苏科版七年级上册数学有理数章节试卷
- 格式:docx
- 大小:208.88 KB
- 文档页数:5
一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。
2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.4.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.5.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.6.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?【答案】(1)解:AB=120-(-20)=140,则BC=70C点对应的数是50.(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t当点P、Q重合时,则BP+AQ=140即:3t+2t=140,解得:t=28所以AP=56点P、Q重合时对应的数为56-20=36(3)解:分两种情况,①当P、Q相遇之前,BP+AQ=140-50,即3t+2t=140-50,解得:t=18②当P、Q相遇之后,BP+AQ=140+50,即3t+2t=140+50,解得:t=38当P、Q两点运动18秒或38秒时,P、Q相距50个单位长度.【解析】【分析】(1)先求出AB的长度,即可求出线段BC,再确定C在数轴上表示的数即可;(2)设P、Q运动时间为t,则BP=3t,AQ=2t,根据题意可知BP+AQ=140,即3t+2t=140,进而求得t的值,即可表示P、Q重合点的对应数.(3)分两种情况,①当P、Q相遇之前,BP+AQ=140-50;②当P、Q相遇之后,BP+AQ=140+50,分别求出t的值,即可解决问题.7.如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.(1)A,B两点之间的距离为________.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?【答案】(1)13(2)-2(3)解:设运动t秒后,点A与点B相距4个单位,由题意可知点A表示的数为-9+3t,点B表示的数为4+2t,∴,∴或解得t=17或9.答:运动9秒或17秒后,点A与点B 相距4个单位.【解析】【解答】解:(1)AB=4-(-9)=13(2)设点C表示的数是x,则AC=x-(-9)=x+9,BC=4-x,∵A落在点B的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x)=2x+5=1,解得:x=-2,∴点C表示的数是-2.故答案为:-2.【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C表示的数是x,分别表示出AC、BC,再根据AC-BC=1列出方程解答即可;(3)运动t秒后,可知点A表示的数为-9+3t,点B表示的数为4+2t,再根据AB的距离为4,可得方程,解方程即可.8.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.9.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)【答案】(1)D;-1010(2)-2017;-1008.5;1010.5;【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,∴(-3)+(+2)=-1故答案为:D.②∵一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位…∴-1+2-3+4-…+2018-2019=(-1+2)+(-3+4)+…+(-2017+2018)-2019=1+1+…-2019=1009-2019=-1010故答案为:D,-1010.(2)①∵折叠纸条,表示-1的点与表示3的点重合∴对称中心为:,∴2019-1=2018,∴与表示2019的点重合的点在1的左边,∴1-2018=-2017.②∵数轴上A、B两点之间的距离为2019,折痕与①折痕相同∴点B和1,点A和1之间的距离相等,∴点A和1之间的距离为2019÷2=1009.5∵A在B的左侧,∴点A表示的数为1-1009.5=-1008.5点B表示的数为:1009.5+1=1010.5;③根据以上规律可知数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.故答案为:-2017、-1008.5、1010.5、.【分析】(1)点在数轴上平移的规律为:左减右加,列式计算。
