(Z20联盟)浙江省名校新高考研究联盟2020届高三第一次联考 技术(含答案)(2019.8)
- 格式:doc
- 大小:10.16 MB
- 文档页数:18
浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考物理试题卷—、选择题I (本大题共10小题,每小题3分,共30分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.万有引力常量G 的单位用国际单位制基本单位表达正确的是 A. 22··N m kgB. 2··N m kgC. 32·m kg sD. 22·m kg s【答案】C 【解析】【详解】根据牛顿的万有引力定律2GMm F r = 以及F ma =得到22Fr mar G Mm Mm== 国际单位制中质量的单位是kg ,距离的单位是m ,时间的国际单位是s ,所以G 的单位是32·m kg s A .22··N m kg 结论与分析不符,故A 不符合题意 B. 2··N m kg 结论与分析不符,故B 不符合题意C. 32·m kg s结论与分析相符,故C 符合题意 D. 22·m kg s结论与分析不符,故D 不符合题意2.以下符合物理学史实的是A. 亚里士多德认为重的物体与轻的物体下落一样快B. 库仑最早通过油滴实验测出了元电荷的电量C. 法拉第首先提出了场的概念D. 玻尔通过α粒子散射实验提出了原子核式结构模型【答案】C 【解析】【详解】A.伽利略认为重的物体与轻的物体下落一样快,故A 不符合题意 B. 密立根最早通过油滴实验测出了元电荷的电量,故B 不符合题意 C. 法拉第首先提出了场的概念,故C 符合题意D. 卢瑟福通过α粒子散射实验提出了原子核式结构模型,故D 不符合题意3.2019年6月6日,中国科考船“科学”号对马里亚纳海沟南侧系列海山进行调查,船上搭载的“发现”号遥控无人潜水器完成了本航次第10次下潜作业,发现号下潜深度可达6000m 以上。
潜水器完成作业后上浮,上浮过程初期可看作匀加速直线运动。
浙江省名校新高考研究联盟2020届高三上学期第一次联考物理试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.万有引力常量G 的单位用国际单位制基本单位表达正确的是( )A .N·m 2·kg 2B .N·m·kg 2C .23s kg m ⋅ D .22skg m ⋅ 2.以下符合物理学史实的是( )A .亚里士多德认为重的物体与轻的物体下落一样快B .库仑最早通过油滴实验测出了元电荷的电量C .法拉第首先提出了场的概念D .玻尔通过α粒子散射实验提出了原子核式结构模型3.2019年6月6日,中国科考船“科学”号对马里亚纳海沟南侧系列海山进行调查,船上搭载的“发现”号遥控无人潜水器完成了本航次第10次下潜作业,发现号下潜深度可达6000m 以上。
潜水器完成作业后上浮,上浮过程初期可看作匀加速直线运动。
今测得潜水器相继经过两段距离为8m 的路程,第一段用时4s ,第二段用时2s ,则其加速度大小是( )A .22/3m sB .24/3m sC .28/9m sD .216/9m s4.6月5日12时6分,长征十一号海射型固体运载火箭(又名CZ-11WEY 号)在我国黄海海域实施发射,将捕风一号系列的7颗卫星送入约600公里高度的圆轨道,宣告我国运载火箭首次海上发射技术试验圆满成功,下列说法中正确的是( )A .捕风一号系列卫星的运行周期约为24小时B .七颗卫星中,处于高轨道的卫星具有较大的速度C .七颗卫星中,处于高轨道的卫星具有较大的能量D .如果在赤道附近的海上发射卫星,可利用地球自转,从而节省能源5.某物体在外力作用下由静止开始做变速运动,其加速度随时间变化的规律如图所示(图中只画出了前2个周期)。
则关于物体的运动,以下描述正确的是( )A .物体做振动,且t 0时刻过平衡位置B .物体做振动,且t 0时刻过在最大位移处C .物体做单向运动,且t 0每时刻速度最大D .物体做单向运动,且t 0时刻速度为06.如图,水平面上有一均匀带电环,带电量为Q ,其圆心为O 点。
浙江省名校新高考研究联盟(Z20联盟)2020届高三数学第一次联考试题(含解析)一、选择题1.已知集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖,则()R C A B ⋂=( ) A. [1,0)(2,3]-B. (2,3]C. (,0)(2,)-∞+∞D. (1,0)(2,3)-【答案】A 【解析】 【分析】解一元二次不等式和绝对值不等式,化简集合A , B 利用集合的交、补运算求得结果.【详解】因为集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖, 所以{|3A x x =>或1}x <-,{|2B x x =>或0}x <, 所以{|13}R C A x x =-≤≤,所以()R C A B ⋂={|23x x <≤或10}x -≤<,故选A.【点睛】本题考查一元二次不等式、绝对值不等式的解法,考查集合的交、补运算.2.已知双曲线22:193x y C -=,则C 的离心率为( )D. 2【答案】C 【解析】 【分析】由双曲线的方程得229,3a b ==,又根据222c a b =+,可得,a c 的值再代入离心率公式.【详解】由双曲线的方程得229,3a b ==,又根据2229312c a b =+=+=,解得:3,23a c ==,所以23c e a ==,故选C. 【点睛】本题考查离心率求法,考查基本运算能力.3.已知,a b 是不同的直线,αβ,是不同的平面,若a α⊥,b β⊥,//a β,则下列命题中正确的是( ) A. b α⊥ B. //b αC. αβ⊥D. //αβ【答案】C 【解析】 【分析】构造长方体中的线、面与直线,,,a b αβ相对应,从而直观地发现αβ⊥成立,其它情况均不成立.【详解】如图在长方体1111ABCD A B C D -中,令平面α为底面ABCD ,平面β为平面11BCC B ,直线a 为1AA若直线AB 为直线b ,此时b α⊂,且αβ⊥,故排除A,B,D ;因为a α⊥,//a β,所以β内存在与a 平行的直线,且该直线也垂直α,由面面垂直的判定定理得:αβ⊥,故选C.【点睛】本题考查空间中线、面位置关系,考查空间想象能力,求解时要排除某个答案必需能举出反例加以说明.4.已知实数,x y 满足312(1)x x y y x ≤⎧⎪+≥⎨⎪≤-⎩,则2z x y =+的最大值为( )A. 11B. 10C. 6D. 4【答案】B 【解析】 【分析】画出约束条件所表示的可行域,根据目标函数2z x y =+的几何意义,当直线2y x z =-+在y 轴上的截距达到最大时,z 取得最大值,观察可行域,确定最优解的点坐标,代入目标函数求得最值.【详解】画出约束条件312(1)x x y y x ≤⎧⎪+≥⎨⎪≤-⎩所表示的可行域,如图所示,根据目标函数2z x y =+的几何意义,当直线2y x z =-+在y 轴上的截距达到最大时,z 取得最大值,当直线过点(3,4)A 时,其截距最大,所以max 23410z =⨯+=,故选B. 【点睛】本题考查线性规划,利用目标函数的几何意义,当直线2y x z =-+在y 轴上的截距达到最大时,z 取得最大值,考查数形结合思想的应用.5.已知圆C 的方程为22(3)1x y -+=,若y 轴上存在一点A ,使得以A 为圆心、半径为3的圆与圆C 有公共点,则A 的纵坐标可以是( ) A. 1B. –3C. 5D. -7【答案】A 【解析】 【分析】设0(0,)A y ,以A 为圆心、半径为3的圆与圆C 有公共点,可得圆心距大于半径差的绝对值,同时小于半径之和,从而得到0y <<【详解】设0(0,)A y,两圆的圆心距d =因为以A 为圆心、半径为3的圆与圆C 有公共点,所以313124d -<<+⇒<<,解得0y <<B 、C 、D 不合题意,故选A.【点睛】本题考查两圆相交的位置关系,利用代数法列出两圆相交的不等式,解不等式求得圆心纵坐标的范围,从而得到圆心纵坐标的可能值,考查用代数方法解决几何问题.6.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A. (4][2,)-∞-+∞ B. [1,2]-C. [4,0)(0,2]-D. [4,2]-【答案】D 【解析】 【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩,解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.7.已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象( )A. B.C. D.【答案】B 【解析】 【分析】由2x π=时的函数值,排除C,D ;由2x π=的函数值和322x ππ<<函数值的正负可排除A. 