锚杆支护设计
- 格式:pptx
- 大小:5.04 MB
- 文档页数:74
巷道锚杆支护参数设计巷道锚杆支护是指利用锚杆将岩体固定在边坡上,以增加岩体的稳定性和承载能力的一种支护措施。
在巷道工程中,锚杆支护是一种常用且有效的岩体支护方式,适用于高应力、大变形、薄弱岩层等困难地质条件。
巷道锚杆支护的参数设计是关键,下面将详细介绍巷道锚杆支护参数设计的内容和要点。
1.锚杆的种类选择:根据巷道支护的具体要求和地质条件选择合适的锚杆类型,常见的锚杆有锚杆、预应力锚杆、高压锚杆等。
不同类型的锚杆具有不同的承载能力和抗剪强度,需要根据具体情况选择合适的锚杆类型。
2.锚杆的长度和直径:根据设计要求和岩体的稳定性分析确定锚杆的长度和直径。
一般情况下,锚杆的长度为岩层的厚度加上一定的过长量(通常为2-3倍的锚杆直径),以确保锚杆能够充分发挥作用。
锚杆的直径根据巷道的尺寸和岩体的情况来确定,一般为20-32毫米。
3.锚杆的安装间距:锚杆的安装间距要根据岩体的稳定性和锚杆的承载能力来确定。
一般情况下,锚杆的安装间距为锚杆长度的1.5-2倍,以确保锚杆能够均匀地分布在巷道围岩中,提高整体的支护效果。
4.锚杆的布置形式:锚杆的布置形式一般分为单排布置和双排布置两种。
单排布置适用于较宽的巷道和边坡锚固,双排布置适用于较窄的巷道和支护面积较大的巷道。
根据实际情况选择合适的布置形式,以确保锚杆能够充分发挥作用。
5.锚杆的预应力设计:预应力锚杆是通过施加预加载力使其锚固区域产生压应力,从而提高锚杆的承载能力。
预应力锚杆的预应力值要根据岩体的强度和稳定性要求来确定,一般为0.5-1倍的锚杆的抗拉强度。
巷道锚杆支护参数设计的关键是要根据具体地质条件和设计要求进行合理选择和确定。
在参数设计中,要充分考虑巷道围岩的强度、稳定性和变形性能,保证锚杆能够充分发挥作用,并且要进行合理的预测和计算,确保锚杆支护的有效性和安全性。
同时,在实际工程中还需要进行监测和检测,及时调整和修正参数设计,以确保巷道锚杆支护的长期稳定性和安全性。
锚杆支护方案1. 引言锚杆支护是一种常用的岩土工程支护方法,用于增加岩石或土层的稳定性,减少变形和破坏。
本文档旨在介绍锚杆支护的基本原理、设计要点以及施工过程。
2. 锚杆支护原理锚杆支护依靠预埋或喷射钢筋等材料形成的锚杆,将地下结构与锚杆连接。
通过锚杆的张拉和固结,增加地下结构的稳定性。
锚杆的受力来源于地下结构自身的重力以及外部荷载,锚杆吸力抵抗土体的相互作用力,从而达到支护的目的。
3. 锚杆支护的设计要点锚杆支护的设计应考虑以下几个要点:3.1 锚杆的材料选择常用的锚杆材料包括钢筋和预应力钢筋。
在选择材料时,需要考虑工程的具体情况,如承载能力要求、耐腐蚀性能等。
3.2 锚杆的布置方式锚杆的布置方式有水平布置和垂直布置两种。
水平布置适用于需要增加地下结构的整体稳定性和刚度的情况,而垂直布置适用于需要增加支护墙稳定性的情况。
3.3 锚杆的布置密度锚杆的布置密度直接影响锚杆支护的效果。
一般情况下,锚杆的布置密度应根据地下结构的稳定性要求和工程经济性综合考虑。
3.4 锚杆的受力状态分析锚杆受力主要包括拉力和剪力。
设计时需要对锚杆的受力状态进行分析,确定合适的拉力和剪力大小,以确保锚杆的使用安全。
4. 锚杆支护的施工过程锚杆支护的施工过程一般包括以下几个步骤:4.1 钻孔首先根据设计要求,在地下结构周围钻孔,钻孔位置和间距要根据具体情况确定。
4.2 安装锚杆在钻孔中安装锚杆,锚杆需要固定住以保证稳定性。
根据设计要求,可以使用锚固剂或钢套等材料进行固定。