第2章有理数单元测试卷(基础篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)两千多年前,中国人就开始使用负数,且在世界上也是首创《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作100+,那么支出40元应记作()A.60-B.40-C.40+D.60+2.(3分)下列分数中能化成有限小数的是()A.23B.615C.321D.8363.(3分)在3.14159,227,0,π,2.67 这5个数中,无理数的个数有()A.1个B.2个C.3个D.4个4.(3分)2018年10月23日,世界上最长的跨海大桥--港珠澳大桥正式开逋,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米,其中55000用科学记数法可表示为()A.35.510⨯B.35510⨯C.45.510⨯D.50.5510⨯5.(3分)下列各对数中互为相反数的是()A.(3)-+和(3)+-B.(3)+-和|3|+-C.(3)--和|3|+-D.(3)+-和|3|-+6.(3分)下列各组的两个数中,运算后结果相等的是()A .34和43B .5(3)-和53-C .4(2)-和42-D .32()3和3237.(3分)已知||5a =,||2b =,且a b >,则a b +的值为()A .7或3-B .7-或3C .7-或3-D .7或38.(3分)符号语言“||(0)a a a =- ”所表达的意思是()A .正数的绝对值等于它本身B .负数的绝对值等于它的相反数C .非正数的绝对值等于它的相反数D .负数的绝对值是正数9.(3分)如图,数轴上四点O ,A ,B ,C ,其中O 为原点,且2AC =,OA OB =,若点C 表示的数为x ,则点B 表示的数为()A .(2)x -+B .(2)x --C .2x +D .2x -10.(3分)如果有4个不同的正整数a 、b 、c 、d 满足(2019)(2019)(2019)(2019)9a b c d ----=,那么a b c d +++的值为()A .0B .9C .8048D .8076第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(3分)写出一个比4大且比5小的无理数:.12.(3分)3||5-的相反数是.13.(3分)A 、B 、C 三点相对于海平面分别是13-米、7-米、20-米,那么最高的地方比最低的地方高米.14.(3分)计算:5199966-÷=.15.(3分)将有理数227化为小数是3.14285 7,则小数点后第2018位上的数是.16.(3分)已知2|1|(2019)a b +=--,则b a =.17.(3分)已知a 、b 互为相反数,c ,d 互为倒数,m 的绝对值为2,那么3()52019a b m m cd +++的值为.18.(3分)a 、b 、c 在数轴上的对应点的位置如图所示,下列式子:①0a b +>;②a b a c +>+;③bc ac >;④ab ac >.其中正确的有(填上序号)评卷人得分三.解答题(共5小题,满分46分)19.(12分)计算题(1)38156-+--(2)311((1)(2)424-⨯-÷-(3)1311((24324-+-÷-(4)2221(6)()72(3)3-÷--+⨯-20.(8分)计算:已知||3x =,||2y =,(1)当0xy <时,求x y +的值(2)求x y -的最大值21.(8分)小明有5张写着不同的数字的卡片请按要求抽出卡片,完成下面各题:(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?22.(8分)某检修小组乘坐一辆汽车从A地出发,在东西方向的马路上检修线路,如果向东行驶记为正,向西行驶记为负,一天六次检修中行驶记录如下:(单位:千米)第一次第二次第三次第四次第五次第六次6-7+9-8+6+7-(1)求收工时检修汽车在A地的东边还是西边?距A地多远?(2)若汽车行驶每千米耗油0.3升,开工时储油13升,问从A地出发到收工,再回到A地,请问中途是否需要加油?若不需要加油,还剩多少升汽油?23.(10分)已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与1-表示的点与表示的点重合;-表示的点重合,则4(2)若2-表示的点与8表示的点重合,回答以下问题:①16表示的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合,(0)>>,现数轴上P、Q两点之间的距离为(a Pm n在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)。
七年级上册数学单元测试卷-第2章有理数-苏科版(含答案)一、单选题(共15题,共计45分)1、下列各式中,正确的是()A.2 3=8B. =2C. =﹣4D.2、下列说法中,正确的是()A.正数和负数统称有理数B.零是最小的有理数C.倒数等于它本身的有理数只有1D.互为相反数的两数之和为零3、若|a|=-a,则能使等式成立的条件是()A.a是正数B.a是负数C.a是0和正数D.a是0和负数4、下列各组数中:①﹣32与32;②(﹣3)2与32;③﹣(﹣2)与﹣(+2);④(﹣3)3与﹣33;⑤﹣23与32,其中互为相反数的共有()A.4对B.3对C.2对D.1对5、数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣26、计算(﹣1)×(﹣5)×(﹣)的结果是()A.-1B.1C.-D.-257、﹣5的绝对值是()A.﹣B.5C.﹣5D.±58、有理数a、b在数轴上对应位置如图所示,则a+b的值()A.大于 0B.小于0C.等于0D.大于a9、有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于B.小于C.小于D.大于10、下列说法中,正确的是()A.正数和负数互为相反数B.一个数的相反数一定比它本身小C.任何有理数都有相反数D.没有相反数等于它本身的数11、下列各数是有理数的是()A.﹣B.C.D.π12、如果a与3互为相反数,则是()A.3B.﹣3C.D.