【详解】当2x π=时,(2)ln 20f ππ=>排除C,D , 当2x π=时,()02f π=,当322x ππ<<时,ln 0,cos 0x x ><, 所以()0f x <排除A, 故选B.【点睛】本题考查通过研究函数解析式,选择函数对应的解析式,注意利用特殊值进行检验,考查数形结合思想的运用.8.在矩形ABCD 中,4AB =,3AD =,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE ∆',使得点A '在平面BCDE 上的射影在四边形BCDE 内(不含边界),设二面角A BE C '--的大小为θ,直线A B ','A C 与平面BCDE 所成的角分别为,αβ,则( )A. βαθ<<B. βθα<<C. αθβ<<D. αβθ<<【答案】D 【解析】 【分析】由折叠前后图象的对比得点A '在面BCDE 内的射影'O 在线段OF 上,利用二面角、线面有的定义,求出tan ,tan ,tan αβθ的表达式,再进行大小比较.【详解】如图所示,在矩形ABCD 中,过A 作AF BE ⊥交于点O ,将ABE ∆沿直线BE 折成A BE ∆',则点A '在面BCDE 内的射影'O 在线段OF 上,设A '到平面BCDE 上的距离为h ,则''h AO =,由二面角、线面角的定义得:'tan h O O θ=,'tan h O B α=,'tan hO Cβ=,显然'''',O O O B O O O C <<,所以tan θ最大,所以θ最大, 当'O 与O 重合时,max (tan )h OB α=,min (tan )h OCβ=, 因为h OB <hOC,所以max (tan )α<min (tan )β,则tan tan αβ<,所以αβ<, 所以αβθ<<,故选D.【点睛】本题以折叠问题为背景,考查二面角、线面角大小比较,本质考查角的定义和正切函数的定义,考查空间想象能力和运算求解能力.9.已知函数2()(,R)f x x ax b a b =++∈有两个零点,则“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的一个( )条件 A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要【答案】A 【解析】 【分析】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,再从函数在[0]2,上的零点个数得出相应条件,从而解出+a b 的范围.【详解】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,函数()f x 至少有一个零点属于区间[0]2,分为两种情况: (1)函数()f x 在区间[0]2,上只有一个零点0,(0)(2)0,f f ∆>⎧⇔⎨⋅≤⎩2222(0)(2)(42)2424f f b a b b ab b b ab a b a ⋅=++=++=+++- 22()40a b b a =++-≤,即22()4a b a b +≤-又因为240a b ->,所以,a b ≤+≤(2)函数()f x 在[0]2,上有2个零点0,(0)0,(2)420,02,2f b f a b a ∆>⎧⎪=≥⎪⎪⇔⎨=++≥⎪⎪<-<⎪⎩解得:20a b -≤+≤; 综上所述“函数()f x 至少有一个零点属于区间[0]2,”⇔20a b -≤+≤或a b ≤+≤所以20a b -≤+≤⇒20a b -≤+≤或a b ≤+≤ 而后面推不出前面(前面是后面的子集),所以“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的充分不必要条件,故选A.【点睛】本题考查二次函数的性质、简易逻辑的判定方法,考查推理能力与计算能力,属于基础题.10.已知数列{}n a 满足:1102a <<,()1ln 2n n n a a a +=+-.则下列说法正确的是( ) A. 2019102a << B. 2019112a <<C. 2019312a <<D. 2019322a <<【答案】B 【解析】 【分析】考察函数()ln(2)(02)f x x x x =+-<<,则'11()1022xf x x x-=-=>--先根据单调性可得1n a <,再利用单调性可得1231012n a a a a <<<<<<<<.【详解】考察函数()ln(2)(02)f x x x x =+-<<,由'11()1022xf x x x-=-=>--可得()f x ()0,1单调递增,由'()0f x <可得()f x 在()1,2单调递减且()()11f x f ≤=,可得1n a <,数列{}n a 为单调递增数列, 如图所示:且1(0)ln 2ln 4ln 2f e ==>=,211()(0)2a f a f =>>,图象可得1231012n a a a a <<<<<<<<,所以2019112a <<,故选B. 【点睛】本题考查数列通项的取值范围,由于数列是离散的函数,所以从函数的角度来研究数列问题,能使解题思路更简洁,更容易看出问题的本质,考查数形结合思想和函数思想.二、填空题11.复数2(1)1i z i-=+(i 为虚数单位),则z 的虚部为_____,||z =__________.【答案】 (1). -1 (2). 2 【解析】 【分析】复数z 进行四则运算化简得1i z =--,利用复数虚部概念及模的定义得虚部为1-,模为2.【详解】因为2(1)2(1)11(1)(1)i i i z i i i i ---===--++-,所以z 的虚部为1-,22||(1)12z =-+=,故填:1-;2.【点睛】本题考查复数的四则运算及虚部、模的概念,考查基本运算能力.12.某几何体的三视图为如图所示的三个正方形(单位:cm ),则该几何体的体积为_____3cm ,表面积为____2cm .【答案】 (1). 233(2). 23 【解析】 【分析】判断几何体的形状,利用三视图的数据求解几何体的体积与表面积. 【详解】由题意可知几何体为正方体去掉一个三棱锥的多面体,如图所示:正方体的棱长为2,去掉的三棱锥的底面是等腰直角三角形,直角边长为1,棱锥的高为2, 所以多面体的体积为:1123222112323⨯⨯-⨯⨯⨯⨯=3cm , 表面积为:2212116222(5)()11212232222⨯⨯+⨯⨯--⨯⨯-⨯⨯⨯=2cm【点睛】本题考查几何体的三视图的应用,几何体的体积与表面积的求法,考查空间想象能力和运算求解能力.13.若7280128(2)(21)x x a a x a x a x +-=++++,则0a =______,2a =_____.【答案】 (1). –2 (2). –154 【解析】 【分析】令0x =得:02a =-,求出两种情况下得到2x 项的系数,再相加得到答案. 【详解】令0x =得:02a =-,展开式中含2x 项为:(1)当(2)x +出x ,7(21)x -出含x 项,即1617(2)(1)T x C x =⋅⋅⋅-; (2)当(2)x +出2,7(21)x -出含2x 项,即225272(2)(1)T C x =⋅⋅⋅-; 所以2a =1277224(1)154C C ⋅+⋅⋅⋅-=-,故填:2-;154-.【点睛】本题考查二项式定理展开式中特定项的系数,考查逻辑推理和运算求解,注意利用二项式定理展开式中,项的生成原理进行求解.14.在ABC ∆中,90ACB ∠=︒,点,D E 分别在线段,BC AB 上,36AC BC BD ===,60EDC ∠=︒,则BE =________,cos CED ∠=________.【答案】 (1). 326+ (2). 2 【解析】 【分析】在BDE ∆中利用正弦定理直接求出BE ,然后在CEB ∆中用余弦定理求出CE ,再用余弦定理求出cos CEB ∠,进一步得到cos CED ∠的值.【详解】如图ABC ∆中,因为60EDC ∠=︒,所以120EDB ∠=︒, 所以sin sin BE BD EDB BED =∠∠,即2sin120sin15BE =,解得:33326sin152321BE ===+⋅-⋅在CEB ∆中,由余弦定理,可得:2222cos CE BE CB BE CB B =+-⋅2242(422)=-=-,所以422CE =-2221cos 22CE BE CB CEB CE BE +-∠==⋅,CEB 60,︒∠=CED CEB BED 45∠=∠-∠=,所以2cos 2CED ∠=326;22.【点睛】本题考查正弦定理和余弦定理在三角形中的运用,求解过程中注意把相关的量标在同一个三角形中,然后利用正、余弦定理列方程,考查方程思想的应用.15.某高三班级上午安排五节课(语文,数学,英语,物理,体育),要求语文与英语不能相邻、体育不能排在第一节,则不同的排法总数是_______(用数字作答). 【答案】60 【解析】 【分析】先求出体育不能排在第一节的所有情况,从中减去体育不能排在第一节,且语文与英语相邻的情况,即为所求.