4.3 锚杆张拉锚杆安装后,进行张拉作业。
张拉力的大小需要根据设计要求进行控制,以保证锚杆的受力状态满足设计要求。
4.4 锚杆固结完成锚杆张拉后,对锚杆进行固结。
可以使用灌注材料填充钻孔,以增加锚杆与周围土体的粘结力。
5. 锚杆支护的质量控制为了确保锚杆支护的施工质量,需进行以下质量控制措施:•对材料的选择进行检验,确保符合设计要求;•对钻孔的质量进行检测,包括孔径、孔深等;•对锚杆的安装质量进行检查,确保固定牢固;•对锚杆的张拉力进行监测,保证张拉力符合设计要求。
新光集团淮北刘东煤矿岩巷锚喷支护设计一、设计原始资料:巷道断面:半圆拱形,净宽2.8m ,毛宽3.0m ;净高2.94m ,毛高3.04m 。
围岩f=4。
巷道埋深300米。
二、支护设计(一)锚杆支护设计由于锚杆的支护理论较多,适用条件比较复杂,其中影响较大的有悬吊理论、组合梁理论、加固理论、松动圈理论等,这里根据《作业规程编制指南》P27表四的规定以悬吊理论进行计算。
断面按悬吊理论计算锚杆参数:1、锚杆长度计算:L = KH + L 1 + L 2式中:L — 锚杆长度,m ;H — 冒落拱高度,m ;K — 安全系数,一般取K=2;L 1 — 锚杆锚入稳定岩层的深度,一般按经验取≥0.3m ,这里取0.5m ;L 2 — 锚杆在巷道中的外露长度,一般取0.1m ;其中H 值根据普氏免压拱高(f ≥3时)的计算公式计算为: H = = = 0.375(m) 式中:B — 巷道开掘宽度,取3.0m ; f 2B 423.0LK Qγf — 岩石坚固性系数,粉砂岩取4;则L =2×0.375+0.5+0.1=1.35(m)考虑到围岩条件的复杂性及安全因素,取1.8米。
2、锚杆直径计算:式中:d —锚杆直径,mm ;Q —锚杆设计的锚固力,取60KN ;σt —杆体的抗拉强度, 490MPa ;则d=12.5mm,取锚杆直径18mm 。
3、锚杆间距、排距计算,通常间排距相等,取a :a = 式中:a — 锚杆间排距,m ;Q — 锚杆设计锚固力,60KN/根;γ— 被悬吊粉砂岩的重力密度,取25KN/m 3;K — 安全系数,一般取K=1.8;L —锚杆有效长度,根据前面的计算,为0.75m ; a= =1.33(m)a 取800mm 。
通过以上计算,结合我矿的支护实践,该断面巷道锚杆支护选用直径18mm 、长度1800 mm 的左旋无纵筋螺纹钢树脂锚杆,巷道锚杆间排距为800×800mm 。
边坡锚杆支护方案一、项目背景在城市建设中,由于地质条件和人为因素等原因,常常会面临边坡塌方等安全隐患。
为了确保施工安全,需要进行边坡支护工程。
本方案选定位于市镇临河而建的一处边坡作为对象进行支护设计。
二、边坡锚杆支护原理1.踏勘边坡:对边坡进行详细的地质踏勘,了解边坡的岩土条件和坡体稳定性,确定支护方案的基础数据。
2.确定锚杆布置方案:根据边坡的高度、坡度和挖方坡比等参数,通过计算和经验确定锚杆的排布密度、埋置深度和间距,以确保边坡的稳定。
3.钻孔施工:根据锚杆布置方案进行钻孔施工,将钢管锚杆埋置到规定的深度,并保证孔道的垂直度和平直度。
4.灌浆注浆:在钻孔孔道内进行灌浆注浆,以加固孔道周围的土体并提高支护效果。
选择合适的浆液类型和注浆压力,根据实际情况进行注浆施工。
5.锚杆固结:等待灌浆材料固结后,对锚杆进行拉力加载,将锚杆与土体紧密结合,形成一个稳定的整体支护体系。
6.监测与维护:在锚杆支护工程完成后,对边坡进行定期监测,以及时发现并处理可能出现的问题。
对锚杆进行定期维护和检查,保证其功能的正常发挥。
