2018年中考数学真题分类汇编第三期专题19相交线与平行线试题含解析20190124399
- 格式:docx
- 大小:85.95 KB
- 文档页数:9
相交线与平行线一.选择题1.(2019•浙江宁波•4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【分析】先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED =70°.【解答】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.2(2019•湖北十堰•3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.【解答】解:∵直线AB⊥AC,∴∠2+∠3=90°.∵∠1=50°,∴∠3=90°﹣∠1=40°,∵直线a∥b,∴∠1=∠3=40°,故选:C.【点评】本题考查了平行线的性质,余角角的定义,熟记性质并准确识图是解题的关键.3 (2019•湖北天门•3分)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A.20°B.25°C.30°D.35°【分析】根据平行线的性质解答即可.【解答】解:∵CD∥AB,∴∠AOD+∠D=180°,∴∠AOD=70°,∴∠DOB=110°,∵OE平分∠BOD,∴∠DOE=55°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣55°=35°,∴∠AOF=70°﹣35°=35°,故选:D.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4 (2019•湖北孝感•3分)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.5. (2019•湖南衡阳•3分)如图,已知AB∥CD,AF交CD于点E,且BE⊥AF,∠BED=40°,则∠A的度数是()A.40°B.50°C.80°D.90°【分析】直接利用垂线的定义结合平行线的性质得出答案.【解答】解:∵BE⊥AF,∠BED=40°,∴∠FED=50°,∵AB∥CD,∴∠A=∠FED=50°.故选:B.【点评】此题主要考查了平行线的性质以及垂线的定义,正确得出∠FED的度数是解题关键.6 (2019•江苏苏州•3分)如图,已知直线//,分别交于点A B,.若a b,直线c与直线a b∠=o,则2154∠=()A .126oB .134oC .136oD .144oa【分析】考察平行线的性质,简单题型【解答】根据对顶角相等得到1354∠=∠=o根据两直线平行,同旁内角互补得到32180∠+∠=o所以218054126∠=-=o o o故选Aa7. (2019•山东省滨州市 •3分)如图,AB ∥CD ,∠FGB =154°,FG 平分∠EFD ,则∠AEF 的度数等于( )A .26°B .52°C .54°D .77°【考点】平行线的性质【分析】先根据平行线的性质,得到∠GFD 的度数,再根据角平分线的定义求出∠EFD 的度数,再由平行线的性质即可得出结论.【解答】解:∵AB ∥CD ,∴∠FGB +∠GFD =180°,∴∠GFD =180°﹣∠FGB =26°,∵FG 平分∠EFD ,∴∠EFD =2∠GFD =52°,∵AB∥CD,∴∠AEF=∠EFD=52°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等;两直线平行,同旁内角互补.8. (2019•山东省济宁市•3分)如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数是()A.65°B.60°C.55°D.75°【考点】平行线的性质【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点评】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9(2019▪广西池河▪3分)如图,∠1=120°,要使a∥b,则∠2的大小是()A.60°B.80°C.100°D.120°【分析】根据同位角相等,两直线平行即可求解.【解答】解:如果∠2=∠1=120°,那么a∥b.所以要使a∥b,则∠2的大小是120°.故选:D.【点评】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.10.(2019,山西,3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【解析】∵AB=AC且∠A=30°,∴∠ACB=75°.在△ADE中:∠1=∠A+∠3,∴∠3=115°∵a∥b,∴∠3=∠2+∠ACB,∴∠2=40°11.(2019,山东淄博,4分)如图,小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20方向行走至点C处,则∠ABC等于()A.130°B.120°C.110°D.100°【分析】根据平行线性质求出∠ABE,再求出∠EBC即可得出答案.【解答】解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20方向行走至点C处,∴∠DAB=40°,∠CBF=20°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∵∠EBF=90°,∴∠EBC=90°﹣20°=70°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.【点评】本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.12. (2019•湖南长沙•3分)如图,平行线AB,CD被直线AE所截,∠1=80°,则∠2的度数是()A.80°B.90°C.100°D.110°【分析】直接利用邻补角的定义结合平行线的性质得出答案.【解答】解:∵∠1=80°,∴∠3=100°,∵AB∥CD,故选:C.【点评】此题主要考查了平行线的性质以及邻补角的定义,正确掌握平行线的性质是解题关键.13. (2019•湖南邵阳•3分)如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A.∠l=∠2 B.∠2=∠3 C.∠2+∠4=180°D.∠1+∠4=180°【分析】由三线八角以及平行线的性质可知,A,B,C成立的条件题目并没有提供,而D选项中邻补角的和为180°一定正确.【解答】解:∠1与∠2是同为角,∠2与∠3是内错角,∠2与∠4是同旁内角,由平行线的性质可知,选项A,B,C成立的条件为l1∥l2时,而∠1与∠4是邻补角,故D正确.故选:D.【点评】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.14(2019•湖南湘西州•4分)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为()A.40°B.90°C.50°D.100°【分析】根据平行线的性质即可得到∠4的度数,再根据平角的定义即可得到∠3的度数.