【详解】体育不能排在第一节,则从其他4门课中选一门排在第一节,其余的课任意排,它的所有可能共有144496A A ⋅=种.其中,体育不能排在第一节,若语文与英语相邻,则把语文与英语当做一节,方法有22A 种,则上午相当于排4节课,它的情况有:13233236A A A ⋅⋅=种.故语文与英语不能相邻,体育不能排在第一节,则所有的方法有963660-=种.【点睛】本题考查用间接法解决分类计数原理问题,以及特殊元素特殊处理,属于中档题.16.已知,A B 是抛物线24y x =上的两点,F 是焦点,直线,AF BF 的倾斜角互补,记,AF AB 的斜率分别为1k ,2k ,则222111k k -=____. 【答案】1 【解析】 分析】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得到关于x 的一元二次方程,利用韦达定理得到12,k k 的关系,从而求得222111k k -的值. 【详解】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得:2222111(24)0k x k x k -++=,所以2112211224,1,k x x k x x ⎧++=⎪⎨⎪=⎩,因为2221122221121121212y y k k k x x k x x x x x x -==⇒==-++++,所以212222211111111k k k k k +-=-=,故填:1. 【点睛】本题考查直线与抛物线的位置关系,会用坐标法思想把所要求解的问题转化成坐标运算,使几何问题代数化求解.17.已知非零平面向量,a b 不共线,且满足24a b a ⋅==,记3144c a b =+,当,b c 的夹角取得最大值时,||a b -的值为______. 【答案】4 【解析】 【分析】先建系,再结合平面向量数量积的坐标及基本不等式的应用求出向量b ,进而通过运算求得||a b -的值.【详解】由非零平面向量,a b 不共线,且满足24a b a ⋅==,建立如图所示的平面直角坐标系:则(2,0),(2,),0A B b b >,则(2,0),(2,)a b b ==,由3144c a b =+,则(2,)4b C , 则直线,OB OC 的斜率分别为,28b b, 由两直线的夹角公式可得:3328tan BOC 841282b b b b b b -∠==≤=+⨯+,当且仅当82bb =,即4b =时取等号,此时(2,4)B ,则(0,4)a b -=-, 所以||4a b -=,故填:4.【点睛】本题考查平面向量数量积的坐标运算及基本不等式求最值的运用,考查转化与化归思想,在使用基本不等式时,注意等号成立的条件.三、解答题18.已知函数2()cos cos f x x x x =+. (1)求3f π⎛⎫⎪⎝⎭的值; (2)若13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,求cos α的值. 【答案】(1)1;(2) 4cos 10α= 【解析】 【分析】(1)利用倍角公式、辅助角公式化简1()sin 226f x x π⎛⎫=++ ⎪⎝⎭,再把3x π=代入求值; (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,利用角的配凑法得:66ππαα=+-,再利用两角差的余弦公式得cos α=. 【详解】解:(1)因为21cos21()cos cos sin 22226x f x x x x x x π+⎛⎫=+=+=++ ⎪⎝⎭,所以121511sin sin 132362622f ππππ⎛⎫⎛⎫=++=+=+=⎪⎪⎝⎭⎝⎭. (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭得43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 334cos cos cos cos sin sin 66666610ππππππαααα+⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【点睛】本题考查三角恒等变换中的倍角公式、辅助角公式、两角差的余弦公式等,考查角的配凑法,考查运算求解能力.19.在三棱柱111ABC A B C -中,底面ABC ∆是等腰三角形,且90ABC ∠=︒,侧面11ABB A 是菱形,160BAA ∠=︒,平面11ABB A ⊥平面BAC ,点M 是1AA 的中点.(1)求证:1BB CM ⊥;(2)求直线BM 与平面1CB M 所成角的正弦值.【答案】(1) 证明见解析;10【解析】 【分析】(1)证明直线1BB 垂直CM 所在的平面BCM ,从而证明1BB CM ⊥;(2)以A 为原点,BC 为x 轴正方向,AB 为y 轴正方向,垂直平面ABC 向上为z 轴正方向建立平面直角坐标系,设2AB =,线面角为θ,可得面1B MC 的一个法向量(23,3,5)n =-,330,,22BM ⎛⎫=- ⎪ ⎪⎝⎭,代入公式sin |cos ,|n BM θ=<>进行求值. 【详解】(1)证明:在Rt ABC ∆中,B 是直角,即BC AB ⊥,平面ABC ⊥平面11AA B B , 平面ABC平面11AA B B AB =,BC ⊂平面ABC ,BC ∴⊥平面11AA B B AB =,1BC B B ∴⊥.在菱形11AA B B 中,160A AB ︒∠=,连接BM ,1A B 则1A AB ∆是正三角形,∵点M 是1AA 中点,1AA BM ∴⊥. 又11//AA B B ,1BB BM ∴⊥.又BMBC B =,1BB ∴⊥平面BMC1BB MC ∴⊥.(2)作1BG MB ⊥于G ,连结CG .由(1)知BC ⊥平面11AA B B ,得到1BC MB ⊥, 又1BG MB ⊥,且BCBG B =,所以1MB ⊥平面BCG .又因为1MB ⊂平面1CMB ,所以1CMB ⊥BCG , 又平面1CMB 平面BCG CG =,作BH CG ⊥于点H ,则BH ⊥平面1CMB ,则BMH ∠即为所求线面角. 设 2AB BC ==, 由已知得1221302,3,BB BM BG BH ====sinBHBMHBM∠===,则BM与平面1CB M所成角的正弦值为5.【点睛】本题考查空间中线面垂直判定定理、求线面所成的角,考查空间想象能力和运算求解能力.20.已知数列{}n a为等差数列,n S是数列{}n a的前n项和,且55a=,36S a=,数列{}n b满足1122(22)2n n na b a b a b n b+++=-+.(1)求数列{}n a,{}n b的通项公式;(2)令*,nnnac n Nb=∈,证明:122nc c c++<.【答案】(1) n a n=.2nnb=. (2)证明见解析【解析】【分析】(1)利用55a=,36S a=得到关于1,a d的方程,得到na n=;利用临差法得到12nnbb-=,得到{}n b是等比数列,从而有2nnb=;(2)利用借位相减法得到12111121222222n n nn n-+++++-=-,易证得不等式成立. 【详解】(1)设等差数列{}n a的公差为d,11145335a da d a d+=⎧∴⎨+=+⎩,解得111ad=⎧⎨=⎩,∴数列{}n a的通项公式为n a n=.122(22)2n nb b nb n b∴++=-+,当2n≥时,12112(1)(24)2n nb b n b n b--++-=-+11(24)(2)2nn n n b n b n b b --⇒-=-⇒=, 即{}n b 是等比数列,且12b =,2q =,2n n b ∴=. (2)2n n n n a nc b ==,记121212222n nn S c c c =++=++⋯+, 则1212321222n nS -=++++, 1211112212222222n n n n n S S S -+∴=-=++++-=-<.【点睛】本题考查数列通项公式、前n 项和公式等知识的运用,考查临差法、错位相减法的运用,考查运算求解能力.21.已知抛物线24x y =,F 为其焦点,椭圆22221(0)x y a b a b+=>>,1F ,2F 为其左右焦点,离心率12e =,过F 作x 轴的平行线交椭圆于,P Q 两点,46||3PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作切线l 交椭圆于,B C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴为K ,KED ∆,FOD ∆的面积分别记为1S ,2S ,若121849S S =,且点A 在第一象限.求点A 的坐标.【答案】(1)22143x y+=. (2) ()2,1【解析】【分析】(1)由题设可知26,13P⎛⎫⎪⎝⎭,又12e=,把,a b均用c表示,并把点26,13P⎛⎫⎪⎝⎭代入标圆方程,求得1c=;(2)根据导数的几可意义求得直线BC的方程,根据韦达定理及中点坐标公式求得点E的坐标,求得中垂线方程,即可求得K点坐标,根据三角形面积公式,即可求得点A坐标. 