四、支护效果评估及后续措施1.支护效果评估:施工期间对边坡进行监测,通过观察边坡的变形情况、监测锚杆的拉力变化等方式,评估支护效果。
如果发现问题,及时采取措施进行调整和处理。
2.后续措施:在边坡支护工程完成后,根据实际情况和支护效果评估,采取必要的后续措施。
如有必要,可以在边坡表面进行绿化或铺设保护网等措施,以增加边坡的美观性和稳定性。
以上就是一个边坡锚杆支护方案的详细介绍。
通过合理设计、施工和监测,边坡锚杆支护方案能够有效地提高边坡的稳定性,确保边坡的安全性。
煤巷锚杆支护参数设计方法煤巷的突出特点就是承受采动支承压力,围岩破碎,变形量大。
巷道锚杆支护设计,首先要对巷道所经受采动影响过程及影响程度进行准确的评估,对巷道使用要求和设计目标要予以准确定位。
比如,是按采动影响时的支护难度设计支护,还是按照采动影响前的使用要求设计,不同的设计思想,结果大不相同。
目前,我国煤巷支护设计方法大致分为三类,即工程类比法、理论计算法及实例法。
1)工程类比法工程类比法是当前应用较广的方法。
它是根据已经支护的类似工程的经验,通过工程类比,直接提出支护参数。
它与设计者的实践经验有很大关系。
然而,要求每一个设计人员都具有丰富的实践经验是不切实际的。
为了将特定岩体条件下的设计与个别的工程相应条件下的实践经验联系起来进行工程类比,做出比较合理的设计方案,正确的围岩分类是非常必要的。
进行围岩分类后,就可根据不同类别的岩层,确定不同的支护形式和参数。
(1)巷道围岩分类方法围岩分类方法的研究工作历史悠久,早在18世纪,在采矿及各地下工程已开始用分类的方法研究围岩的稳定性。
随着采矿和人们对岩石物理力学性质认识的不断深入,国内外围岩分类研究得到了迅速发展,据不完全统计,有影响的围岩分类有五六十种之多。
a. 普氏岩石分级法该法用岩石坚固性系数f(普氏系数)来对围岩分类,f值等于岩石的单向抗压强度除以10。
坚固性系数是岩石间相对的坚固性在数量上的表现,它最重要的性质在于不论是何种抗力,以及这种抗力是如何引起的,而给予岩石相互之间进行比较的可能性。
普氏岩石分级法来自实践,并且有抽象概括的程序可取,所提出的岩石坚固性系数值简单明确,到目前仍有一定的使用价值。
b. 煤矿锚喷支护围岩分类为了适应巷道锚杆支护的需要,原煤炭工业部颁布的《煤炭井巷工程锚喷支护设计试行规范》制定了煤矿锚杆支护围岩分类,见表1。
该分类综合考虑了岩石的单向抗压强度、岩体结构和结构面发育状况、岩体完整性系数、围岩稳定时间等多种因素,是一种典型的多指标分类方法。
预应力锚杆支护参数的设计预应力锚杆支护是一种利用高强度钢杆件和端部锚固机制,对围岩进行加固的支护方式。
其基本原理是在岩体中钻孔,将钢杆件插入孔内,利用端部锚固机制对岩体进行锚固,使岩体形成稳定的支撑结构,提高岩体的整体强度和稳定性。
预应力锚杆支护的常用参数包括杆体直径、杆体长度、锚固长度、锚固力、预应力等。
其中,杆体直径取决于钻孔直径和钢杆件的强度要求;杆体长度取决于加固的范围和稳定性要求;锚固长度是锚固力的重要保证,一般取杆体长度的10%~30%;锚固力是保证锚杆支护效果的关键,需要根据岩体的物理性质和加固要求进行计算;预应力是通过对杆体施加张拉力而产生的,可以有效地提高岩体的整体强度和稳定性。
在预应力锚杆支护参数的设计中,我们需要根据采矿工程的实际情况,对上述常用参数进行合理取值。
具体来说,我们需要确定杆体直径、杆体长度、锚固长度、锚固力、预应力的合理范围。
