程小涛——电动车跷跷板论文
- 格式:doc
- 大小:188.00 KB
- 文档页数:11
基于PID算法的电动车跷跷板系统设计聂晓凯中南大学信息科学与工程学院,长沙(410083)E-mail:kasaos@摘要:本系统采用P89V51RD2单片机作为控制系统的核心,采用步进电机作为电动车驱动电机,以L298为驱动芯片,配以舵机改变转向,使用角度传感器检测跷跷板的角度变化,在车的前后端设计了红外黑线检测模块保证电动车顺利驶上板以及在板上笔直行驶,红外光电码盘通过脉冲计数确定电动车在板上的位置,红外遥控键盘启动系统开始运行,液晶显示相关参数信息。
系统的平衡调节采用了数字PID控制算法,利用凑试法整定PID参数,通过角度传感器所测角度变化来控制步进电机的的转动实现跷跷板达到平衡状态。
关键词:P89V51RD2单片机,PID,角度传感器中图分类号:TP2712007年全国大学生电子设计竞赛的一道控制类的题目是电动车跷跷板问题,本系统设计要求电动车能够在规定时间内到达跷跷板的中心点C处,并保持平衡,随后电动车到达跷跷板的末端B处,停留之后返回始端A处。
另外,如果将跷跷板配重,则要求跷跷板在规定范围内驶上板,同时,也能实现平衡,如果再加一块重物之后跷跷板重新达到平衡。
本系统的设计在本文中采用了数字PID控制算法来实现。
1 系统方案设计、比较与论证1.1 总体方案设计论证本系统采用P89V51RD2单片机作为控制系统的主模块,实现系统控制与信号检测,如图1-1所示系统框图。
主要包括单片机模块,驱动电机模块,舵机模块,平衡检测模块,寻线模块,位置检测模块,液晶显示模块以及红外遥控模块。
图 1-1 系统框图系统通过平衡检测来判断电动车是否处于平衡状态,使电动车停留在C处附近,采用位置检测使电动车行驶至B处停止,采用寻黑线方法使电动车直线前行以及由末端B处能够直线后退到始端A处。
红外遥控启动系统,液晶显示各阶段用时以及温度时间。
在配重情况下通过黑线检测的方法使电动车在规定区域内的任意指定位置顺利驶上跷跷板。
电动车跷跷板(F题)摘要电动车跷跷板由一个电动小车改造完成。
小车从跷跷板一端的某一位置出发,驶上跷跷板并在上面行驶,调整自身的位置,使跷跷板处于平衡状态。
当有另一块任意质量配重放置在跷跷板上时,电动车能够重新取得平衡。
采用PID算法和鉴向控制驱动双电机差速实现速度和路程的控制。
采用黄金搜索法和PD算法结合控制小车寻找平衡点,达到平衡状态。
采用倾角传感器SCA103T作为小车倾斜角的敏感器件,判断跷跷板的状态是否达到平衡。
双传感器寻迹,保证小车能够顺利返回起始点。
设计的重点和难点是角度传感器的选择和平衡算法的设计。
特色是对角度传感器输出信号的处理和平衡算法的设计。
关键词MC9S12DG128 倾角传感器电动车跷跷板黄金搜索法一.系统方案1.题目分析小车要满足题目的要求,实现预定的功能,跷跷板小车就要具有寻线,电机驱动,倾角检测,显示等功能模块,并要有一个控制系统协调各个模块正常工作。
从整个系统来看,检测跷跷板的状态,实现跷跷板的平衡是设计的重点和难点。
2.方案论证与比较2.1 信息检测对象的选择:实现系统功能,关键是系统信息的检测和控制算法的设计。
可以检测小车的状态或者跷跷板的状态来判断系统是否处于平衡状态。
方案一:对于小车而言,可以测量其车体的加速度,转角或者车体倾斜角。
由于小车不仅有跟随跷跷板的运动,而且相对跷跷板也在运动。
检测到小车的信息后,需要检测板子的信息并做转化处理,才能算得绝对的角度,角加速度或车体倾斜角。
方案二:对于板子而言,其运动状态代表了系统的状态,检测得到的信息经过滤波去噪,基本就是系统的信息。
考虑到以小车作为检测对象将使控制系统变得复杂,且在系统中引入了更多的干扰和误差,因此将跷跷板作为信息检测的对象。
2.2 反馈的选择:控制跷跷板的平衡,反馈的选取起到了至关重要的作用。
方案一:检测板子的倾角,转动角速度角或角加速度,判断跷跷板是否达到平衡状态。
对于控制算法而言,角度和距离是最直观的控制变量。
2007年全国大学生电子设计竞赛F题电动车跷跷板设计报告摘要本系统是以单片机AT89S52为核心,利用红外光电传感器,角度传感器以及他们的外围电路组成的测控系统,实现对在跷跷板上行驶的小车的运动状态的实时跟踪监测,由单片机对电动小车的位姿状态做出及时正确的反应,并输出相应的控制指令,经过驱动模块后由执行模块完成小车的爬行、减速、找出平衡位置并保持等一系列要求完成的整套动作。