【详解】(1)不妨设P在第一象限,由题可知26,1P⎛⎫⎪⎝⎭,228113a b∴+=,又12e=,22811123c c∴+=,可得1c=,椭圆的方程为22143x y+=.(2)设2,4xA x⎛⎫⎪⎝⎭则切线l的方程为20024x xy x=-代入椭圆方程得:()422300031204xx x x x+-+-=,设()()()112233,,,,,B x yC x y E x y,则()31232223xx xxx+==+,()2200033232443x x xy xx=-=-+,KE 的方程为()()230022000324323x x y x x x x ⎡⎤+=--⎢⎥++⎢⎥⎣⎦, 即()20200243x y x x x =-++, 令0y =得()32083K x x x =+, 在直线l 方程中令0y =得02D x x =, 222004124x x FD +⎛⎫=+=⎪⎝⎭()()()23000022003428383x x x x DK x x +=-=++,002,2FD BC x k k x =-=, 1FD BC k k ∴⋅=-,FD BC ⊥,DEK FOD ∴∆∆∽,()()22200122220941849163x x S DK S FD x +∴===+. 化简得()()2200177240x x+-=,02x ∴=(02x =-舍去)A ∴的坐标为()2,1.()4223031204x x x x x +-+-=,()()462420000431234814404x x x x x ⎛⎫∆=-+-=---≥ ⎪⎝⎭,因为2008x ≤≤+【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理、中点坐标公式、三角形的面积公式,考查逻辑推理和运算求解能力.22.设a 为实常数,函数2(),(),xf x axg x e x R ==∈.(1)当12a e=时,求()()()h x f x g x =+的单调区间; (2)设m N *∈,不等式(2)()f x g x m +≤的解集为A ,不等式()(2)f x g x m +≤的解集为B ,当(]01a ∈,时,是否存在正整数m ,使得A B ⊆或B A ⊆成立.若存在,试找出所有的m ;若不存在,请说明理由.【答案】(1) ()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)存在,1m =【解析】【分析】(1)当12a e =时得21()2x h x x e e=+,求导后发现()h x '在R 上单调递增,且(1)0h '-=,从而得到原函数的单调区间;(2)令2()(2)()4x F x f x g x ax e =+=+,22()()(2)x G x f x g x ax e =+=+,利用导数和零点存在定理知存在120x x <≤,使得()()12F x F x m ==,再对m 分1m =和1m 两种情况进行讨论.【详解】解:(1)21()2x h x x e e =+,1()x h x x e e'=+, ∵()h x '在R 上单调递增,且(1)0h '-=,∴()h x '在(),1-∞-上负,在()1,-+∞上正, 故()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)设2()(2)()4x F x f x g x ax e =+=+,22()()(2)xG x f x g x ax e =+=+ ()8x F x ax e '=+,()80x F x a e ''=+>,()F x '∴单调递增.又(0)0F '>,0F '⎛ < ⎪ ⎪⎝⎭(也可依据lim ()0x F x '→-∞<), ∴存在00 x <使得()00F x '=,故()F x 在()0,x -∞上单调递减,在()0,x +∞上单调递增.又∵对于任意*m N ∈存在ln x m >使得()F x m >,又lim ()x F x →-∞→+∞,且有()0(0)1F x F m <=≤,由零点存在定理知存在120x x <≤,使得()()12F x F x m ==,故[]34,B x x =.()()222()()4x x F x G x ax e ax e -=---,令2()xH x ax e =-,由0a >知()H x 在(,0)-∞上单调递减,∴当0x <时,()()(2 )()0F x G x H x H x -=->又∵m 1≥,3x 和1x 均在各自极值点左侧,结合()F x 单调性可知()()()133F x m G x F x ==<,310x x ∴<<当1m =时,240x x ==, A B ∴⊆成立,故1m =符合题意.当0x >时,2222()()33x x x x F x G x ax e e x e e -=+-≤+-, 令1()2ln P t t t t =--,则22(1)()0t P t t '-=>, ∴当1t >时,()(1)0P t P >=. 在上式中令2x t e =,可得当0x >时,有22x xe e x -->成立, 322x x x e e xe ∴-> 令()2t Q t e t =-,则()2tQ t e '=-, ()(ln2)22ln20Q t Q ∴≥=->,2x e ∴>恒成立. 故有32223x x x e e xe x ->>成立,知当0x >时,()()0F x G x -<又∵()F x ,()G x 在[)0,+∞上单调递增,∴当1m 时,()()()244F x m G x F x ==>,240x x ∴>>,而31 0x x <<,∴此时A B ⊆和B A ⊆均不成立.综上可得存在1m =符合题意.【点睛】本题考查利用导数研究函数的单调性、零点存在定理,特别要注意使用零点存在定理判断零点的存在性,要注意说明端点值的正负.同时,对本题对构造法的考查比较深入,对逻辑推理、运算求解的能力要求较高,属于难题.。
Z20联盟(浙江省名校新高考研究联盟)2020届第一次联考技术参考答案第一部分:信息技术(共50分)一、选择题(本大题共12小题,每小题2分,共24分。
在每小题给出的四个选项中,只有一个符合题目要求)二、非选择题(本大题共4小题,其中第13小题4分,第14小题8分,第15小题7分,第16小题7分,共26分)13.(1)B9:O11 (1分)不需要(1分)(2)B9:B11,O9:O11或B3,B9:B11,O3,O9:O11 (1分)(3)有(1分)14.(1)AD (2分)(2)C (1分)(3)文字2图层第31帧插入空白关键帧(2分)或文字2图层第31帧至第40帧执行删除帧/清除帧操作(4)景点按钮(1分) C (1分)(5)不能(1分)15.(1)A (1分)(2)a(j) < a(k) (2分)(3)a(i)*3 >= s (2分)(4)4 (2分)16.(1)1 (1分)(2)①(x - 1) \ bk + 1 (2分)②L To BL(L) * bk (2分)③Str(a(K) + f(BL(K))) (2分)通用答案在第二页浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考技术参考答案第 1 页共 2 页第二部分:通用技术(共50分)一、选择题(本大题共13小题,每小题2分,共26分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13答案 C B A B A B C C D B B C D二、非选择题(本大题共4小题,第14小题6分,第15小题9分,第16小题3分,第17小题6分,共24分)14.(1)C (2)B (3)A (4)B (5)C D (每空1分)15.(1)(2)与钢板连接挡车杆评分:1.能与挡车杆连接得1分2.能与钢板连接得1分3.能实现水平转动得1分4.能竖直抬起时,挡车杆牢固可靠得1分5.标出2个合理尺寸,并正确得2分(3)B C 2分(每空1分)(4)D 1分16.3分17.(1)C 1分(2)A 2分(3)D 1分(4)2分浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考技术参考答案第 2 页共 2 页。
绝密★启用前浙江省名校新高考研究联盟(Z20联盟)2020届高三年级上学期(暑假返校联考)第一次联考技术试题第一部分:信息技术(共50分)一、选择题(本大题共12小题,每小题2分,共24分。
