不定积分的基本公式和直接积分法(教学内容)
- 格式:doc
- 大小:119.00 KB
- 文档页数:4
不定积分的基本公式和运算法则直接积分法一、不定积分的基本公式和运算法则1.基本公式:- 常数公式:$\int c\,dx = cx + C$,其中c为常数,C为常数。
- 幂函数公式:$\int x^n\,dx = \frac{x^{n+1}}{n+1} + C$,其中n为非零常数,C为常数。
- 指数函数公式:$\int e^x\,dx = e^x + C$,其中C为常数。
- 对数函数公式:$\int \frac{1}{x}\,dx = \ln,x, + C$,其中C为常数。
2.基本运算法则:- 常数倍法则:$\int kf(x)\,dx = k\int f(x)\,dx$,其中k为常数。
- 和差法则:$\int (f(x) \pm g(x))\,dx = \int f(x)\,dx \pm \int g(x)\,dx$。
- 乘法法则:$\int u \cdot v\,dx = \int u\,dv + \int v\,du$。
- 除法法则:$\int \frac{u}{v}\,dx=i\ln,v,+j\int\frac{dv}{v}$。
直接积分法是指根据不定积分的基本公式和运算法则,直接进行积分计算的方法。
下面介绍一些常见的直接积分法:1.用代换法进行积分:-根据被积函数的形式,选择一个合适的代换,使得原函数的形式更简单。
-对原函数进行代换,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
-将上述结果带入到原函数中,得到最终的积分结果。
2.用分部积分法进行积分:-对于被积函数的乘积形式,选择一个函数进行求导,选择另一个函数进行积分。
- 根据分部积分公式$\int u \,dv = uv - \int v \,du$,进行积分计算。
3.用换元法进行积分:-对于被积函数的形式,选择一个新的变量代替原来的变量,使得积分变得更简单。
-对原函数进行换元,将积分转化为新的变量的积分。
- 对新的变量进行求导,计算出dx或du。
微积分不定积分教案一、教学目标1. 理解不定积分的概念和物理意义。
2. 掌握基本积分公式和积分方法。
3. 能够运用不定积分解决实际问题。
二、教学内容1. 不定积分的定义和性质。
2. 基本积分公式:幂函数、指数函数、对数函数、三角函数的积分。
3. 换元积分法:代数换元、三角换元。
4. 分部积分法。
5. 积分在物理、经济学等领域的应用。
三、教学重点与难点1. 重点:不定积分的概念、性质和基本积分公式。
2. 难点:换元积分法、分部积分法的运用。
四、教学方法与手段1. 采用讲授法,讲解不定积分的概念、性质和积分方法。
2. 利用多媒体课件,展示积分过程和应用实例。
3. 引导学生通过讨论、练习,巩固所学知识。
五、教学安排1. 第一课时:介绍不定积分的定义、性质和基本积分公式。
2. 第二课时:讲解换元积分法。
3. 第三课时:讲解分部积分法。
4. 第四课时:举例分析不定积分在实际问题中的应用。
5. 第五课时:课堂练习和总结。
六、教学评估1. 课堂练习:布置相关的不定积分题目,检查学生对基本积分公式和积分方法的掌握程度。
2. 课后作业:布置综合性的不定积分题目,要求学生在课后完成,以检验学生对课堂内容的理解和应用能力。
3. 课堂讨论:鼓励学生积极参与课堂讨论,提问和解答问题,评估学生对不定积分概念的理解和分析问题的能力。
七、教学资源1. 教材:选用权威的微积分教材,提供系统的理论知识。
2. 多媒体课件:制作精美的多媒体课件,通过图像、动画等形式展示积分过程,增强学生的直观理解。
3. 练习题库:整理一套丰富的练习题库,包括不同难度层次的题目,以满足不同学生的学习需求。
4. 应用案例:收集一些实际问题,用于讲解不定积分在实际中的应用。
八、教学建议1. 强化基础知识:在学习不定积分之前,确保学生掌握了函数、极限、导数等基本概念,以便能够顺利理解不定积分的性质和计算方法。
2. 逐步引导:从简单的积分公式开始,逐步引导学生掌握更复杂的积分方法,避免一开始就给出复杂的公式和方法,让学生能够逐步建立信心。
第二节不定积分旳基本公式和直接积分法(BasicFormula of UndefinedIntegral andDirectIntegral)课题:1.不定积分旳基本公式2.不定积分旳直接积分法课堂类型:讲授教学目旳:纯熟掌握不定积分旳基本公式,对简朴旳函数能用直接积分法进行积分。
