C )秩厂(%电,说)=秩厂临,禺) (D ) %,色,函线性相关,q,禺线性无关.(5)设两个相互独立的随机变壘X 和y 的方差分别为4和2,则随机变量3Z-2F 的方■差是 (A ) S. (E ) 16. (C ) 28(D ) 44.三、(1)计算心j]jx+屛)诃,其中。
为平面曲线y:2■绕z 轴旋转一周形成的曲面 c x =0 与平ffiz = 8所围成的区域.⑵计算曲鏡积分0(z-尹妙+(" Z )旳+("刃也其中C 是曲线. 从Z 轴正向往Z 轴负向音C 的芳向是顺时针的.(3)在某一人群中推广新技术是通过其中拿握新技术的人迸行的,设该人群的总人数为M 在盘=0时刻已拿握新技术的人数为牝,在任意时刻2已掌握新技术的人数为側(将;<£)视为 连续可襯变壘),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数 k > 0,求x 〔Z ).四、(1)设直线/;十在平面;T 上,而平面;7与曲面+/相切于点x+ay-z-3 = 0(B )为负常数.(其中匂2十弹芒0, ) = 1,2;)交于一点的充要条件是(A ) %给函线性相关.(B )蟻碍耳线性无关.(C 〉恒为零.(2)设函数/㈤ 具有二阶连续导瓠 而"刃化1心)满足方程/W-五■设了⑴洼续,0⑴二仪)必,且坯型二/"为常数),求3⑴并讨论讥M X 在*0处的连续性.六、设© = 2,a*+i =』色十丁 |,(必=1,2,…),证明;(1) lim a 存在;七.(1)设E 是秩为2的头4矩阵,丐二(1丄2,3)『,色二(-1丄4厂1)「心二(5,-1,-瓦9)厂是齐次方程组X = 0的解向墨 求必=0的解空间的一个标准正交基(I ) 试确定参馥伉』及特征向壘:所对应的持征值; (ID 间/能否相似于对弟阵?说明理由.人 设4是七阶可逆方阵,将丿的第佑和第J 行对换后得到的矩阵为R(1) 证明§可逆; (2) 求 AB~\九・夙学校乘汽车到火车站的途中有3个交通岗,假设再各个交通岗遇到红灯的事件是彖话2独立的,并且概率都是设X 为途中遇到红灯的次数,求随机变重X 的分布律、分布函数和数学期望.十•设总体无的槪率密度为0,其他其中8>-1是未知参航 兀乃厂•心是来自总体X 的一个容壘为M 的简单随机样轧 分别 用矩估计法和极大似然估计法求&的估计值.⑵级数乞|电-1| 小如丿 收敛.■ 1 ■"2〔2)已知f= 1 是袒阵用二 5-1■ ■-1 ■=Z,求a 3的一个持征向壘.b -21998(1)limvn^+vpi-2=5X 2 1刀2⑵ 设2二丄砂)+坤(卄巧/0具有二阶连续导数,则等二 ____________________ •A dxoy2 2(3) 设/为椭圆—+ ^-=17其周长记为乞则^(2xy+3?+4/^= ________________ .4 3 / (4) 设虫是力阶矩阵,国工0,才为4的伴随距阵,总为左阶单位矩阵若川有特征值九则(才丫 +丑必有特征值 _____(5) 设平面区域D 由曲^7=丄及直线J = O^=1,X=.2所围成,二维随机变壘(X,y)在X 区域D 上服从均匀分帘,贝y (y,r)关于x 的边缘概率密度S A = 2处的值为 __________ 二、(1)设/(刃连续,则巩宀严等于 (A)(B)—(C)(D) —2h (丿)(2) »/W = (?-z-2)眉-x\不可导点的个数罡(典)3.(B) 2. (C) 1. (D) 0.⑶ 已知函在任意点x 处的増堇/笃+爼且当"TO 时,茂是"的高 1十X阶无穷小,/ (O) = 7V,则尸⑴等于x_&] _ yp _ z_C] ©2_勺 玄 _鸟 C 2 — C7j (A)相交于一点. (B)重合. (C)平行但不重合.(C)异面. ⑸设/、0 是两个随机事件,且 0 <P(A)> 0,P(5M) =11)(A) P^A\B) = PiA\B)(A) 2开.(B)咒.Z(C) /・(D)开/是满秩的,则直线3兰二吕二学5一他心一爲与直线(C)尸⑷)"(£)中).(D)F (£B )H P (/)F (B ).© \⑷设矩阵勺俎三、 求直线八罕1 =寸=二在平酝开:—严2一1=0上投影直线%的方程,并求%绕沪11—1轴旋转一周所戚曲面的芳程.四、 确定常数见使在右半平面A >0±的向壘2^(/十十尹2『』为 某二元函数讥心刃的梯虧 并求讥砂)•五、 从船上向海中況淡某种探测仪器,按探测要求,需确定仪器的下沉深度尸(从海平酝算 起)与下況遠度卩之间的函数关系•设仪器在重力作用下,从海平面由静止开始铅直下況,在 下沉过程中还受到阻力和浮力的作用•设仪器的质量为琳体积为耳海水比重为Q,仪器所受 的阻力与下沉谨度成正比,比例系数为上(上:>0).试建立丁与卩所满足的徽分方程,并求出函 数关系式y = y(y ).六■计算JJ 兰込血华:其中功下半球面“一产匸7的上侧,a 汽大2 (戏+才+‘尸 于零的常数.八、设正项数列单调减少,且发散,试问级数E»-1 «-1明理由.九.设y=f [x )是区间[0,1]上的任一非负连续函数.(1)试证存在忌£01),使得再区间口厲]上以了(毛)为高的袒形酝积,等于再区间[心,1]上以卩=于⑴为曲边的梯形面积.(2)衣设了㈤在区间(0,1)內可导,且于@)>-空也,证明(1)中的勺试唯一的.十.已知二次曲面方程7?十矽2十z ,十2如y 十2血十2yz = 4,可以经过正交变换■ ■X■ ■y=p◎Z化为椭圆柱面方程乃2十4严=4,求a/的值和正交拒阵F十一・设月是刃阶矩阵,若存在正整奴匕使线性方程组才&二0有解向重◎,且卅1切0,• 幵 sin— « □ 2/r sin —— L « 12七.求li m«->C0sinTT…十尬十一n _是否收敛?并说证明’向量组0/0…,加匕是线性无关的.十二■已知线性方程组a i 1^1 十。