例如,杆体直径一般取16~28mm,杆体长度一般取5~5m,锚固长度一般取杆体长度的10%~30%,锚固力需要结合岩体的物理性质和加固要求进行计算,预应力需要根据杆体材料和岩体稳定性要求进行计算。
根据上述参数范围和取值方式,我们可以得出以下预应力锚杆支护参数的具体设计公式:杆体长度L:L=f2×(Hmax-Hmin)其中,d为杆体直径,L为杆体长度,L1为锚固长度,Q为锚固力,σ为预应力,fffff5为经验系数,Dmax为钻孔直径,Hmax为加固的最大高度,Hmin为加固的最小高度,Pmax为最大许可荷载,σmax为材料的最大强度。
设计完成后,需要对设计公式进行验证和修正。
具体来说,我们需要将设计公式计算得到的参数值与实际采矿工程中的情况进行对比,根据对比结果对设计公式进行修正,以确保其合理性和可靠性。
预应力锚杆支护参数的设计是采矿工程中一项重要的任务,本文介绍了预应力锚杆支护的基本原理和常用参数,并针对预应力锚杆支护参数的设计进行了分析、推导和验证。
煤矿建井巷道施工锚杆支护的原理、参数设定及设计方法摘要:为提高支护的强度和效果如通常采用锚杆辅以锚索做加强支护,锚杆理论已用理论方法确定煤矿巷道、硐室支护参数阶段,用该理论设计的巷道、硐室支护有理有据,文章就此提出论点,供广大同仁参考、指正。
关键词:煤矿矿井巷道锚杆支护1、锚杆支护作用原理锚杆是一种安设在巷道围岩体内的杆状锚栓体系。
采用锚杆支护的巷道,就是在巷道掘进后向围岩中钻锚杆眼,然后将锚杆安设在锚杆孔内,对巷道围岩进行加固,以维护巷道的稳定性。
1.1悬吊作用悬吊作用是指将要冒落的围岩或者软弱岩层,用锚杆悬吊于上部的坚硬岩体上,由锚杆来承载围岩或者弱岩的重量。
1.2组合梁作用可将平顶巷道层状顶板看作是由巷道两帮为支点的叠合梁,在荷载作用下,各层板梁都单独弯曲,每层板梁的上下缘分别处于受压和受拉状态。
但是用锚杆将各组合板梁压紧之后,在荷载作用下,就如同一块板梁的弯曲一样,提高了板梁的抗弯强度,可以提高顶板岩层的承载能力。
1.3挤压加固拱作用在巷道周围系统地布置锚杆,使巷道拱部节理发育的岩体连接在一起,便在一定的范围内形成一个连续的、具有一定自承能力的拱形压缩带,使巷道围岩由原来作用在支架上的荷载变成了承载结构,以支承其自身的重量和顶板压力。
1.4减跨作用在巷道内安设锚杆,能够减少压力拱的高度和跨度。
如在巷道跨中打一根锚杆,相当于在该处打一根支柱,使原来的拱分为两个小拱,小拱的跨度为原拱的一半。
如果打三根锚杆,就相当于将原来的拱分成四个小拱,压力拱的跨度为原拱的四分之一,同时压力拱的高度也明显降低。
1.5围岩补强加固作用巷道深处围岩内的岩石处于三向受力状态,而靠近巷道周边的岩石则处于二向受力状态,后者的强度远远小于前者,因此容易受破坏而丧失稳定性。
在巷道内安设锚杆后,有些围岩又部分地恢复为三向受力状态,增强了自身的强度。
此外,锚杆还可以增强岩层弱面的抗剪强度,使巷道周边的围岩不易破坏和失稳。
2、锚杆支护参数的确定目前,用于煤矿巷道支护设计的主要的锚杆支护参数设计方法有下列几种:(1)悬吊机制及其围岩条件:在层状岩体中,锚杆将下部不稳定岩层悬吊在上部稳固的岩层上,锚杆承受的载荷为下部不稳定岩层的重量。
锚杆支护设计规范1本规范是专门针对安源现有生产矿井所开采的3#煤层的地质与生产条件而编制的,旨在促进安源煤巷锚杆支护技术健康发展,为矿井实现安全高效创造良好条件。
1.2根据《安源巷道围岩地质力学测试与分类研究报告》和《安源煤巷锚杆支护成套技术研究》的结论,在安源的煤巷中可以并应积极推广应用锚杆支护技术。
指导思想是:解放思想,实事求是,因地制宜,积极推广应用。