教学重点:不定积分旳基本公式教学难点: 直接积分法教具:多媒体课件教学措施:教学内容:一、不定积分旳基本公式由于不定积分是求导旳逆运算,因此由导数旳基本公式相应地可以得到不定积分旳基本公式。
二、不定积分旳直接积分法运用不定积分旳性质和基本公式,可以求出某些简朴函数旳不定积分,一般把这种求不定积分旳措施叫做直接积分法。
例1 求32x dx ⎰导数旳基本公式()1222()01()1()()ln 1(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )1(arctan )1(arccos )1(cot )1x xx x C x x x e e a a ax xx x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='='='=-'='=-'='=-'='=+'='=-+21(log )ln a x x x a'=不定积分旳基本公式()1222011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin arctan 1x xxxdx C dx x Cx x dx C a e dx eCa a dx C a dxx Cx xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x Cx Cdxx C xααα+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2arccos arc cot 11log ln a x C dxx C x dx x Cx a =-+=-++=+⎰⎰⎰解 31333412222312x x dx x dx x dx C x C +===⨯+=++⎰⎰⎰例2求(23cos x x dx -+⎰解(32322233233cos 3cos 3sin 5310sin 3xx dx x dx xdx x x x Cx x x C -+=-+=⨯-++=-++⎰⎰⎰⎰例3 求dx x x ⎰-23)1(解Cx x x x Cx x dxxx x dx xx x x dx x x +++-=+-=-+-=-+-=-⎰⎰⎰1||ln 332 31072 )133( 133)1(22327222323 例4 求221sin cos dx x x⎰ 解22222222221sin cos 11sin cos sin cos cos sin sec csc tan cot x x dx dx dx dx x x x x x x xdx xdx x x C+==+=+=-+⎰⎰⎰⎰⎰⎰例5 求2x x e dx ⎰ 解()()()2222ln 21ln 2xxxx x e e e dx e dx C C e==+=++⎰⎰例6 求2sin 2x dx ⎰解 21cos sin 22x x-=21cos 11sin sin 2222x x dx dx x x C -==-+⎰⎰ 例7 求()221dxx x +⎰解()222211111x xx x =-++ ()222222111111111arctan dx dx dx dx x x x x x x x Cx⎛⎫=-=- ⎪+++⎝⎭=--+⎰⎰⎰⎰例8 已知物体以速度()221/v t m s =+沿Ox 轴作直线运动,当1t s =时,物体通过旳路程为3m ,求物体旳运动方程。
不定积分直接积分法一、不定积分的概念和基本性质1.1 不定积分的定义不定积分是导数的逆运算,即对于函数f(x),如果存在一个函数F(x),使得F'(x)=f(x),则称F(x)为f(x)的一个原函数,记作∫f(x)dx=F(x)+C,其中C为任意常数。
1.2 不定积分的基本性质(1)线性性:若F(x)和G(x)都是f(x)的原函数,则有∫[a,b]αF(x)+βG(x)dx=α∫[a,b]F(x)dx+β∫[a,b]G(x)dx,其中α、β为任意常数。
(2)换元法:若u=u(x)可导且具有连续导数,则有∫f(u)du=∫f(u(x))u'(x)dx。
(3)分部积分法:若u=u(x)和v=v(x)都可导且具有连续导数,则有∫u'vdx=uv-∫uv'dx。
二、直接求解不定积分的方法2.1 一般(初等)函数的不定积分对于一些常见的初等函数,可以通过直接求解来得到它们的不定积分。
例如:(1)幂函数:对于n≠-1,有∫x^n dx=(x^(n+1))/(n+1)+C。
(2)指数函数:有∫e^x dx=e^x+C。