﹣13、下列运算中,正确的个数是()①(-4)+(-4)=0 ②(-8)+(-8)=-16③0-(-5)=-5 ④(+ )-(-0.25)=1⑤-(-)+(-5 )-(-5)=-10A.0个B.1个C.2个D.3个14、实数a在数轴上的位置如图所示,则|a-2.5|=()A.a-2.5B.2.5-aC.a+2.5D.-a-2.515、下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数就是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知a2-6a+9与|b-1|互为相反数,则式子÷(a+b)的值为________.17、计算:﹣3+2=________.18、的底数是________.19、写出一个比3大且比4小的无理数:________.20、若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.21、比较大小: ________2;________ ;________ (填“>”或“<”)22、某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=________.x …﹣2 ﹣1.5 ﹣1 ﹣0.5 0 0.5 1 1.5 2 …y … 2 0.75 0 ﹣0.25 0 ﹣0.25 0 m 2 …23、计算:=________.24、的倒数是________,的绝对值是________.25、12月30日,我市召开的全市经济工作会议预计徐州实现地区生产总值5750亿元,比去年增长8.5%.5750亿元用科学记数法可表示为________元.三、解答题(共5题,共计25分)26、计算:(﹣2)2+4×(﹣3)2﹣(﹣4)2÷(﹣2)27、“一个数,如果不是正数,那么一定就是负数”,这句话对吗?为什么?28、先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中(a+1)2+|b﹣2|=0.29、有一个水库某天8:00的水位为以警戒线为基准,记高于警戒线的水位为正在以后的6个时刻测得的水位升降情况如下记上升为正,单位::,,0,,,经过6次水位升降后,水库的水位超过警戒线了吗?30、观察下面三行数:-2, 4, -8, 16,-32, 64,…①0,6, -6, 18,-30, 66,…②-1, 2,-4, 8,-16, 32,…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行的第十个数,计算这三个数的和。
一.选择题(共10小题,满分30分,每小题3分)1.|﹣|的值是()A.2020B.﹣2020C.﹣D.2.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣25.下列说法中,正确的是()A.0是最小的整数B.最大的负整数是﹣1C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数6.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+4,0,+5,﹣3,+2,则这5天他共背诵汉语成语()A.38个B.36个C.34个D.30个7.计算(﹣5)÷的结果等于()A.﹣25B.﹣1C.1D.258.|x﹣1|+|y+3|=0,则y﹣x﹣的值是()A.﹣4B.﹣2C.﹣1D.19.若计算机按如图所示程序工作,若输入的数是1,则输出的数是()A.﹣63B.63C.﹣639D.63910.将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6B.3C.﹣6D.﹣9二.填空题(共6小题,满分24分,每小题4分)11.计算:0﹣(﹣6)=.12.﹣3的相反数是,的倒数是.13.如果盈利100元记作+100元,那么亏损50元记作元.14.在数轴上,到原点的距离等于1.6个单位长度的点所表示的有理数是.15.定义新运算:a⊕b=ab+b,例如:3⊕2=3×2+2=8,则(﹣3)⊕4=.16.计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030=.三.解答题(共8小题,满分66分)17.(12分)计算(1)10﹣(﹣5)+(﹣8);(2)÷(﹣1)×(﹣2);(3)(+﹣)×12;(4)(﹣1)10×2+(﹣2)3÷4.18.(6分)如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示、、;(2)将点B向左移动3个单位长度后,点B所表示的数是;(3)将点A向右移动4个单位长度后,点A所表示的数是.19.(6分)若(a﹣1)2与(b+2)2互为相反数,求(a+b)2013+a2011.20.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.21.(8分)一辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?22.(8分)用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.23.(9分)学校阅览室有故事书、科学书、漫画书等.已知故事书240本,科学书比故事书多.(1)求学校阅览室的科学书有多少本?(2)学校阅览室的漫画书比科学书少,求漫画书有多少本?