【解答】解:∵a∥b,∵∠2=40°,∴∠3=90°,故选:B.【点评】本题考查平行线的性质,解题的关键是熟练掌握平行线的性质.15 (2019•湖南湘西州•4分)下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.圆内接四边形对角相等【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;即可得出答案.【解答】解:A/同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点评】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;要熟练掌握.15. (2019•湖南岳阳•3分)如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是()A.20°B.25°C.30°D.50°【分析】直接利用角平分线的定义结合平行线的性质分析得出答案.【解答】解:∵BE 平分∠ABC ,∠ABC =50°,∴∠ABE =∠EBC =25°,∵BE ∥DC ,∴∠EBC =∠C =25°.故选:B .【点评】此题主要考查了平行线的性质,得出∠EBC =25°是解题关键.16 (2019•甘肃•3分)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( )A .48°B .78°C .92°D .102°【分析】直接利用已知角的度数结合平行线的性质得出答案.【解答】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°, ∴∠2=∠3=180°﹣48°﹣30°=102°.故选:D .【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.17. (2019•广东深圳•3分)如图,已知AB l 1,AC 为角平分线,下列说法错误的是( )A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B.18. (2019•广西贵港•3分)如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6,则线段CD的长为()A.2B.3C.2D.5【分析】设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出=,从而可求出CD的长度.【解答】解:设AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴DE=4,=,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴=,设AE=2y,AC=3y,∴=,∴AD=y,∴=,∴CD=2,故选:C.二.填空题1(2019•南京•2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵∠1+∠3=180°,∴a∥b.【分析】两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.【解答】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平).故答案为:∠1+∠3=180°.【点评】本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.2 (2019•广东•4分)如图,已知a∥b,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质3 (2019•广西贵港•3分)如图,直线a∥b,直线m与a,b均相交,若∠1=38°,则∠2=142°.【分析】如图,利用平行线的性质得到∠2=∠3,利用互补求出∠3,从而得到∠2的度数.【解答】解:如图,∵a∥b,∴∠2=∠3,∵∠1+∠3=180°,∴∠2=180°﹣38°=142°.故答案为142°.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.三.解答题1. (2019•湖北天门•8分)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.【分析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;(2)延长AB至点P,使BP=BE,连接EP,则AP=CE,∠EBP=90°,证明△APE ≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,∴AE⊥EG,∴AE⊥BF;(2)延长AB至点P,使BP=BE,连接EP,如图所示:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的平分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,在△APE和△ECG中,,∴△APE≌△ECG(ASA),∴AE=EG,∵AE=BF,∴EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定、平行线的性质等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.2. (2019•湖北天门•10分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:y=25t2﹣80t+100(0≤t≤4);(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y 关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD =6,由CB∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC 的值,由OF=OD•cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(3t,0),点Q的坐标为(8﹣2t,6),∴PE=6,EQ=|8﹣2t﹣3t|=|8﹣5t|,∴PQ2=PE2+EQ2=62+|8﹣5t|2=25t2﹣80t+100,∴y=25t2﹣80t+100(0≤t≤4).故答案为:y=25t2﹣80t+100(0≤t≤4).(2)当PQ=3时,25t2﹣80t+100=(3)2,整理,得:5t2﹣16t+11=0,解得:t1=1,t2=.(3)经过点D的双曲线y=(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=6,BC=8,∴OB==10.∵BQ∥OP,∴△BDQ∽△ODP,∴===,∴OD=6.∵CB∥OA,∴∠DOF=∠OB C.在Rt△OBC中,sin∠OBC===,cos∠OBC===,∴OF=OD•cos∠OBC=6×=,DF=OD•sin∠OBC=6×=,∴点D的坐标为(,),∴经过点D的双曲线y=(k≠0)的k值为×=.