(3)三角函数:有∫s in(x)dx=-cos(x)+C,∫cos(x)dx=sin(x)+C,∫tan(x)dx=-ln|cos(x)|+C,等等。
2.2 有理函数的不定积分对于有理函数,即多项式除以多项式的形式,可以通过分式分解来将其化为一些基本的初等函数之和的形式。
例如:(1)若f(x)=(x^2+1)/(x-1),则可以进行部分分式分解得到f(x)=x+1+(2/(x-1)),因此有∫f(x)dx=∫(x+1+(2/(x-1)))dx=(1/2)x^2+x+2ln|x-1|+C。
(2)若f(x)=(3x^3+x)/(x^4+x^2+1),则可以进行部分分式分解得到f(x)=(3/4)(1/(x^2-x+1))+(5/4)(1/(x^2+1)),因此有∫f(x)dx=(3/4)∫(1/(x^2-x+1))dx+(5/4)∫(1/(x^2+1))dx=(3/8)ln|x^2-x+1|+(5/4)arctan x+C。
第五章不定积分一、本章主要教学内容1.原函数与不定积分的概念、不定积分的性质、基本积分公式;2.直接积分法;第一换元积分法;分部积分法;查表法等。
二、教学目的1.理解原函数与不定积分的概念;2.掌握不定积分的性质,熟记基本积分公式;3.熟练掌握各种积分法。
三、教学重点、难点重点:直接积分法;第一换元积分法;第二换元积分法;分部积分法。
难点:第一换元积分法;第二换元积分法;分部积分法。
第一节、不定积分的概念与性质教学目标:理解原函数与不定积分的概念;掌握不定积分的性质,熟记基本积分公式。
教学重点:不定积分的定义与基本积分公式。
教学难点:不定积分的定义与基本积分公式。
教学手段:课堂讲解一、原函数的概念定义 已知)(x f 是一个定义在区间I 内的函数,如果存在着函数)(x F , 使得对I 内任何一点x ,都有 )()('x f x F = 或 dx x f x dF )()(=,那么函数)(x F 就称为)(x f 在区间I 内的原函数。
例 F x x ()sin =是f x x ()cos =在区间I =-∞+∞(,)上的原函数。
原函数存在定理 如果函数)(x f 在区间I 内连续,那未在区间I 内它的原函数一定存在,即:存在)(x F ,对一切的x I ∈,均有'=F x f x ()()。
即:连续函数一定有原函数。
若)(x F 是)(x f 在区间I 内的一个原函数,即'=∀∈F x f x x I ()(),那么对于任意常数c ,由于 [()]()F x c f x +'=,于是,函数族c x F +)(中的任何一个函数也一定是)(x f 在区间I 内的原函数。
由此可知:如果)(x f 有原函数,那么原函数的个数为无限多个。
二、不定积分概念定义 在区间I 内,函数)(x f 的带有任意常数项的原函数称为)(x f 在区间I 内的不定积分,记作f x dx ()⎰ 其中:⎰称为积分号, )(x f 称为被积函数,f x dx ()称为被积表达式,x 称为积分变量。
•复习1原函数的定艾。
2不定枳分的定艾。
3不定枳分的性质。
4不定枳分的几何意义。
•引入在不定枳分的定义、It质以及基本处直的基础上,我们进一步来讨论不定枳分的计偉冋趣,不定枳分的it算方法主耍有三种:有接枳分法、换元枳分法和分部枳分法。
・ »g»a第二节不定枳分的基本公式和运算頁接枳分法-基本枳分公式由干求不定枳分的运算是求导运算的逆运算,所以有导数的基本公式《]应地可以得到枳分的基2(secx/= secxtanx d(secx) = secAtairxz/v J sec x tan xdx = secx + C3(-csc.r^cscACOtx d(-cscx)=cscxcotxrfr ^cscxcotxdx = -cscx + C4 (arctan x)r = —1 + .Ld(arctan x) = —1 + x?Zv [ —dx = arc tan.v + C5 (arcsin xY =,丨= d( arcsin A*)=―.=■2 x/l+ .V2l.\ f 严1 .. dx = arcs in x +CJ vr+x2以上十五个公述是求不定枳分的U t t,恋须熟记,不仅要记右端的结果,连要熟悉左端被枳函数的的形式。
求因数的不定枳分的方法叫枳分法。
(2 ) j xjxdx此例表明,对某些分式或根式函数求不定枳分时,可先把它们化力x"的形氏,然后应用显函数的枳分公式求枳分。