关键词:步进电机;电动小汽车;控制AbstractThe system is at the core MCU AT89S52, using infrared photoelectric sensor, angle sensors and their external circuit composed of measurement and control system, in the seesaw of a car traveling on the state of real-time campaign tracking, MCU right by the electric trolley in state funding to timely correct response output control and the corresponding instructions, the driver module after module completed by the Executive car crawling, slow down, find balance and maintain the position, and a series of actions required to complete the package.Keywords: step motor; electronic automobile; control一、系统方案论证本系统采用的是AT89S52实现电动小车的寻迹、爬行、找平衡、返回,并达到时间上的精确控制与显示。
摘要本设计采用两个凌阳SPCE061A 16位单片机作为控制核心。
其中一个安装在小车上,另一个持在使用者手中连接键盘和LCD,通过无线模块进行双机通讯,实现远程对小车运行状态的实时监测。
为了对小车的行为进行精确控制,采用步进电机进行驱动。
系统通过倾角传感器采集跷跷板的倾角变化后传给单片机。
程序控制方法采用PID算法,使小车通过一个二阶欠阻尼脉冲响应过程最后趋于动态平衡。
根据设计需要,车体采用有机玻璃与铝合金自制而成。
关键词:SPCE061A单片机,角度传感器,光电传感器,PID算法.Abstract:This system takes two SPCE061A 16 bit microprocessor as the control center, one fixed on the car and another connected with keyboard and LCD handed by the controller. In this system, wireless is used to complete the two processors` communication to acquire a perfect interface between the controller and the whole control system. The car with four wheels is driven by two stepper motors, and through the angle sensitive gathering the information about the teeterboard’s equinity condition and then send to the microprocessor. The system takes the PID as main control method, through a progress of two pulse damping response, the car and the teeterboard finally reach an equinity condition.Keywords: SPCE061A microprocessor, angle sensor, light sensor, PID.1.系统方案设计1.1实现方法采用倾角传感器检测跷跷板与水平面的夹角,通过PID算法控制小车寻找平衡位置。
电动车跷跷板报告【摘要】:本系统采用遥控电动小汽车改装而成,主要由89C52和模拟电路为核心器件,实现对智能电动车行驶的自动控制。
整车长23 厘米,宽5厘米,运行性能良好,符合设计要求。
电动车平衡检测使用倾角传感器。
电动智能小车电路由平衡检测电路、计时显示电路、电机驱动电路等组成,它不需要遥控就能按要求行走。
一、方案的选择与论证根据题目要求,系统可以以划分为几个基本模块,如图1.1所示图1.11、步进电机驱动调速模块方案一:采用与步进电机相匹配的成品驱动装置。
使用该方法实现步进电机驱动,其优点是工作可靠,节约制作和调试的时间,但成本很高。
方案二:采用集成电机驱动芯片LA298。
采用该方法实现电路驱动,简化了电路,控制比较简单,性能稳定,但成本较高。