在每小题给出的四个选项中,只有一个符合题目要求)1.下列有关信息的说法中正确的是A.信息可以重复使用,也可以传递和共享,但是会产生损耗B.数字、英文字母、图像、音频、视频等在计算机内部都采用二进制代码存储C.信息作为一种社会资源自古就有,而信息技术是人类进入信息社会后才出现的D.信息可以脱离它所反映的事物被存储、保存和传播,即有些信息可以脱离载体而存在2.某同学使用搜索引擎查找荷花素材图片,部分界面如图所示:下列说法中正确的是A.搜索引擎检索信息是在其索引数据库中进行检索,所以搜索引擎网站是一种数据库管理系统B.单击图中“1”处的“”按钮,可以上传图像文件进行搜索C.当前使用的工具为IE浏览器,它的功能主要是解释执行HTTP源代码D.若要保存当前网页上的所有图片,可在保存类型中选择“网页,仅HTML(*.htm,*.html)”3.使用Access软件创建的数据表,部分界面如图所示。
下列说法中正确的是A.当前数据库文件名是“原始数据.accdb”B.当前记录是第25条记录,共有278条记录C.当前状态下,可以把“电脑”字段的数据类型修改为“是/否”类型D.当前状态下,可以把数据表“问卷表”重命名为“问卷数据”4.使用GltraEdit软件观察字符“(Z20名校联盟)”的内码,部分界面如图所示。
下列说法中正确的是A.字符“(”的内码占两个字节B.字符“联”内码值的二进制表示为11010001 10101010C.图中有5个AS CⅡ字符,其中字符“2”内码值的十六进制表示为32D.字符“Y”内码值的十六进制表示为505.使用GoldWave软件打开某音频文件,部分界面如图所示。
下列说法中正确的是A.从图中可知,该音频文件为Wave格式,采样频率为11025kHz,量化位数为32B.在当前状态下,选择“左声道”后执行“静音”操作,则左声道的第0至10秒变为静音。
绝密★考试结束前(高三暑假返校联考)浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考语文试题卷一、语言文字运用(共20分)1.下列各句中,没有错别字且加点字的注音全都正确的一项是()(3分)A.此刻,窗外的雨不再是清冷的秋雨了,在我的眸里是一种柔软,似撒.(sǎ)娇少女的情怀,是怜,是爱,是柔,是润在我心里的一种憧憬.(jǐng)。
B.财政部驻各地财政监察专员办事处要紧密结合工作重点,加强对属.(shǔ)地中央预算单位国库集中支付资金支付行为的监控,督促有关单位堵塞.(sè)漏洞和健全制度。
C.成功路上无坦途,改革不会一劳永逸,面对新变化新问题,小岗人也曾,却始终坚守改革初心,奋楫.(jì)争流,不断蹚.(tāng)出一条条发展新路,带来一波波改革红利。
D.虽然礼堂里有冷气,但曹元朗穿了黑呢.(ní)礼服,忙得满头大汗,我看他戴的白硬领圈,给汗浸.(jìn)得又黄又软。
我只怕他整个胖身体全化在汗里,像洋蜡烛化成一滩油。
阅读下面的文字,完成2~3题。
(5分)5月16日,享誉世界的华裔建筑大师贝聿铭去世,享年102岁。
【甲】从法国卢浮官前的玻璃金字塔,大理石砌成的华盛顿国家美术馆,到维多利亚港口边矗立的香港中银大厦,贝聿铭的建筑手笔,将艺术之美凝固于大地,被时间证明永恒。
1983年,贝聿铭捧得建筑学界最高奖项:普利兹克奖。
【乙】评委会认为:“贝聿铭给以..我们本世纪最优美的室内空间和建筑形体,他始终关注他的建筑周边的环境,······对于材料的运用达到了诗一般的境界。
”【丙】贝聿铭被称为“最后的现代主义建筑大师”,他的现代主义有着一种鲜明的个人烙印——干净、内敛、边缘锐利、对几何形状的肆意使用等。
正因为如此,人们对其建筑作品情.有独钟..和谐的韵...。
站在贝聿铭设计的建筑前,你会惊叹于那些看似锐利线条的流动之美及其律,与周围环境水乳交融....。
浙江名校新高考研究联盟(Z20联盟)2020届第一次联考数学试题卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{|(3)(1)0}, {||1|1}A x x x B x x =-+>=->,则()R C A B =A.[1,0)(2,3]-B.(2,3]C.(,0)(2,)-∞+∞D.(1,0)(2,3)-2. 已知双曲线22:193x y C -=,则C 的离心率为2 3. 已知,a b 是不同的直线,,αβ是不同的平面,若,,//a b a αββ⊥⊥,则下列命题中正确的是A.b α⊥B.//b αC.αβ⊥D.//αβ 4. 已知实数,x y 满足312(1)x x y y x ≤⎧⎪+≥⎨⎪≤-⎩,则2x y +的最大值为A.11B.10C.6D.45. 已知圆C 的方程为22(3)1x y -+=,若y 轴上存在一点A ,使得以A 为圆心,半径为3的圆与圆C 有公共点,则A 的纵坐标可以是A.1B.3-C.5D.7-6. 已知函数2|2|1,0()log ,0x x f x x x +-≤⎧=⎨>⎩,若()1f a ≤,则实数a 的取值范围是 A.(,4][2,)-∞-+∞ B.[1,2]- C.[4,0)(0,2]- D.[4,2]-7. 已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象A. B.C. D.8. 在矩形ABCD 中,4,3AB AD ==E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成'A BE ∆,使得点'A在平面BCDE 上的射影在四边形BCDE 内(不含边界),设二面角'A BE C --的大小为θ,直线','A B A C 与平面BCDE 所成的角分别为,αβ,则A.βαθ<<B.βθα<<C.αθβ<<D.αβθ<< 9. 已知函数2()(,R)f x x ax b a b =++∈有两个零点,则“20a b -≤+≤”是“函数()f x 至少有一 个零点属于区间[0,2]”的一个( )条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要10.已知数列{}n a 满足:1102a <<,1ln(2)n n n a a a +=+-,则下列说法正确的是 A.2019102a << B. 2019112a << C. 2019312a << D. 2019322a <<二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考生物试题卷一、选择题1.下列关于人类对全球环境影响的叙述,错误的是A. 全球气候变暖能改变全球降雨格局,影响农业生产B. 每一种野生生物的灭绝都是一个独一无二的基因库消失C. 防治酸雨的最有效办法是限制二氧化硫和二氧化碳的排放量D. 最近30多年的人类活动使臭氧的分解作用大于生成作用【答案】C【解析】【分析】人类活动对全球环境的影响而导致的全球性生态环境问题主要包括全球性气候变化、水资源短缺、臭氧层破坏、酸雨、土地荒漠化、海洋污染和生物多样性锐减等。这些全球性的生态环境问题,对生物圈的稳态造成威胁,并且影响到人类的生存和发展。
【详解】A、全球气候变暖会引起大气环流气团向两极推移,改变全球降雨格局,影响农业生产,A正确;B、基因库是指一个种群中全部个体所含有的全部基因,地球上的每一个物种都是独一无二的基因库,因此每一种野生生物的灭绝都是一个独一无二的基因库消失,B正确;C、酸雨是指燃烧煤、石油和天然气时产生的二氧化硫和氮氧化物,在大气中与水分结合而形成的雨,酸雨中所含的酸性物质主要是硫酸和硝酸,酸雨形成的原因主要是人类过度燃烧含硫元素的煤炭、石油等化学燃料,因此防治酸雨最有效的办法是限制二氧化硫的排放量,C错误;D、最近30多年的人类活动,向空气中排放大量的氟里昂等物质,使臭氧的分解作用大于生成作用,导致臭氧层变薄或出现空洞,D正确。
故选C。
2.下列关于艾滋病的叙述,正确的是A. 艾滋病是一种可通过体液传播的疾病B. HIV只感染人体的辅助性T淋巴细胞C. HIV感染者的免疫功能严重衰退而出现痴呆D. HIV可通过蚊子叮咬等途径传播【答案】A【解析】艾滋病的全称是获得性免疫缺陷综合症,病原体是HIV。
艾滋病的发病机理是:HIV主要是感染辅助性T 淋巴细胞,使辅助性T淋巴细胞大量减少,细胞免疫受损;缺少活化的辅助性T淋巴细胞产生的淋巴因子的作用,体液免疫也受损,所以病人的免疫力几乎全部丧失。
浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考生物试题卷考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在答题纸规定的位置。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的区域规范作答,答在试卷上的答案一律无效。
3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
选择题部分一、选择题(本大题共25小题,每小题2分,共50分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列关于人类对全球环境影响的叙述,错误..的是A.全球气候变暖能改变全球降雨格局,影响农业生产B.每一种野生生物的灭绝都是一个独一无二的基因库消失C.防治酸雨的最有效办法是限制二氧化硫和二氧化碳的排放量D.最近30多年的人类活动使臭氧的分解作用大于生成作用2.下列关于艾滋病的叙述,正确的是A.艾滋病是一种可通过体液传播的疾病B.HIV只感染人体的辅助性T淋巴细胞C.HIV感染者的免疫功能严重衰退而出现痴呆D.HIV可通过蚊子叮咬等途径传播3.生物体的一切生命活动都与蛋白质有关。