二不定枳分的基本运算法则a«i两个因数代数和的枳分,等干各因数枳分的代数和,即J [/W 土g(x)肚=J/(A>/A± j g(x\LxSi 1对于有限多个函数的和也成立的.违则2被枳因数中不为零的常数因子可提到枳分号外,即J kf(x\l.x = kj* f(x\lx( " 0 )M 2 求J (2x' 4-1-e x }dx解J(2x3+\—e x)dx =21x3dx + jdx-j e x dx二—X” + x — 0' + C o例1 •求下列不定枳分.(1)ii貝中毎一項的不定枳分虽然都应当有一个枳分常数,但是逹里并不需要在毎一頂后面则上一个枳分常数,因为代意常釵之利if是任意常数,所以迪里只把它的和C写在末尾,以后仿此。
不定积分的基本公式和直接积分法第二节不定积分的基本公式和直接积分法(Basic Formula of UndefinedIntegral and Direct Integral)课题:1.不定积分的基本公式2.不定积分的直接积分法课堂类型:讲授教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。
教学重点:不定积分的基本公式教学难点: 直接积分法教具:多媒体课件教学方法:教学内容:一、不定积分的基本公式由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。
二、不定积分的直接积分法利用不定积分的性质和基本公式,可以求出一些简单函数的不定积分,通常把这种求不定积分的方法叫做直接积分法。
例1 求32x dx ⎰导数的基本公式 ()1222()01()1()()ln 1(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )1(arctan )1(arccos )1(cot )1x xx x C x xxe e a a ax xx x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='='='=-'='=-'='=-'='=+'='=-+21(log )ln a x x x a'=不定积分的基本公式 ()1222011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin arctan 1x x xxdx Cdx x Cx x dx C a e dx e C a a dx C a dxx Cx xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x Cx Cdxx C xααα+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2arccos arc cot 11log ln a x C dxx C x dx x Cx a =-+=-++=+⎰⎰⎰解 31333412222312x x dx x dx x dx C x C +===⨯+=++⎰⎰⎰例2求(23cos x x dx -+⎰ 解(32322233233cos 3cos 3sin 5310sin 3xx dx x dx xdx x x x Cx x x C -+=-+=⨯-++=-++⎰⎰⎰⎰例3 求dx x x ⎰-23)1( 解Cx x x x Cx x dxxx x dx xx x x dx x x +++-=+-=-+-=-+-=-⎰⎰⎰1||ln 332 31072 )133( 133)1(22327222323 例4 求221sin cos dx x x⎰ 解22222222221sin cos 11sin cos sin cos cos sin sec csc tan cot x x dx dx dx dx x x x x x x xdx xdx x x C+==+=+=-+⎰⎰⎰⎰⎰⎰例5 求2x x e dx ⎰解 ()()()2222ln 21ln 2xxxx x e e e dx e dx C C e==+=++⎰⎰例6 求2sin 2xdx ⎰ 解 21cos sin 22x x-=21cos 11sin sin 2222x x dx dx x x C -==-+⎰⎰ 例7 求()221dxx x +⎰ 解()222211111x x x x =-++ ()222222111111111arctan dx dx dx dx x x x x x x x Cx⎛⎫=-=- ⎪+++⎝⎭=--+⎰⎰⎰⎰例8 已知物体以速度()221/v t m s =+沿Ox 轴作直线运动,当1t s =时,物体经过的路程为3m ,求物体的运动方程。