【点评】本题考查了勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=3时t 的值;(3)利用相似三角形的性质及解直角三角形,找出点D的坐标.3. (2019•湖北武汉•8分)如图,点A.B.C.D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E=∠F.【解答】解:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形内角和定理.4. (2019•湖南衡阳•8分)如图,点A.B.C在半径为8的⊙O上,过点B作BD∥AC,交OA延长线于点D.连接BC,且∠BCA=∠OAC=30°.(1)求证:BD是⊙O的切线;(2)求图中阴影部分的面积.【分析】(1)连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;(2)根据平行线的性质得到∠=30°,解直角三角形求出BD,分别求出△BOD的面积和扇形AOB的面积,即可得出答案.【解答】(1)证明:连接OB,交CA于E,∵∠C=30°,∠C=∠BOA,∴∠BOA=60°,∵∠BCA=∠OAC=30°,∴∠AEO=90°,即OB⊥AC,∵BD∥AC,∴∠DBE=∠AEO=90°,∴BD是⊙O的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠D=∠CAO=30°,∵∠OBD=90°,OB=8,∴BD=OB=8,∴S阴影=S△BDO﹣S扇形AOB=×8×8﹣=32﹣.【点评】本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.。
相交线与平行线一.选择题1.(2018·广西贺州·3分)如图,下列各组角中,互为对顶角的是()【解答】解:互为对顶角的是:∠1和∠2.故选:A.2. (2018·湖北江汉·3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.3. (2018·湖北荆州·3分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A.B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45° B.55° C.65° D.75°【解答】解:∵l1∥l2,∴∠1+∠CAB=∠2,∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故选:C.4. (2018·湖北十堰·3分)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62° B.108°C.118°D.152°【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE.【解答】解:如图,∵AB∥CD,∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.(2018·四川省攀枝花·3分)如图,等腰直角三角形的顶点A.C分别在直线A.b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°.∵a∥b,∴∠ACD=180°﹣120°=60°,∴∠2=∠ACD﹣∠ACB=60°﹣45°=15°;故选B.6. (2018•莱芜•3分)如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°【分析】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF=(∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出结论.【解答】解:如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠B ED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=(∠ABE+∠CDE)=149.5°,∵四边形的BFDE的内角和为360°,∴∠BFD=360°﹣149.5°﹣61°=149.5°.故选:B.【点评】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.7. (2018•陕西•3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2.∠3.∠4.∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.(2018·湖北咸宁·3分)如图,已知a∥b,l与A.b相交,若∠1=70°,则∠2的度数等于()A. 120°B. 110°C. 100°D. 70°【答案】B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.9.(2018·辽宁大连·3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°解:如图,∵△ABC是等腰直角三角形,∴∠1=45°.∵l∥l',∴∠α=∠1=45°.故选A.二.填空题1.(2018·辽宁省沈阳市)(2.00分)如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60° B.100°C.110°D.120°【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2018·辽宁省葫芦岛市) 如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【解答】解:∵∠CDE=165°,∴∠ADE=15°.∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°.故选D.3.(2018·辽宁省阜新市)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF 交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°.又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°.故答案为:52°.4. (2018•广安•3分)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC= 120 度.【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【解答】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【点评】此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.三.解答题1.(2018·重庆市B卷)(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,。