方案三:采用互补硅功率达林顿管ULN2003实现步进电机的驱动。
采用该方法实现步进电机的驱动,电路连接比较简单,工作也相对可靠,成本低廉,技术成熟。
基于上述理论分析,最终选择方案三。
2、平衡检测模块方案一:采用精密的倾角传感器,这种传感器对应每个角度输出一个固定电流。
可以实现精确控制,但价格昂贵。
方案二:采用简易的倾角传感器,它直接输出一个开关量。
当其与地面垂直时,两触点断开;若倾斜角度超出一定范围,两触点短接。
这种传感器价格低廉,使用方便。
基于上述分析,最终选择方案二。
3、显示模块方案一:采用数码管显示。
数码管具有经济、低功耗、耐老化和精度比较高等优点,但它与单片机连接时,需要外接存储器进行数据锁存。
此外,数码管只能显示少数几个字符。
方案二:采用LCD进行显示。
LCD具有功耗低、无辐射、显示稳定、抗干扰能力强等特点,而且可以显示汉字。
考虑到本次设计的人性化设计,综合考虑,决定采用方案二。
4、电源选择考虑到本次设计对电源的要求,我们采用四节1.5V的干电池作为供电电源。
二、系统的具体设计与实现系统的组成及原理框图如图所2.1示。
以下分为硬件和软件两个方面进行具体分析。
青岛大学全国电子设计大赛设计报告题目电动车跷跷板学生姓名马云开高原王世伟专业智能科学与技术二零一五年五月摘要本电动车跷跷板是以玩具车为车架,AT89C52单片机为控制核心,加以直流减速电机、LN298驱动电路、mpu6050陀螺仪、红外光电传感器、LCD1602液晶以及其他电路构成。
系统由AT89C52单片机通过IO口控制小车的前进后退停止平衡以及转向,寻迹由红外光电对管完成,平衡由mpu6050陀螺仪完成,用L298N驱动直流减速电机,同时本系统用1602液晶显示,以显示当前电动车的运动状态以及各部分运行时间。
关键词:AT89C52 L298N 直流减速电机传感器mpu6050陀螺仪AbstractThis electric vehicles on the seesaw is toy car frame, AT89C52 single chip microcomputer as control core, dc gear motor, LN298 drive circuit, mpu6050 gyro, the infrared electric sensors, LCD1602 LCD and other circuits. System controlled by single-chip microcomputer AT89C52 through IO mouth car stop balance and to browse forward and backward, to be finished by infrared electric pipe tracing, balance completed by mpu6050 gyroscope, used L298N drive dc gear motor, this system use 1602 LCD at the same time, to show the current motion state and each part of the running time of electric cars.Keywords: dc gear motor L298N AT89C52 sensor mpu6050 gyroscope摘要 (2)Abstract (2)1.电动车跷跷板(F题) (4)2.系统方案的选择与论证 (6)2.1设计要点 (6)2.2 单片机的选择: (6)2.3 显示器选择: (7)2.4电机制动 (7)2.5地面黑线检测模块 (7)2.5角度检测模块 (7)3.1 显示模块 (9)3.2 电机调速 (9)3.3 电机驱动 (9)3.4 跑道标志检测 (10)3.5路程检测模块电路图 (10)4.软件流程 (10)4.1 主程序流程 (10)4.2 计时子程序流 (11)4.3路程速度监测子程序图 (11)4.4角度检测子程序图 (11)5.测试方法与数据 (12)6总结 (14)7.参考文献 (14)附录一.元件清单 (14)附录二仪器设备清单 (15)附录三原件电路图 (15)附录四主程序 (17)附录五需要完善及要解决的问题 (35)1.电动车跷跷板(F题)电动车跷跷板(2007年F题)【本科组】一、任务设计并制作一个电动车跷跷板,在跷跷板起始端A一侧装有可移动的配重。