不定积分的基本公式和直接积分法不定积分是微积分中的一个重要概念,用于求一个函数的原函数。
在求解不定积分时,可以使用基本公式和直接积分法。
一、基本公式基本公式是指一些常见函数的不定积分公式,它们是通过求导的反向过程来得到的。
以下是一些常见的基本公式:1. 常数函数的不定积分:∫k dx = kx + C,其中k为常数,C为常数项。
2. x的幂函数的不定积分:∫x^n dx = 1/(n+1) x^(n+1) + C,其中n不等于-13. e^x函数的不定积分:∫e^x dx = e^x + C。
4. 对数函数的不定积分:∫1/x dx = ln,x, + C,其中x不等于0。
5.三角函数的不定积分:- ∫sin(x) dx = -cos(x) + C。
- ∫cos(x) dx = sin(x) + C。
- ∫sec^2(x) dx = tan(x) + C。
- ∫csc^2(x) dx = -cot(x) + C。
6.反三角函数的不定积分:- ∫1/√(1-x^2) dx = arcsin(x) + C。
- ∫1/√(1+x^2) dx = arctan(x) + C。
- ∫1/x dx = ln,x, + C。
直接积分法是通过一些变换和方法来求解不定积分。
以下是几种常用的直接积分法:1. 换元法:通过进行变量代换,将不定积分转化为容易求解的形式。
例如,当遇到∫f(g(x))g'(x) dx的形式时,可以令u = g(x),从而将不定积分转化为∫f(u) du。
2.部分分式法:将一个有理函数拆分为若干个分式的和,并分别对每个分式进行积分。
这通常用于分解分母是多项式的情况。
3. 分部积分法:将复杂函数的积分转化为简单函数的积分。
根据分部积分公式∫u dv = uv - ∫v du,选择一个函数作为u,另一个函数作为dv,并计算∫v du。
4. 微分与积分的互换:有时候,我们可以通过对函数进行微分来简化不定积分的求解。
第二节不定积分的基本公式和直接积分法(Basic Formula of Undefined
Integral and Direct Integral)
课题:1.不定积分的基本公式
2.不定积分的直接积分法
课堂类型:讲授
教学目的:熟练掌握不定积分的基本公式,对简单的函数能用直接积分法进行积分。
教学重点:不定积分的基本公式
教学难点: 直接积分法
教具:多媒体课件
教学方法:
教学内容:
一、不定积分的基本公式
由于不定积分是求导的逆运算,所以由导数的基本公式对应地可以得到不定积分的基本公式。
二、不定积分的直接积分法
利用不定积分的性质和基本公式,可以求出一些简单函数的不定积分,通常把这种求不定积分的方法叫做直接积分法。
例1 求32x dx ⎰
解 313
3
3
41
2222312
x x dx x dx x dx C x C +===⨯+=++⎰⎰⎰ 导数的基本公式 ()122222()01
()1()()ln 1
(ln )(sin )cos (cos )sin (tan )sec (cot )csc (sec )sec tan (csc )csc cot (arcsin )11
(arctan )1(arccos )11
(cot )1x x
x x C x x x e e a a a
x x
x x x x x x x x x x x x x x x x x x x x arc x ααα+'='='=+'='='=
'='=-'='=-'='=-'=
-'=
+'=-'=-
+21
(log )ln a x x x a
'=
不定积分的基本公式
()
1
22
2
2011ln ln ||cos sin sin cos sec tan csc cot sec tan sec csc cot csc arcsin 1arctan 1x x x
x
dx C dx x C
x x dx C a e dx e C a a dx C a dx
x C
x xdx x C xdx x C xdx x C xdx x C x xdx x C x xdx x C
x C
x
dx
x C x αα
α+==+=+≠-+=+=+=+=+=-+=+=-+=+=-+=+-=++⎰⎰⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰22arccos 1arc cot 11
log ln a x C x dx
x C x dx x C
x a =-+-=-++=+⎰⎰⎰。