下列叙述错误..的是A.蛋白质是一种高分子化合物B.蛋白质不是生物体内的能源物质C.绝大多数的酶是蛋白质D.热变性后的蛋白质遇双缩脲试剂呈紫色4.下列关于细胞核的叙述,正确的是A.原核细胞没有细胞核但有染色质B.核被膜的外层与光面内质网相连C.核仁是细胞内核糖体的形成场所D.细胞核行使遗传功能的重要结构是染色质5.下列群落中,植被结构简单、种类稀少,生长缓慢,只有那些能忍受强风吹袭的植物才能生存的是A.荒漠B.苔原C.草原D.森林6.人体下列疾病中,不.属于内环境稳态被破坏而导致的是A.中暑B.糖尿病C.组织水肿D.红绿色盲7.下列关于细胞的生命历程的叙述,正确的是A植物根尖的各种细胞都是由细胞分化形成的B.细胞凋亡通常是不利于个体生长发育的C.癌细胞因表面粘连蛋白减少而具有无限增殖能力D.细胞衰老会发生酶活性降低、呼吸变快等变化8.下图为“观察洋葱表皮细胞的质壁分离及质壁分离复原”实验过程和细胞观察示意图。
浙江省名校新高考研究联盟(Z20联盟)2020届第一次联考英语试题卷考生须知:1.本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分为150分,考试时间为120分钟。
2.用黑色签字笔将学校、班级、姓名、考号分别填写在答题卷和机读卡的相应位置上。
第Ⅰ卷(选择题部分)第一部分:听力(共两节,满分30分)第一节:(共5小题;每小题 1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。
例:Hour much is the shirt?A.£19.15.B. £9.15C.£9.18答案是B。
1.What is the woman planning to do?A. Search for the new tie.B. Paint the shelf.C.Fix the shelf2.What can we learn from the conversation?A. The man can't drive well.B. The car has broken down.C.They are on the wrong way3. When does the conversation take place?A. On Friday.B. On Saturday.C. On Sunday.4. Who is the man?A. A teacher.B.A doctor.C. A patient5. What does the man think about the price of the car?A. AcceptableB.Too highC.Unbelievable第二节:(共15小题;每小题 1.5分,满分22.5分)听下面5段对话。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
绝密★考试结束前(高三8月返校联考)浙江省名校新高考探讨联盟(Z20联盟)2024届第一次联考物理试题卷命题:长兴中学颜艳、叶银审题:平湖中学沈金林元济高级中学王建锋校对:魏俊枭考生须知:1.本卷满分100分,考试时间90分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号(填涂);3.全部答案必需写在答题卷上,写在试卷上无效;一、选择题I(本题共13小题,每小题3分,共39分,每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列仪器中不能干脆测量出国际单位制中基本物理量的是A.B.C.D.2.下列说法正确的是A.法拉第首次发觉了电流的磁效应B.卡文迪许利用扭称试验测量出了万有引力常量C.第谷依据天文观测资料,提出了行星沿椭圆轨道运动D.牛顿创建了把试验和逻辑推理有机地结合起来的科学探讨方法3.一位女士由于驾车超速而被警察挡住,警察走过来对她说:“太太,您刚才的车速是60公里每小时!”这位女士反对说:“不行能的!我才开了6分钟,还不到一小时,怎么可能走了60公里呢?”依据以上对话及右图下列说法正确的是A.女士说的6分钟是时间,60公里是位移B.警察说的60公里每小时是指平均速度C.图中的○50指的是瞬时速度D.图中的○50指汽车在1小时内行驶的路程不能超过50公里第3题图第4题图第5题图60°ALB4.如图所示是火箭点火放射的某一瞬间,下列说法正确的是 A .火箭受重力、地面推力、空气阻力作用 B .火箭加速升空过程中处于失重状态C .发动机喷出气体对火箭的作用力等于火箭所受的重力D .发动机喷出气体对火箭的作用力等于火箭对喷出气体的作用力5.如图所示,一质量为m 、电荷量为Q 的小球A 系在长为L 的绝缘轻绳下端,另一电荷量也为Q 的小球B 位于悬挂点的正下方(A 、B 均视为点电荷),轻绳与竖直方向成60°角,小球A 、B 静止于同一高度。
Z20名校联盟(浙江省名校新高考研究联盟)2023届高三第一次联考数学参考答案(后附评分细则)一、单选题(共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)8.解法一:不妨设()()1,0,2,0a b =−=,(),c x y =,因为12c a c b −=−,=即2240x x y ++=,由图可知,向量c b −与a 夹角的最大值是6π. 解法二:∵2c a c b −=−,∴2c b b a c b −+−=−,又∵2b a =−,∴()23c b a c b −−=−, 则()()()222469c b a c b a c b ⎡⎤−−⋅−+=−⎢⎥⎣⎦, 即()()28120c b a c b −−⋅−+=,即()()2128c b a c b−+⋅−=,所以()()()()22212123cos ,288c b a c b c b a c b a c bc bc b−⋅−−+<−>==≥=−−−, 向量c b −与a 夹角的最大值是6π.二、多选题(本大题共4小题,每小题5分共20分.每小题列出的四个选项中有多个是符合题目要求的,全部选对得5分,部分选对得2分,有选错的得0分)11.解析:如图,过A 、B 作准线1y =−的垂线,垂足分别为H 、G ,设线段AB 的中点为C ,C 在准线上的射影为D .当线段AB 为通径时长度最小为24p =,故A 正确;y xOac bc b −因为1212AB x x k p+==,故B 正确; 因为直线1y =−为抛物线准线,由抛物线定义可知弦AB 的中点到准线的距离CD 等于()11||||||22BG AH AB +=, 故圆与直线1y =−相切,所以点M 在该圆的圆上或者圆外,故C 错误;由题意(0,1)M −,设211(,)4x A x ,222(,)4x B x ,直线AB 方程为1y mx =+, 则214y mx x y=+⎧⎪⎨=⎪⎩可得2440x mx −−=,所以12124,4x x m x x +==−, 2212121122111144,44MA MB x x x x k k x x x x ++==+==+,1212121212121211044444MA MB x x x xx x x x x x k k x x x x ++++∴+=+++=+=−=,所以直线MA 与直线MB 的斜率互为相反数,直线倾斜角互补,所以∠AMO =∠BMO , 故D 正确(D 选项也可用平面几何三角形相似得到), 故选:ABD.12.解析:∵ln ()x f x x =,∴21ln ()x f x x −'=,()f x ∴在(0,e)上单调递增,在(e,)+∞上单调递减, 又∵2211ln ln e ex x x k x ==, ∴当0k >时,要使12x x +越小,则取21e 1x x =→,故有121x x +>,故A 正确; 又21e x x 与均可趋向于+∞,故B 错误;当0k <,21e x x =,且1(0,1)x ∈,1211ln 1x x x x ∴+=+<,故C 正确; 21e e kk x k x ⋅=,令()e ,0k g k k k =<,'()(1)e k g k k =+, ()g k ∴在(,1)−∞−单调递减,在(1,0)−单调递增,1()(1)eg k g ∴≥−=−,故D 正确,故选:ACD.三、填空题(本大题有4小题,单空每空4分,多空每空3分,共20分) 13.π;14.122n +−;15.63;16.132a −±=.16.解析:直线l 的方程可化为()3230a x y x y −−++−=,由23030x y x y +−=⎧⎨−−=⎩,解得直线l 的恒过定点()2,1−,又点C 到直线l 的距离为d ==,因为2211sin 2=222ABC S r BCA r r ∆=∠≤=⇒, 则当ABC ∆的面积最大为2时,ABC ∆为等腰直角三角形, 圆心C到直线l的距离为d =解得 a =四、解答题(本大题有6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤) 17.