第十六章 电子衍射原理 (北京科技大学)材料分析方法课件
- 格式:pptx
- 大小:1.39 MB
- 文档页数:8
第十章 电子衍射一、概述透射电镜的主要特点是可以进行组织形貌与晶体结构同位分析。
若中间镜物平面与物镜像平面重合(成像操作) ,在观察屏上得到的是反映样品组织形态的形貌图像;而若使中间镜的物平面与物镜背焦面重合 (衍射操作),在观察屏上得到的则是反映样品晶体结构的衍射斑点。
本章介绍电子衍射基本原理与方法,下章将介绍衍衬成像原理与应用。
电子衍射的原理和 X 射线衍射相似,是以满足(或基本满足)布拉格方程作为产生衍射的必要条件。
两种衍射技术所得到的衍射花样在几何特征上也大致相似。
多晶体的电子衍射花样是一系列不同半径的同心圆环,单晶衍射花样由排列得十分整齐的许多斑点所组成。
而非晶态物质得衍射花样只有一个漫散得中心斑点(图 1,书上图10-1)。
由于电子波与 X 射线相比有其本身的特性,因此,电子衍射和 X 射线衍射相比较时具有下列不同之处:(1)电子波的波长比 X 射线短的多,在同样满足布拉格条件时,它的衍射角θ很小,约 10-2;而X 射线产生衍射时,其衍射角最大可接近°。
rad 90(2)在进行电子衍射操作时采用薄晶样品, 薄样品的倒易阵点会沿着样品厚度方向延伸成杆状,因此,增加了倒易阵点和爱瓦尔德球相交截的机会,结果使略为偏离布拉格条件的电子束也能发生衍射。
(3)因为电子波的波长短,采用爱瓦尔德球图解时,反射球德半径很大,在衍射角 θ 较小德范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。
这个结果使晶体产生的衍射花样能比较直观的反映晶体内各晶面的位向,给分析带来不少方便。
(4)原子对电子的散射能力远高于它对 X 射线的散射能力(约高出四个数量级) ,这使得二者要求试样尺寸大小不同, X 射线样品线性大小位 10-3cm ,电子衍射样品则为10-6~10- 5cm ,且电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟,而X 射线以小时计。
电子衍射原理电子衍射原理电子衍射electron diffraction当电子波(具有一定能量的电子)落到晶体上时,被晶体中原子散射,各散射电子波之间产生互相干涉现象。
晶体中每个原子均对电子进行散射,使电子改变其方向和波长。
在散射过程中部分电子与原子有能量交换作用,电子的波长发生变化,此时称非弹性散射;若无能量交换作用,电子的波长不变,则称弹性散射。
在弹性散射过程中,由于晶体中原子排列的周期性,各原子所散射的电子波在叠加时互相干涉,散射波的总强度在空间的分布并不连续,除在某一定方向外,散射波的总强度为零。
历史1927年,C.J.戴维孙和L.H.革末在观察镍单晶表面对能量为100电子伏的电子束进行散射时,发现了散射束强度随空间分布的不连续性,即晶体对电子的衍射现象。
几乎与此同时,G.P.汤姆孙和A.里德用能量为2万电子伏的电子束透过多晶薄膜做实验时,也观察到衍射图样。
电子衍射的发现证实了L.V.德布罗意提出的电子具有波动性的设想,构成了量子力学的实验基础。
装置最简单的电子衍射装置如图1所示。
从阴极K发出的电子被加速后经过阳极A的光阑孔和透镜L到达试样S上,被试样衍射后在荧光屏或照相底板P上形成电子衍射图样。
由于物质(包括空气)对电子的吸收很强,故上述各部分均置于真空中。
电子的加速电压一般为数万伏至十万伏左右,称高能电子衍射。
为了研究表面结构,电子加速电压也可低达数千甚至数十伏,这种装置称低能电子衍射装置。
模式电子衍射可用于研究厚度小于0.2微米的薄膜结构,或大块试样的表面结构。
前一种情况称透射电子衍射,后一种称反射电子衍射。
作反射电子衍射时,电子束与试样表面的夹角很小,一般在1゜~2゜以内,称掠射角。
自从60年代以来,商品透射电子显微镜都具有电子衍射功能(见电子显微镜),而且可以利用试样后面的透镜,选择小至1微米的区域进行衍射观察,称为选区电子衍射,而在试样之后不用任何透镜的情形称高分辨电子衍射。
第一节电子衍射的原理1.1电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer (夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。