第五章相交线与平行线班级:姓名:分数:1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥ 90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠//,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。
学习资料专题2019中考数学试题分类汇编:考点18相交线与平行线一.选择题(共30小题)1.(2019•邵阳)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20° B.60° C.70° D.160°【分析】根据对顶角相等解答即可.【解答】解:∵∠AOD=160°,∴∠BOC=∠AOD=160°,故选:D.2.(2019•滨州)如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.3.(2019•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14° B.16° C.90°﹣α D.α﹣44°【分析】依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°.【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.4.(2019•怀化)如图,直线a∥b,∠1=60°,则∠2=()A.30° B.60° C.45° D.120°【分析】根据两直线平行,同位角相等即可求解.【解答】解:∵a∥b,∴∠2=∠1,∵∠1=60°,∴∠2=60°.故选:B.5.(2019•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.6.(2019•绵阳)如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是()A.14° B.15° C.16° D.17°【分析】依据∠A BC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【解答】解:如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.7.(2019•泸州)如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50° B.70° C.80° D.110°【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD=∠CAD=50°,进而得出答案.【解答】解:∵∠BAC的平分线交直线b于点D,∴∠BAD=∠CAD,∵直线a∥b,∠1=50°,∴∠BAD=∠CAD=50°,∴∠2=180°﹣50°﹣50°=80°.故选:C.8.(2019•乌鲁木齐)如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【解答】解:∵直尺对边互相平行,∴∠3=∠1=50°,∴∠2=180°﹣50°﹣90°=40°.故选:C.9.(2019•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42° B.50° C.60° D.68°【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:C.10.(2019•衢州)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【分析】由折叠可得,∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.11.(2019•新疆)如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85° B.75° C.60° D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.12.(2019•铜仁市)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.13.(2019•黔南州)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30° B.60° C.90° D.120°【分析】根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,再根据角平分线的概念,得:∠BDE=∠ADB=30°,再根据两条直线平行,内错角相等得:∠DEC=∠ADE=60°,故选:B.14.(2019•郴州)如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180°C.∠5=∠4 D.∠1=∠3【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行,进行判断即可.【解答】解:由∠2=∠4或∠1+∠4=180°或∠5=∠4,可得a∥b;由∠1=∠3,不能得到a∥b;故选:D.15.(2019•杭州)若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN【分析】根据垂线段最短解答即可.【解答】解:因为线段AM,AN分别是△ABC的BC边上的高线和中线,所以AM≤AN,故选:D.16.(2019•衢州)如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5【分析】根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.【解答】解:由同位角的定义可知,∠1的同位角是∠4,故选:C.17.(2019•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30° B.40° C.50° D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.18.(2019•自贡)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是()A.50° B.45° C.40° D.35°【分析】直接利用平行线的性质结合已知直角得出∠2的度数.【解答】解:由题意可得:∠1=∠3=55°,∠2=∠4=90°﹣55°=35°.故选:D.19.(2019•十堰)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62° B.108°C.118°D.152°【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE.【解答】解:如图,∵AB∥CD,∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°,故选:C.20.(2019•东营)下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.【分析】两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,据此进行判断即可.【解答】解:A.