解: (1)()()3sin cos cosbA C c aB −=−,)()sin cos sin sincos BA C C AB ∴−=−,()sinsin sin cos A B B C A B =+−sin sin sin cos A B A A B =−, sin 0,cos 1,A B B ≠+=即有1sin(),62B π+=7(,),666B πππ+∈23B π∴=; 5分(2)若选①O 为ABC ∆的重心,111sin 3324OAC BAC S S ac B ∆∆===; 10分若选②O 为ABC ∆的内心,∵2222cos 49b ac ac B =+−=,∴7b =, 设内切圆半径为r ,则有1()24ABC a b c r S ∆++==, 则有2r =,此时124OAC S br ∆==; 10分若选③O 为ABC ∆的外心,∵2222cos 49b a c ac B =+−=,∴7b =,设外接圆半径为R ,则2R sin b B =,解得 R 3=,如图,23AOC π∠=, AB CE FD O ABCO此时,21R sin 2OACSAOC =∠=. 10分18.解: (I=N n *∈且2n ≥),∴n a =∴当2n ≥时,1n n S S −−∴=+,又∵0n a >0,1(2)n =≥,∴数列1==为首项,公差为1的等差数列,1(1)1n n =+−⨯=,所以2n S n =. 4分 ∴当2n ≥时,121n a n n n =+−=−,又∵11a =满足上式,∴数列{}n a 的通项公式为21n a n =−. 6分 另解:当2n ≥时,221(1)21n n n a S S n n n −=−=−−=−, 当1n =时,11a =,满足上式,所以{}n a 的通项公式为21n a n =−. 6分 (II )当2n ≥时,221111114441n a n n n n ⎛⎫==− ⎪−−−⎝⎭, 故22211111111111111141223144n a a n n n ⎛⎫⎛⎫++=⨯−+−++−=⨯−< ⎪ ⎪−−−⎝⎭⎝⎭, 所以对,2n N n *∈≥,都有222111114n a a ++<−−. 12分 19.解:(I )方法一:延长,CB DA 交于点F ,连接PF ,在CDF ∆中, ∵BD 是ADC ∠的平分线,且BD BC ⊥, ∴点B 是CF 的中点,又∵E 是PC 的中点,∴BE ∥PF ,又PF ⊂平面PAD ,BE ⊄平面PAD ,∴直线BE ∥平面PAD . 6分方法二:取CD 的中点为G ,连接GE , ∵E 为PC 的中点,∴GE ∥PD , 又PD ⊂平面PAD ,GE ⊄平面PAD ,F P AB CD E∴GE ∥平面PAD ,① 又在四边形ABCD 中,2AD =,4BD =,AB =则90,60BAD BDA BDC ∠=∠=∠=,又因为BD BC ⊥,G 为CD 的中点,所以60DBG BDA ∠=∠=,所以AD ∥BG ,可得BG ∥平面PAD ,②由①②得平面BEG ∥平面PAD ,又BE ⊂平面BEG ,BE ⊄平面PAD ,∴直线BE ∥平面PAD .(II )在ABD ∆中,2AD =,4BD =,AB =则90BAD ∠=,即BA AD ⊥,由已知得60BDC BDA ∠=∠=,8CD =,又平面PAD ⊥平面ABCD ,BA ⊂平面ABCD ,所以BA ⊥平面PAD ,即BA PA ⊥, 所以PAD ∠为二面角P AB D −−的的平面角,所以60PAD ∠=, 又2PA AD ==,所以PAD ∆为正三角形,取AD 的中点为O ,连OP ,则OP AD ⊥,OP 如图建立空间直角坐标系,则()(()1,0,0,1,23,0,,1,0,0,A B C D P −−, 所以()()()1,0,3,2,23,0,DP BD DC ==−−=−,设()()111222,,,,,m x y z n x y z ==分别为平面PBD 和平面PCD 的法向量,则 0m DP m BD ⎧⋅=⎪⎨⋅=⎪⎩,即1111020x x ⎧+=⎪⎨−−=⎪⎩,取11y =−,则()3,1,1m =−−,n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩,即222204430x x ⎧+=⎪⎨−+=⎪⎩,取21y =,则()3,1,1n =−,所以3cos ,5m n m n m n⋅==⋅, 则平面PBD 和平面PCD 所成夹角的余弦值为35. 12分20.解: (I )由题意得45670.20.30.40.55.5,0.3544x y ++++++====,又4170.560.450.340.8.22i ii x y==⨯+⨯+⨯+⨯=∑,PA B CDE G∴4148.24 5.50.350.5i ii x y x y =−⋅=−⨯⨯=∑∵42222217654126,ii x==+++=∑ ∴4222141264 5.55ii xx ==−−⨯=∑∴41422140.5ˆ0.154i ii ii x y xybxx ==−===−∑∑, 所以0.35ˆˆ0.1 5.50.2a y bx=−=−⨯=−, 故得y 关于x 的线性回归方程为0.10.2y x =−. 5分 (II )(ⅰ)将8x =代入0.10.20.180.20.6y x =−=⨯−=,估计该省要发放补贴的总金额为0.610000.5300⨯⨯=(万元) 7分(ⅱ)设小浙、小江两人中选择考研的的人数为X ,则X 的所有可能值为0,1,2;2(0)(1)(23)352P X p p p p ==−−=−+,2(1)(1)(31)(23)661P X p p p p p p ==−−+−=−+−, 2(2)(31)3P X p p p p ==−=−,∴()()()222()0352********E X p p p p p p p =⨯−++−+−⨯+−⨯=−,5(0.5)0.5(41)0.758E X p p =⨯−≤⇒≤, 1031113p p ∴≤−≤∴≤≤,,1385p ∴≤≤,故p 的取值范围为15,38⎡⎤⎢⎥⎣⎦. 12分注:p 的取值范围未取等不符不扣分 21.解: (I)因为c e a ==222243c a a b ==+,即223a b =,又点(在双曲线()2222:10,0x y C a b a b−=>>图象上,所以22921a b −=,即229213b b−=,解得221,3b a ==,所以双曲线22:13x C y −=. 4分(II )由已知点,A B 在以OP 为直径的圆22220000224x y x y x y +⎛⎫⎛⎫−+−= ⎪ ⎪⎝⎭⎝⎭上,又点,A B 在221x y +=上,则有方程组2222000022,2241,x y x y x y x y ⎧+⎛⎫⎛⎫−+−=⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪+=⎩ 解得直线AB 的方程为001x x y y +=, 设直线AB与渐近线,y y x ==的交点分别为,M N ,由001,,x x y y y +=⎧⎪⎨⎪⎩解得M ,由001,,x x y y y x +=⎧⎪⎨=⎪⎩解得N ,所以2200313MN x y ==−, 又点O 到直线AB的距离为d =,则三角形MON的面积222200001113112233S MN d x y x y =⋅=⨯=−−, 又因为220013x y −=,所以201833S y =+0=,由已知S =,解得203y =,即0y =,因为点P在双曲线右支上,解得0x =,即点(P或(P . 12分22.解: (I )当22e a =时,()22211ln ln 1e e f x x x x x x x x ⎛⎫=−−=−− ⎪⎝⎭, 要证()0f x ≤,即证21ln 10ex x −−≤,设()21ln 1,0eg x x x x =−−>,令()2110eg x x '=−=,解得2e x =,所以()g x 在()20,e 上递增,在()2e ,+∞上递减, 则()()2222max1e ln e1e 0eg x g ==−−⨯=, 所以()0g x ≤,即21ln 10ex x −−≤成立, 所以()0f x ≤成立. 5分(II ) 因为对任意的0,()x H x >在(0,)+∞上单调递减,所以()0H x '≤恒成立,即e ln 1x x x a x−−≤在(0,)+∞上恒成立,解法一:令e ln 1()(0)x x x F x x x −−=>,则22e ln ()x x xF x x +'=, 令2()e ln x h x x x =+,则()21()2e 0xh x x x x'=++>, 所以()h x 在(0,)+∞上为增函数,又因为11e2e 21e (1)e 0,1e 10e eh h −⎛⎫=>=−=−< ⎪⎝⎭, 所以01,1e x ⎛⎫∃∈ ⎪⎝⎭,使得()00h x =,即0200e ln 0x x x +=, 当00x x <<时,()0h x <,可得()0F x '<,所以()F x 在()00,x 上单调递减; 当0x x >时,()0h x >,可得()0F x '>,所以()F x 在()0,x +∞上单调递增, 所以()000min00e ln 1()x x x F x F x x −−==,由0200e ln 0x x x +=,可得01ln 000000ln 111e ln ln e x x x x x x x x ⎛⎫=−== ⎪⎝⎭,令()e x t x x =,则()001ln t x t x ⎛⎫= ⎪⎝⎭,又由()(1)e 0x t x x '=+>,所以()t x 在(0,)+∞上单调递增, 所以001lnx x =,可得00ln x x =−,所以001e x x =,即00e 1x x =, 所以()0000min000e ln 111()1x x x x F x F x x x −−+−====,即得1a ≤. 