工作原则是:以科学的理论依据为指导,以严谨的态度抓好设计、施工和管理。
1.3本规范适用于安源以锚杆支护作为主要手段的煤巷,包括:(1)回采巷道(运输巷,回风巷,开切眼,瓦排巷等);(2)采区集中巷;(3)煤层大巷;(4)各类煤巷交岔点和峒室。
1.4在进行煤巷锚杆支护设计前,必须有全面、准确、可靠的巷道围岩地质力学参数,包括地应力的大小和方向、围岩强度、围岩结构等。
否则,不能进行锚杆支护设计。
1.5煤巷锚杆支护设计采用动态信息设计法。
设计是一个动态过程,充分利用每个过程提供的信息。
设计应严格按五个步骤进行,即巷道调查和地质力学评估、初始设计、井下施工与监测、信息反馈分析和修正设计、日常监测。
1.6煤巷锚杆支护材料的尺寸规格、力学性能与产品质量必须满足锚杆支护设计的要求,并符合煤矿安全有关规定。
否则,不能下井使用。
1.7煤巷锚杆支护施工应严格按照设计和作业规程要求进行,确保施工质量。
1.8与煤巷锚杆支护技术有关的各级管理和技术人员,以及操作工人,都应进行锚杆支护技术培训。
1.9本规范未涉及的煤巷锚杆支护技术问题,应按煤炭行业有关规定执行。
第二章巷道围岩地质力学评估与现场调查2.1巷道围岩地质力学评估与现场调查是煤巷锚杆支护设计的基础依据和先决条件,必须在进行支护设计之前完成。
2.2地质力学评估与现场调查首先应确定评估与调查的区域,考虑巷道服务期间影响支护系统的所有因素,随后的锚杆支护设计应该限定在这个区域内。
2.3地质力学评估与现场调查主要包括以下内容(1)巷道围岩岩性与强度煤层厚度、倾角和强度;顶、底板各岩层的岩性、厚度、倾角和强度。
锚杆支护施工方案引言概述:锚杆支护是一种常用的地下工程支护技术,它通过使用钢筋锚杆将地下结构与岩土体连接起来,增强其稳定性和承载能力。
本文将详细介绍锚杆支护施工方案的五个部份,包括锚杆的选择与设计、锚杆的预处理、锚杆的施工方法、锚杆的质量控制以及施工后的监测与维护。
一、锚杆的选择与设计:1.1 锚杆的材料选择:根据工程的具体要求和岩土体的特性,选择合适的锚杆材料,常见的有钢筋锚杆、玻璃钢锚杆和碳纤维锚杆等。
1.2 锚杆的直径与长度设计:根据地下工程的要求和岩土体的承载能力,确定锚杆的直径和长度。
普通情况下,直径越大、长度越长的锚杆能够提供更好的支护效果。
1.3 锚杆的布置方式设计:根据地下工程的结构特点和岩土体的力学性质,设计合理的锚杆布置方式,包括锚杆的间距、罗列方式和角度等。
二、锚杆的预处理:2.1 岩土体的处理:在进行锚杆支护之前,需要对岩土体进行必要的处理,包括清理松散物、修整表面和加固裂缝等,以提高锚杆的粘结强度。
2.2 钻孔的施工:根据锚杆的设计要求,进行钻孔施工,包括钻孔的位置、直径和深度等,确保钻孔的准确性和质量。
2.3 锚固剂的注入:在完成钻孔后,将锚固剂注入钻孔中,填充整个孔道,使其与岩土体形成坚固的结合,增强锚杆的支护效果。
三、锚杆的施工方法:3.1 锚杆的安装:根据设计要求,将预制好的锚杆插入钻孔中,确保其正确的位置和方向,并保证与锚固剂的充分接触。
3.2 锚杆的张拉:通过专用的张拉设备对锚杆进行张拉,使其产生预压力,增加岩土体的抗拉强度,提高支护效果。
3.3 锚杆的锚固:在完成锚杆的张拉后,对锚固部位进行固定,确保锚杆与岩土体之间的连接坚固可靠。
四、锚杆的质量控制:4.1 锚杆的质量检测:对锚杆进行必要的质量检测,包括锚杆的直径、长度和张拉力等参数的检测,以确保其符合设计要求和施工规范。
4.2 锚杆的质量验收:在锚杆施工完成后,进行质量验收,包括对锚杆的外观质量、锚固效果和张拉力的检测,以确保施工质量达到要求。