根据AB∥CD,能得到∠1+∠2=180°,故本选项不符合题意;B.如图,根据AB∥CD,能得到∠3=∠4,再根据对顶角相等,可得∠1=∠2,故本选项符合题意;C.根据AC∥BD,能得到∠1=∠2,故本选项不符合题意;D.根据AB平行CD,不能得到∠1=∠2,故本选项不符合题意;故选:B.21.(2019•临沂)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42° B.64° C.74° D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.22.(2019•恩施州)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【分析】如图求出∠5即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.23.(2019•枣庄)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20° B.30° C.45° D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.24.(2019•内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.25.(2019•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.26.(2019•淮安)如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35° B.45° C.55° D.65°【分析】求出∠3即可解决问题;【解答】解:∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.27.(2019•广州)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可.【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故选:B.28.(2019•荆门)已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80° B.70° C.85° D.75°【分析】想办法求出∠5即可解决问题;【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A.29.(2019•随州)如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【分析】过点C作CD∥a,再由平行线的性质即可得出结论.【解答】解:如图,过点C作CD∥a,则∠1=∠ACD.∵a∥b,∴CD∥b,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故选:A.30.(2019•遵义)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35° B.55° C.56° D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.二.填空题(共13小题)31.(2019•河南)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC 的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.32.(2019•湘西州)如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D= 60°.【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【解答】解:∵DA⊥CE,∴∠D AE=90°,∵∠EAB=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为:60°.33.(2019•盐城)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2= 85°.【分析】直接利用三角形外角的性质结合平行线的性质得出答案.【解答】解:∵∠1=40°,∠4=45°,∴∠3=∠1+∠4=85°,∵矩形对边平行,∴∠2=∠3=85°.故答案为:85°.34.(2019•柳州)如图,a∥b,若∠1=46°,则∠2= 46 °.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.35.(2019•杭州)如图,直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2= 135°.【分析】直接利用平行线的性质结合邻补角的性质得出答案.【解答】解:∵直线a∥b,∠1=45°,∴∠3=45°,∴∠2=180°﹣45°=135°.故答案为:135°.36.(2019•衡阳)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为75°.【分析】先根据BC∥DE及三角板的度数求出∠EAB的度数,再根据三角形内角与外角的性质即可求出∠AFC的度数.【解答】解:∵BC∥DE,△ABC为等腰直角三角形,∴∠FBC=∠EAB=(180°﹣90°)=45°,∵∠AFC是△AEF的外角,∴∠AFC=∠FAE+∠E=45°+30°=75°.故答案为:75°.37.(2019•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为70°.【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.38.(2019•湘潭)如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE .(任意添加一个符合题意的条件即可)【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断.【解答】解:若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)39.(2019•淄博)如图,直线a∥b,若∠1=140°,则∠2= 40 度.【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案.∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.40.(2019•苏州)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为80 °.【分析】依据DE∥AF,可得∠BED=∠BFA,再根据三角形外角性质,即可得到∠BFA=20°+60°=80°,进而得出∠BED=80°.【解答】解:如图所示,∵DE∥AF,∴∠BED=∠BFA,又∵∠CAF=20°,∠C=60°,∴∠BFA=20°+60°=80°,∴∠BED=80°,故答案为:80.41.(2019•岳阳)如图,直线a∥b,∠l=60°,∠2=40°,则∠3= 80°.