实习报告目录第一章总述多功能跷跷板1.1 跷跷板的介绍1.2 人们对跷跷板喜好的调研与分析1.3 调研引发的设计思路第二章跷跷板设计的人机尺寸的调研与分析2.1 人体的平均尺寸2.2 跷跷板的尺寸分析2.3 总结分析第三章跷跷板材料色彩等相关元素的选择3.1 跷跷板的材料选择3.2 跷跷板的色彩选择第四章跷跷板情趣化的体现4.1 情趣化的含义4.2 翘翘板情趣化的体现4.3 产品设计中的情趣化要素表现第五章总结归纳,确定设计方向5.1 总结上述分析5.2 整体设计方向与思想第一章总述多功能跷跷板1.1跷跷板的介绍1.1.1跷跷板的简介跷跷板,又称为摇摇板,是指以某些东西作为支点,支撑著很长但十分狭窄的板在上方,让一方上升时,另一方下降的游戏。
这运用了杠杆原理,并且是儿童游乐场里的典型游戏。
在游乐场的设定里,这块板通常会被设置在正中,而两边则各坐一个人然后轮流以其脚踏地使自身的那边升上去。
而在游乐场里的跷跷板通常会有扶手让玩者抓牢。
而跷跷板最大的问题是如果一边的儿童比另一边的重很多的时候,当该较重的儿童突然用力踏地或坐下不愿踏地时,另一边的儿童可能会跌下并受伤。
而为了这个原因,跷跷板通常会安装在柔软的胶质地面上。
在狗狗灵敏赛里,跷跷板通常会设成不平衡使得参赛犬只在其上走过时,总是会以同一方降下地面。
跷跷板除了可以供儿童玩乐外,亦可作为在特技表演的工具。
而日常生活里,则可作为机械工具,这是因为跷跷板用了杠杆原理。
1.1.2跷跷板原理跷跷板原理是利用杠杆原理 ,人对跷跷板的压力是动力和阻力,人到跷跷板的固定点的距离分别是力臂。
重力加速度导致一上一下,高者重力加速度要大于低者,所以高者下降,同时在杠杆原理作用下将低者翘起来,如此循环。
1.1.3人们对跷跷板喜好的调研与分析不同的人对跷跷板的喜爱都有不同的看法。
跷跷板在造型和颜色中也可以千变万化,跷跷板设计便赋予了跷跷板变幻之彩,而传统意义上的跷跷板概念正在远离。
电动车跷跷板海军航空工程学院(青岛) 邵慧李文超孙庆洲摘要本设计为使电动车在跷跷板上按要求准确运行采用了单片机AT89C51最小系统作为电动车的检测和控制系统。
通过红外发射接收一体探头检测路面黑色寻迹线,使小车按预定轨道行驶,根据角度传感器检测跷跷板的平衡状态控制电动车使其在跷跷板上达到动态平衡。
再加上基于AT89C51单片机的键盘、液晶显示电路,构成了整个系统的硬件总电路。
最后通过软件设计,实现了按预定轨道行驶、保持平衡等功能。
关键词:角度传感器平衡寻迹线红外发射接收一体探头AbstractIn order to let the Electromotion Dolly run on the teeterboard exactly, our design adopts SCM-AT89C51 least system as dolly's measure and control system. through examining the black trace by Infrared Ray Electopult-receiver,to make the dolly run on the prearrange orbit.the other, bases on Angle Transducer,SCM examines the balance state of the teeterboard to control the Electromotion Dolly reach to balance on the teeterboard.We also introduced the keyboard based on AT89C51 SCM and fluiding crystal revealing electrocircuit,which constituents the chief hardware electrocircuit of the entire system .Finally,the function is realized including run on the orbit ,keep balance,etc,using software designment.Key word: Angle Transducer,balance, black trace,Infrared Ray Electopult-receiver 1.系统方案设计、比较与论证根据题目的基本要求,设计任务主要完成电动车在规定时间内按规定路径稳定行驶,并能具有保持平衡功能,同时对行程中的有关数据进行处理显示。
电动车跷跷板设计温江区燎原职业技术学校程小涛摘要:本设计为使电动车在跷跷板上按要求准确运行采用了单片机AT89C51最小系统作为电动车的检测和控制系统。
通过红外发射接收一体探头检测路面黑色寻迹线,使小车按预定轨道行驶,根据角度传感器检测跷跷板的平衡状态控制电动车使其在跷跷板上达到动态平衡。