(3)在(2)的条件下,漫画书占学校阅览室书的,求学校阅览室的书一共有多少本?24.(9分)2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+100 ﹣200 +400 ﹣100 ﹣100 +350 +150 (1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:,故选:D.2.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.3.解:690万=6900000=6.9×106.故选:D.4.解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.5.解:A、没有最小的整数,错误;B、最大的负整数是﹣1,正确;C、有理数包括0、正有理数和负有理数,错误;D、一个有理数的平方是非负数,错误;故选:B.6.解:(+4+0+5﹣3+2)+5×6=38个,∴这5天他共背诵汉语成语38个,故选:A.7.解:(﹣5)÷=(﹣5)×5=﹣25.故选:A.8.解:∵|x﹣1|+|3+y|=0,∴x﹣1=0,3+y=0,解得y=﹣3,x=1,∴y﹣x﹣=﹣3﹣1﹣=﹣4.故选:A.9.解:把x=1代入计算程序中得:(1﹣8)×9=﹣63,把x=﹣63代入计算程序中得:(﹣63﹣8)×9=﹣639.则输出的数是﹣639.故选:C.10.解:图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,∵﹣2﹣4=﹣6,∴中间数是﹣6÷2=﹣3,∴m=﹣6﹣3=﹣9.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=0+6=6.故答案为:6.12.解:﹣3的相反数是:3,的倒数是:3.故答案为:3,3.13.解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.14.解:在数轴上,到原点的距离等于1.6个单位长度的点所表示的有理数是±1.6,故答案为:±1.6.15.解:∵a⊕b=ab+b,∴(﹣3)⊕4=(﹣3)×4+4=﹣12+4=﹣8.故答案为:﹣8.16.解:原式=﹣1+1﹣1+1﹣……﹣1+1=0×1015=0,故答案为:0.三.解答题(共8小题,满分66分)17.解:(1)10﹣(﹣5)+(﹣8)=10+5﹣8=7;(2)÷(﹣1)×(﹣2)=×(﹣)×(﹣)=;(3)(+﹣)×12=×12+×12﹣×12=3+2﹣6=﹣1;(4)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.18.解:(1)从数轴看,点A、B、C三点分别为:﹣4,﹣2,3,故答案为:﹣4,﹣2,3;(2)将点B向左移动3个单位长度后,点B所表示的数是﹣5,故答案为﹣5;(3)将点A向右移动4个单位长度后,点A所表示的数为0,故答案为:0.19.解:∵(a﹣1)2与(b+2)2互为相反数,∴(a﹣1)2+(b+2)2=0,∴a﹣1=0,a=1,b+2=0,b=﹣2,∴(a+b)2013+a2011=(1﹣2)2013+12011=﹣1+1=0.20.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.21.解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米).答:小明家与小刚家相距7千米远.22.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.23.解:(1)240×(1+)=300,所以学校阅览室的科学书有300本;(2)300×(1﹣)=225,所以学校阅览室的漫画书有225本;(3)225÷=1200,所以学校阅览室的书一共有1200本.24.解:(1)(+100﹣200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)+400﹣(﹣200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)5000×7+(100﹣200+400﹣100﹣100+350+150)=35600(个),0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.。
数学:第二章《有理数》单元测试(苏科版七年级上)一、选择题(每题3分,共30分) 1.下列说法中,不正确的是( )(A )0既不是正数,也不是负数 (B )0不是整数 (C )0的相反数是0 (D )0的绝对值是0 2.温度上升-3后,又下降2实际上就是 ( ) A. 上升1 B. 上升5 C.下降5 D. 下降-13.数轴上点A 表示-4,点B 表示2,则表示A 、B 两点间的距离的算式是( ) A. -4+2 B. -4-2 C. 2―(―4) D. 2-4 . 4.两个有理数的和为负数,那么这两个数一定( ) (A )都是负数 (B )至少有一个负数 (C )有一个是0 (D )绝对值不相等 5.如果|a|=7,|b|=5,试求a-b 的值为( ) (A )2(B )12(C )2和12(D )2;12;-12;-2 6.用计算器求25的值时,按键的顺序是( )A.5、y x 、2、=B. 2、y x、5、= C. 5、2、y x、= D. 2、3、y x、=7.如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a+b+m 2-cd 的值为( )A.3B.