【分析】根据平行线的性质求出∠4,根据三角形内角和定理计算即可.∴∠4=∠l=60°,∴∠3=180°﹣∠4﹣∠2=80°,故答案为:80°.42.(2019•通辽)如图,∠AOB的一边OA为平面镜,∠AOB=37°45′,在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是75°30′(或75.5°).【分析】首先证明∠EDO=∠AOB=37°45′,根据∠EDB=∠AOB+∠EDO计算即可解决问题;【解答】解:∵CD∥OB,∴∠ADC=∠AOB,∵∠EDO=∠CDA,∴∠EDO=∠AOB=37°45′,∴∠EDB=∠AOB+∠EDO=2×37°45′=75°30′(或75.5°),故答案为75°30′(或75.5°).43.(2019•广安)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC= 120 度.【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【解答】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.三.解答题(共7小题)44.(2019•重庆)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.【分析】直接利用平行线的性质得出∠3的度数,再利用角平分线的定义结合平角的定义得出答案.【解答】解:∵直线AB∥CD,∴∠1=∠3=54°,∵BC平分∠ABD,∴∠3=∠4=54°,∴∠2的度数为:180°﹣54°﹣54°=72°.45.(2019•重庆)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB 于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.46.(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.47.(2015•六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【分析】根据两平行线间的距离相等,即可解答.【解答】解:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.48.(2019•淄博)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠B AC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.49.(2019•福建)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.50.(2019•泸州)如图,EF=BC,DF=AC,DA=EB.求证:∠F=∠C.【分析】欲证明∠F=∠C,只要证明△ABC≌△DEF(SSS)即可;【解答】证明:∵DA=BE,∴DE=AB,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠C=∠F.。
2018年全国有关中考数学试题分类汇编(相交线平行线三角形) 含解析C . 11D . 125 (2007四川资阳)如图5,已知△ ABC 为直角三角形,/ C=90 °若沿图中虚线剪去/ C ,则/ 1 + / 2等于()CA. 90 °B. 135C. 270 °D.3156、( 2007四川资阳)如图 8,在△ ABC 中,已知/ C=90 ° AC = 60 cm ,AB=100 cm , a 、b 、c …是在△ ABC 内部的矩形,它们的一个顶点在 AB 上, 一组对边分别在 AC 上或与AC 平行,另一组对边分别在 平行.若各矩形在 AC 上的边长相等,矩形 的矩形a 、b 、c …的个数是()DA. 6C. 8 1、于 1、 2、 3、 B 、选择题(2007河北省)如图1,直线a , b 相交于点O ,若/ 1等于40°,则/ 2等 ( )C A . 50° B . 60° C . 140° D . 160°(2007浙江义乌)如图,点 P 是/ BAC 的平分线 AD 上一点,PE ± AC 于点E . 已知PE=3,则点P 到AB 的距离是()A A 3B . 4C . 5D . 6(2007重庆)已知一个等腰三角形两内角的度数之比为 1 : 4,则这个等腰三角形顶角的度数为((A ) 200 (2007浙江义乌) )C(B ) 1200如图,AB// CD / 1=110 (C ) 200或 1200/ ECD=70 , 5、 A 30°(2007天津)下列判断中错误.的是(有两角和一边对应相等的两个三角形全等有两边和一角对应相等的两个三角形全等 有两边和其中一边上的中线对应相等的两个三角形全等 有一边对应相等的两个等边三角形全等B . 40°.50° )BA. B. C. D. 4、 AD (2007甘肃陇南)如图,在厶ABC 中,DE // BC ,若 —— AB13'DE =4,则 B . 10 BC 上或与BCa 的一边长是72 cm ,则这样B. 7D. 97、 ( 2007浙江临安)如图,在△ ABC 中, DE// BC DE 分别与AB AC 相 父于点D 、E ,右AD=4 DB=2 则DE : BC 的值为A.8、( 2007福建晋江)如图,将一个等腰直角三角形按图示方式依次翻折, 若DE = a ,则下列说法正确的个数有()C2 O图1 bE36.60°(D ) /E 的大小是( BC=E方法一(A )方法「 二、填空题(2007广西南宁)如图 1,直线a , b 被直线c 所截,若 a 60(2007云南双柏)等腰三角形的两边长分别为4和9 , .92、 为3、 ( 2007浙江义乌)如图,在厶ABC 中,点DE 分别是边 ABAC 的中点, 贝U BC=_▲___cm. 124、 ( 2007福建福州)如图 5,点D , E 分别在线段 AB , AC 上,BE , CD 相交于点O , AE AD ,要使△ ABE ◎△ ACD ,需添加 一个条件 是 _____ (只要写一个条件). 解: B C , AEB ADCAB AC , BD CE (任选一个即可), CEO BDO25、(2007四川德阳)如图,已知等腰△ ABC 的面积为8cm ,点D ,分别是AB , AC 边的中点,则梯形 DBCE 的面积为 2cm(2007浙江杭州)一个等腰三角形的一个外角等于 110,则这一角形的三个角应该为70 ,70 40 或70 ,55 ,556、 个二①DC '平分/ BDE :②BC 长为(.2 2)a ;(③△ B C ' D 是等腰三角形:④厶 CED 的周长等 于BC 的长。