再加上基于AT89C51单片机的键盘、液晶显示电路,构成了整个系统的硬件总电路。
最后通过软件设计,实现了按预定轨道行驶、保持平衡等功能。
关键词:角度传感器平衡寻迹线红外发射接收一体探头Abstract:In order to let the Electromotion Dolly run on the teeterboard exactly, our design adopts SCM-AT89C51 least system as dolly's measure and control system. through examining the black trace by Infrared Ray Electopult-receiver,to make the dolly run on the prearrange orbit.the other, bases on Angle Transducer,SCM examines the balance state of the teeterboard to control the Electromotion Dolly reach to balance on the teeterboard.We also introduced the keyboard based on AT89C51 SCM and fluiding crystal revealing electrocircuit,which constituents the chief hardware electrocircuit of the entire system .Finally,the function is realized including run on the orbit ,keep balance,etc,using software designment.Key word:Angle Transducer,balance,black trace,Infrared Ray Electopult-receiver1.系统方案设计、比较与论证根据题目的基本要求,设计任务主要完成电动车在规定时间内按规定路径稳定行驶,并能具有保持平衡功能,同时对行程中的有关数据进行处理显示。
为完成相应功能,系统可以划分为以下几个基本模块:电动机驱动模块、寻迹线探测模块、平衡状态检测模块、信息显示模块。
图11.1寻迹线探测模块探测路面黑色寻迹线的原理:光线照射到路面并反射,由于黑线和白纸的反射系数不同,可根据接受到反射光强弱由传感器产生高低电平并最终通过单片机判断是否到达黑线偏离跑道。
方案一:由可见光发光二极管与光敏二极管组成的发射-接收电路。
该方案成本较低,易于制作,但其缺点在于周围环境光源会对光敏二极管的工作产生很大干扰,一旦外界光亮条件改变,很可能造成误判和漏判;如果采用超高亮发光管和高灵敏度光敏管可以降低一定的干扰,但又将增加额外的功率损耗。
图2方案二:自制红外探头电路。
此种方法简单,价格便宜,灵敏度可调,但易受到周围环境影响,特别是较强光照对检测信号的影响,会造成系统不稳定。
再加上时间有限,制作分立电路较繁琐。
方案三:集成式红外探头。
可以采用集成断续式光电开关探测器,它具有集成度高、工作性能可靠的优点,只须调节探头上的一个旋钮即可以控制探头的灵敏度。
此种探头还能有效地防止普通光源(如日光灯等)的干扰。
(其实物图见附录)基于上述考虑,为了提高系统信号采集检测的精度,我们采用方案三。
1.2平衡状态检测模块方案一:断续式光电开关。
在跷跷板两头的地面上各放置一个,调节灵敏度使其在一定范围内接收不到反射光产生低电平,从而认为达到平衡状态,由单片机控制小车运动状态使跷跷板达到动态平衡。
然而此方案平衡控制不灵敏,难以调节,还需有线与单片机传输信号,使小车失去独立性。
方案二:采用角度传感器。
该集成芯片为专用的水平倾角测量芯片,其体积小,灵敏度高,简单、可靠的工作性能等优点,可高度满足该题对平衡度角的精确要求。
经过以上两个方案比较,方案二明显优于方案一,故采用方案二。
1.3 电动机及其驱动模块的选择根据题目中小车行驶全程的时间要求,可知小车的行驶速度很慢,普通的电机很难满足此速度要求,而直流减速电机可以满足此要求,并且其具有很大的转动力矩,不会在倾斜面出现堵转情况。
故我们采用直流减速电机。
在选用驱动模块方面由以下两种方案:采用专用驱动芯片。
该芯片集成度高,占用空间小,主要应用于电机调速场合。
采用分立三极管驱动电路。
经分析此电动车所要求的功能比较简单,不需复杂的调速,用电动机专用集成驱动电路可以达到预期的目标。
故我们最后决定用后方案。
1.4信息显示模块采用LED,缺点是占用单片机接口太多,显示信息量少,需要循环显示,占用太多程序资源。