12分解法二: 先证e 1x x ≥+(0x ≥),设函数()e 1x h x x =−−,令()e 10xh x '=−=,解得0x =, ∴()h x 在[)0,+∞上单调递增,∴()()00h x h ≥=,即e 1x x ≥+成立. 设()ln k x x x =+(0x >), ∵()110k x x'=+>,∴()k x 在()0,+∞上单调递增, ∵()1110,110e e k k ⎛⎫=−+<=> ⎪⎝⎭,∴存在()00,x ∈+∞,使得00ln 0x x +=.令e ln 1()(0)x x x F x x x−−=>, 则()ln ln e e ln 1e ln 1ln 1ln 11x x x x x x x x x F x x x x+−−−−++−−==≥=, 当ln 0x x +=时,即0x x =时,取等号. ∴()min 1F x =,即得1a ≤. 12分Z20名校联盟(浙江省名校新高考研究联盟)2023届高三第一次联考数学试卷阅卷细则13-16.(每题5分,共20分)以数值正确为准, 注:第16题给出一个正确数值得3分. 17.(本题满分10分) (Ⅰ)5分1、有正确结论,23B π=,有过程,5分(无过程,3分) 2、无正确结论,找得分点:○1 ()sin sin sin cos A B B C A B =+− , 2分○21sin()62B π+=,2分 ○323B π=,1分 (Ⅱ)5分1、有正确结论,有过程,5分(无过程,3分)2、无正确结论,找得分点:①1sin 2ABCS ac B ==2分 15334OACABCSS ==,3分 ② ∵2222cos 49b a c ac B =+−=,∴7b =,2分解得内切圆半径2r =,2分124OAC S br ∆==,1分③∵2222cos 49b a c ac B =+−=,∴7b =,2分解得R 3=,,2分解得21sin 2OAC S R AOC ∆=∠,1分 18.(本题满分12分)(Ⅰ)6分1、有正确结论,得21n a n =−,有过程,6分(无过程,2分)2、无正确结论,找得分点:○1n a =2分○22nS n =,2分 ○321na n =−,2分 (Ⅱ)6分1、有正确证明过程,6分(无过程,不得分)2、证明有误,找得分点: ①221111114441n a n n n n ⎛⎫==− ⎪−−−⎝⎭,3分 ②22211111111111111141223144n a a n n n ⎛⎫⎛⎫++=⨯−+−++−=⨯−< ⎪ ⎪−−−⎝⎭⎝⎭,3分 19.(本题满分12分)(Ⅰ)6分1、有证明过程,6分(无过程,不得分)2、证明有误,找得分点:方法一:○1BD BC ⊥,2分 ○2BE ∥PF ,2分 ○3直线BE ∥平面PAD ,2分 方法二:○1取CD 的中点为G ,GE ∥PD ,2分 ○2AD ∥BG ,2分 ○3由平面BEG ∥平面PAD 得直线BE ∥平面PAD ,2分(Ⅱ)6分1、有正确结论35,有过程,6分(无过程,3分) 2、无正确结论,找得分点:①60PAD ∠=,1分②有建系思想,1分○3 求出法向量()3,1,1m =−−,()3,1,1n =−,2分 (法向量计算错误但有法向量计算公式的给1分)④解得余弦值为35,2分(结论错误但有法向量夹角计算公式的给1分) 其他证法酌情给分20.(本题满分12分)(Ⅰ)5分1、有正确结论:0.10.2y x =−,有过程,5分(无过程,2分)2、无正确结论,找得分点:①∵4148.24 5.50.350.5i i i x y x y =−⋅=−⨯⨯=∑, 4222141264 5.55i i xx ==−−⨯=∑,∴41422140.5ˆ0.154i ii i i x y xy b xx ==−===−∑∑,3分 ②0.35ˆˆ0.1 5.50.2a y bx=−=−⨯=−,1分 ③得0.10.2y x =−,1分(Ⅱ)7分(ⅰ)1、有正确结论:300万元,有过程,2分(无过程,1分)2、无正确结论,找得分点:将8x =代入0.10.20.180.20.6y x =−=⨯−=,1分(ⅱ)1、有正确结论:300万元,有过程,5分(无过程,2分)2、无正确结论,找得分点:①2(0)(1)(23)352P X p p p p ==−−=−+,2(1)(1)(31)(23)661P X p p p p p p ==−−+−=−+−,2(2)(31)3P X p p p p ==−=−,()()()222()0352********E X p p p p p p p =⨯−++−+−⨯+−⨯=−,3分 ②解1358p ≤≤,2分(1358p <≤或1358p ≤<或1358p <<均得2分) 21.(本题满分12分)(Ⅰ)4分1、有正确结论:双曲线22:13x C y −=,有过程,4分(无过程,2分) 2、无正确结论,找得分点:①得223a b =, 1分②点(代入()2222:10,0x y C a b a b −=>>,得22921a b−=, 1分 ③解得221,3b a ==,双曲线22:13x C y −=, 2分 (Ⅱ)8分1、有正确结论:点(P或(P ,有过程,8分(无过程,3分,只写出一个坐标的扣1分)2、无正确结论,找得分点:①解得直线AB 的方程为001x x y y +=, 1分②由001,,x x y y y +=⎧⎪⎨=⎪⎩解得M ,1分由001,,3x x y y y x +=⎧⎪⎨=⎪⎩解得N ,1分③2200313MN x y ==−, 点O 到直线AB的距离为d =,三角形MON 的面积222200001113112233S MN d x y x y =⋅=⨯=−−0,3分 ○4点(P或(P ,2分 本小题其他解法酌情给分22.(本题满分12分)(Ⅰ)5分找得分点累加:①要证()0f x ≤,即证21ln 10e x x −−≤,1分 ②设()21ln 1,0e g x x x x =−−>,得()g x 在()20,e 上递增,在()2e ,+∞上递减,2分 ③()()2222max 1e ln e 1e 0e g x g ==−−⨯=,即21ln 10e x x −−≤成立,2分(Ⅱ)7分1、有正确结论:1a ≤,有过程,7分(无过程,2分)2、无正确结论,找得分点:①由()0H x '≤恒成立,得e ln 1x x x a x −−≤,2分 ②令e ln 1()(0)x x x F x x x−−=>,得()F x 在()00,x 上单调递减;在()0,x +∞上单调递增,2分③01,1e x ⎛⎫∃∈ ⎪⎝⎭,使得0200e ln 0x x x +=,1分 ④求得()0000min 000e ln 111()1x x x x F x F x x x −−+−====,即1a ≤,2分 本小题其他解法酌情给分。
2020届浙江省新高考研究联盟高三第一次联考技术试题卷★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第一部分:信息技术(共50分)一、选择题(本大题共12小题,每小题2分,共24分。
在每小题给出的四个选项中,只有一个符合题目要求)1.下列有关信息的说法中正确的是A.信息可以重复使用,也可以传递和共享,但是会产生损耗B.数字、英文字母、图像、音频、视频等在计算机内部都采用二进制代码存储C.信息作为一种社会资源自古就有,而信息技术是人类进入信息社会后才出现的D.信息可以脱离它所反映的事物被存储、保存和传播,即有些信息可以脱离载体而存在2.某同学使用搜索引擎查找荷花素材图片,部分界面如图所示:下列说法中正确的是A.搜索引擎检索信息是在其索引数据库中进行检索,所以搜索引擎网站是一种数据库管理系统B.单击图中“1”处的“”按钮,可以上传图像文件进行搜索C.当前使用的工具为IE浏览器,它的功能主要是解释执行HTTP源代码D.若要保存当前网页上的所有图片,可在保存类型中选择“网页,仅HTML(*.htm,*.html)”3.使用Access软件创建的数据表,部分界面如图所示。