第五部分图形的性质5.2 相交线与平行线【一】知识点清单1、相交线相交线;对顶角、邻补角;垂线;垂线的画法;垂线段最短;点到直线的距离;同位角、内错角、同旁内角2、平行线及其判定平行线;平行公理及推论;两条直线的位置关系;平行线的画法;平行线的判定3、平行线的性质平行线的性质;平行线的判定与性质;命题;命题的组成与改写;定理与公理(基本事实);推理与论证【二】分类试题及参考答案与解析一、选择题1.(2018年河北-第11题-2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【知识考点】方向角.【思路分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【解答过程】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.【总结归纳】本题考查了方向角,利用平行线的性质得出∠2是解题关键.2.(2018年陕西-第3题-3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【知识考点】余角和补角;平行线的性质.【思路分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答过程】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.【总结归纳】此题主要考查了平行线的性质,注意不要漏角是解题关键.3.(2018年宁夏-第7题-3分)将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【知识考点】平行线的性质.【思路分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【解答过程】解:由题意可得:∠1=∠3=∠4=40°,则∠2=∠5==70°.故选:D.【总结归纳】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.4.(2018年海南省-第7题-3分)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°【知识考点】平行线的性质.【思路分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答过程】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【总结归纳】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.5.(2018年吉林省-第4题-2分)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【知识考点】平行线的判定;旋转的性质.【思路分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答过程】解:如图.。
相交线与平行线一.选择题1.(2019•浙江宁波•4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【分析】先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED =70°.【解答】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.【点评】本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.2(2019•湖北十堰•3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=()A.50°B.45°C.40°D.30°【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.【解答】解:∵直线AB⊥AC,∴∠2+∠3=90°.∵∠1=50°,∴∠3=90°﹣∠1=40°,∵直线a∥b,∴∠1=∠3=40°,故选:C.【点评】本题考查了平行线的性质,余角角的定义,熟记性质并准确识图是解题的关键.3 (2019•湖北天门•3分)如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是()A.20°B.25°C.30°D.35°【分析】根据平行线的性质解答即可.【解答】解:∵CD∥AB,∴∠AOD+∠D=180°,∴∠AOD=70°,∴∠DOB=110°,∵OE平分∠BOD,∴∠DOE=55°,∵OF⊥OE,∴∠FOE=90°,∴∠DOF=90°﹣55°=35°,∴∠AOF=70°﹣35°=35°,故选:D.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4 (2019•湖北孝感•3分)如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()。
2018-2019全国各中考数学试题分考点解析汇编相交线、平行线一、选择题1.(2018重庆4分)如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于A、60°B、50°C、45°D、40°【答案】【考点】平行线的性质,三角形内角和定理。
【分析】根据三角形的内角和为180°,即可求出∠D=180°-80°-60°=40°,再根据两直线平行,内错角相等的平行线性质,即可得∠BAD=∠D=40°。
故选D。
2.(2018重庆綦江4分)如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是A、65°B、50°C、35°D、25°【答案】D。
【考点】三角形内角和定理,平行线的性质。
【分析】由AC丄AB与∠1=65°,根据三角形内角和定理求得∠B=25°,的度数;由a∥b,根据两直线平行,同位角相等的性质,即可求得∠2=∠B=25°。
故选D。
3.(2018浙江绍兴4分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是A、17°B、34°C、56°D、68°【答案】D。
【考点】平行线的性质,三角形外角定理。
【分析】由AB∥CD,根据两直线平行,内错角相等的性质,得∠ABC=∠C=34°;由BC平分∠ABE得∠ABC=∠CBD=34°;根据三角形的一外角等于与它不相邻的两内角之和,∠BED=∠C+∠CBE=68°。
故选D。
4.(2018浙江金华、丽水3分)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是A、30°B、25°C、20°D、15°【答案】B。
相交线与平行线一、选择题1.如图,直线∥,直线与、都相交,如果∠1=50°,那么∠2的度数是()A. 50°B. 100°C. 130°D. 150°【答案】C【解析】:∵a∥b,∠1=50°,∴∠1=∠3=50°,∵∠2+∠3=180°,∴∠2=180°-∠1=180°-50°=130°.故答案为:C.【分析】其中将∠2的邻补角记作∠3,利用平行线的性质与邻补角的意义即可求得∠2的度数.2.如图,AB∥CD,且∠DEC=100°,∠C=40°,则∠B的大小是()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故答案为:B.【分析】首先根据三角形的内角和得出∠D的度数,再根据二直线平行,内错角相等得出答案。
3.如图,若l1∥l2, l3∥l4,则图中与∠1互补的角有()A. 1个B. 2个C. 3个 D. 4个【答案】D【解析】如图,∵l1∥l2, l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故答案为:D.【分析】根据二直线平行同位角相等,同旁内角互补得出∠2=∠4,∠1+∠2=180°,再根据对顶角相等得出∠2=∠3,∠4=∠5,从而得出答案。