采用LCD,只占用6个单片机接口,同时显示信息量大,灵活多变显示多种信息。
因此,我们拟采用后者。
1.5电源选择方案一:所有器件采用单一电源(5节五号电池)。
这样供电比较简单,但是由于电动机启动瞬间电流很大,会造成电压不稳、有毛刺等干扰,严重时可能会造成单片机系统掉电,使之不能完成预定行程。
方案二:双电源供电。
电动机驱动电源采用5节五号电池,单片机及其外围电路电源采用5V钮扣电池供电,两路电源完全分开,这样做虽然不如单电源方便灵活,但可以将电动机驱动所造成的干扰彻底消除,提高了系统稳定性。
我们认为本设计的稳定可靠性更为重要,故拟采用方案二。
经过一番仔细的论证比较,我们最终确定的系统详细方框图如下:图32.系统分立模块设计及工作原理2.1寻迹线探测电路采用型号为E3F-DS30C4集成断续式光电开关探测器,该探头输出端只有三根线(电源线、地线、信号线),只要将信号线接在单片机的I/O口,然后不停地对该I/O口进行扫描检测,当其为高电平时则检测到白纸,当为低电平时则检测到黑线区域。
小车前进(倒退)时,始终保持黑线在车头(车尾)两个传感器之间,当小车偏离黑线时,探测器一旦探测到有黑线,单片机就会按照预先编定的程序发送指令给小车的控制系统,控制系统再对小车路径予以纠正。
当小车回到了轨道上时,车头(车尾)两个探测器都只检测到白纸,则小车继续直线行走,否则小车会持续进行方向调整操作,直到小车恢复正常。
2.2平衡状态检测电路图4 分压比较式平衡检测电路在平衡检测电路中,我们运用了高精度角度传感器,此传感器通过对自身偏离水平角度的测量,对应线性输出一定范围内的电压值。
依据题目的要求,我们分析得出小车随跷跷板上下摆动幅度在正负4度角时即认为其处于平衡状态。
而此角度传感器在此区间内的灵敏度最高,其输出电压为2.45-2.55伏之间。
将此输出电压经比较放大,然后通过AD转换器转换成数字量通入到单片机中。
但是由于整个变化范围只有0.1度角,任何轻微的干扰都会使测量结果产生严重的偏差。
用AD转换又会使精度降低,干扰过大,又因为现实中很难做到真正的静态平衡,所以我们最终决定采用动态寻找平衡的方式,因此用分压电路和电压比较器制作信号电路,根据信号端的变化控制小车,使角度传感器的电压输出保持在2.45-2.55伏之间,经多次测试与精心调试,该电路可很好的满足要求。
2.3电动机驱动电路图5该驱动电路中的J1接电机,MOT1和MOT2接高低电平来控制电机的正反转,进而控制电机的前进和后退以及左右转向。
3 软件设计图6(详细软件流程图见附录)当开机时,系统复位,然后系统判断工作模式,当选定工作模式1或工作模式2后,系统等待5秒钟,然后进入自动计时运行状态。
模式1为电动车运行及方向调整程序,使电动车按预定路线运行,并且在小车偏离轨道后自动调整走向使小车自动返回预定路线,并且控制LCD实时显示运行时间。
模式2为平衡检测及平衡保持程序,在此程序控制下小车自动寻找平衡点,并在平衡点附近进行正向或反向运行,最终达到动态平衡。
4 系统测试4.1测试仪器自制跷跷板:长1600mm、宽300mm,跷跷板底距地面或桌面的距离为70mm。
中间画有50mm宽的黑色寻迹线。
卷尺:精度1mm。
秒表:精度0.01s,两块。
4.2测试结果与分析4.2.1跷跷板水平状态时测量往返一次全程的时间。
测试数据如下表:表1分析:实际测得的时间与显示时间有偏差,可能是人的反应时间误差。
表2分析同上。
表3分析:由以上数据可得,随着配重物距A端距离的不断增加系统进入平衡态所需的总时间逐渐减小,而平衡态时最大振幅基本不变。
这是因为配重物向中心靠拢,对于支点的力矩不断减小,惯性亦减小,致使平衡态所需的总时间逐渐减小。
表4分析:绝大部分定位都是小车前进方向的前头两个探头全部压上定为线方才恰好停车,在极少数情况下(跷跷板上寻迹线弯度较大时),小车前方探头还未接触定位线甚至刚开始起跑就会停车,观察现象分析原因,当寻迹线弯度较大,小车不能有效纠正过大偏差时,导致前方两探头有可能先后同时检测到黑色寻迹线,以致小车停车。
5 结束语经过这次设计,感触颇深的是解决问题的方法、技巧。
我们遇到许许多多问题,对待问题要多方法处理,多角度处理。
我们不但增强了实践能力和协作精神,而且懂得了联系实际的重要性,这对我们以后的学习和工作不无裨益。
当然,我们的设计还存在着一些缺陷,有待于在将来设计中进一步提高。
参考文献【1】吴少军、刘光斌编著《单片机实用低功耗设计》人民邮电出版社【2】周航慈编著《单片机应用程序设计》北京航空航天大学出版社附录:1.集成式红外探头E3F-DS30C4图72.软件流程图:工作模式1图8工作模式2图9定时中断图10。