4.如图,直线,若,,则的度数为()A. B.C.D.【答案】C【解析】:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故答案为:C.【分析】首先根据三角形的内角和得出∠ABC的度数,再根据二直线平行内错角相等即可得出答案。
2018年中考数学真题专题汇编:图形初步、相交线、平行线一、选择题1.若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。
2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。
3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。
5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。
相交线与平行线一.选择题1.(2018·广西贺州·3分)如图,下列各组角中,互为对顶角的是()【解答】解:互为对顶角的是:∠1和∠2.故选:A.2. (2018·湖北江汉·3分)如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,则∠DBC的度数是()A.30° B.36° C.45° D.50°【分析】直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB的度数,即可得出答案.【解答】解:∵AD∥BC,∠C=30°,∴∠ADC=150°,∠ADB=∠DBC,∵∠ADB:∠BDC=1:2,∴∠ADB=×150°=50°,∴∠DBC的度数是50°.故选:D.3. (2018·湖北荆州·3分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A.B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45° B.55° C.65° D.75°【解答】解:∵l1∥l2,∴∠1+∠CAB=∠2,∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故选:C.4. (2018·湖北十堰·3分)如图,直线a∥b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A.62° B.108°C.118°D.152°【分析】依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE.【解答】解:如图,∵AB∥CD,∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.(2018·四川省攀枝花·3分)如图,等腰直角三角形的顶点A.C分别在直线A.b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°.∵a∥b,∴∠ACD=180°﹣120°=60°,∴∠2=∠ACD﹣∠ACB=60°﹣45°=15°;故选B.6. (2018•莱芜•3分)如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°【分析】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF=(∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出结论.【解答】解:如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=61°,∴∠ABE+∠CDE=299°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=(∠ABE+∠CDE)=149.5°,∵四边形的BFDE的内角和为360°,∴∠BFD=360°﹣149.5°﹣61°=149.5°.故选:B.【点评】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360°,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.7. (2018•陕西•3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2.∠3.∠4.∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.(2018·湖北咸宁·3分)如图,已知a∥b,l与A.b相交,若∠1=70°,则∠2的度数等于()A. 120°B. 110°C. 100°D. 70°【答案】B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.9.(2018·辽宁大连·3分)如图是用直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.45°B.60°C.90°D.135°解:如图,∵△ABC是等腰直角三角形,∴∠1=45°.∵l∥l',∴∠α=∠1=45°.故选A.二.填空题1.(2018·辽宁省沈阳市)(2.00分)如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60° B.100°C.110°D.120°【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.(2018·辽宁省葫芦岛市) 如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°【解答】解:∵∠CDE=165°,∴∠ADE=15°.∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°.故选D.3.(2018·辽宁省阜新市)如图,已知AB∥CD,点E,F在直线AB,CD上,EG平分∠BEF 交CD于点G,∠EGF=64°,那么∠AEF的度数为52°.【解答】解:∵AB∥CD,∠EGF=64°,∴∠BEG=∠EGF=64°.又∵EG平分∠BEF,∴∠BEF=2∠BEG=128°,∴∠AEF=180°﹣128°=52°.故答案为:52°.4. (2018•广安•3分)一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=120 度.【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=150°,求得答案.【解答】解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.【点评】此题考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.三.解答题1.(2018·重庆市B卷)(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.。