±3C.3±21 D.4±21 8. 若0<a<1,则a ,) (,12从小到大排列正确的是a a A 、a 2<a<a 1 B 、a < a 1< a 2 C 、a 1<a< a 2 D 、a < a 2<a19.学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( ) A 、约104元; B 、1000元 C 、100元 D 、约21.4元 10计算(-2)2004+(-2)2003的结果是( )A 、-1B 、-2C 、-22003D 、-22004二、填空题(每题3分,共30分)11.某种零件,标明要求是φ20±0.02(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,它 (“填合格” 或“不合格”).12.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在阳光的直接照射下,表面温度高达4270C ,夜晚则低至-1700C ,则水星表面昼夜的温差为____________.13.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是14.一个水利勘察队,第一天沿江向下游走313km ,第二天又向下游走325km ,第三天向上游走517km ,第四天向上游走534km ,这时勘察队在出发点的上游 千米? 15.一口深井,井底有一只青蛙,这只青蛙白天沿着井壁向上爬3米,夜间又落下2米,到了第十天的下午,这只青蛙恰好爬到井口,则这口井的深度是 米。
第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、下列计算正确的是()A.2﹣(﹣1)3=2﹣1=1B.74﹣4÷70=70÷70=1C.D.2 3﹣3 2=8﹣9=﹣12、下列说法中,不正确的是()A.平方等于本身的数只有0和1B.正数的绝对值是它本身,负数的绝对值是它的相反数C.两个负数,绝对值大的负数小D.0除以任何数都得03、数1,0,,﹣2中最大的是()A.1B.0C.D.﹣24、下列计算错误的是()A.- 3÷(-)=9B.()+(- )=C.- (-2) 3=8 D.︳-2-(-3)︳=55、一根1m长的小棒,第一次截去它的三分之一,第二次截去剩下的三分之一,如此截下去,第五次后剩下的小棒的长度是()A.()5mB.[1﹣()5]mC.()5mD.[1﹣()5]m6、计算的值是()A.0B.-1C.1D.27、设x是有理数,那么下列各式中一定表示正数的是()A.2008xB.x+2008C.|2008x|D.|x|+20088、若四个互不相等的整数的积为6,那么这四个整数的和是()A.-1或5B.1或-5C.-5或5D.-1或19、计算的结果是()A. B. C. D.10、比1小2的数是()A.-1B.-2C.-3D.111、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时;爸爸那端着地,已知爸爸的体重为70kg,妈妈的体重为50kg,那么小明的体重可能是()A.18kgB.22kgC.28kgD.30kg12、计算(﹣5)×(﹣1)的结果等于()A.5B.﹣5C.1D.﹣113、数据1950000用科学记数法表示为()A.1.9×10 5B.1.95×10 6C.1.95×10 7D.0.195×10 814、-3的相反数是()A. B.3 C. D.015、计算:(﹣3)4=( )A.﹣12B.12C.﹣81D.81二、填空题(共10题,共计30分)16、在﹣2、0、1、﹣1这四个数中,最大的有理数是________.17、比较大小(1)﹣2________2;(2)﹣1.5________0;(3)________ .18、﹣的相反数的倒数是________.19、在数轴上表示a、b两数的点如图所示,则________.20、地球七大洲的总面积约为149 480 000Km²,如对这个数据精确到百万位可表示为是________ .21、-(-2)的相反数是________.22、已知8×32=2n,则n的值为________.23、废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为________立方米.24、比较大小:-0.3 ________ .25、若a,b互为相反数,c,d互为倒数,x的绝对值等于2,则x2+5(a+b)-8cd=________.三、解答题(共5题,共计25分)26、﹣22+|5﹣8|+24÷(﹣3)27、已知b的倒数与a互为相反数,c,d互为倒数,m的绝对值为4,求5(a+ 2)+6cd﹣7m的值.28、若与是互为相反数,求①的值;②的值.29、画一条数轴,把下列各数表示在数轴上,并用“”连接:3,,,0.5,.30、在数轴上表示下列各数,并比较各数大小,再用“>”连接起来.-2.5, 0, |2|, - , -1, +参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、D5、C6、A7、D8、D9、D11、A12、A13、B14、B15、D二、填空题(共10题,共计30分)16、17、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
一、初一数学有理数解答题压轴题精选(难)1.点在数轴上分别表示有理数,两点间的距离表示为 .且 .(1)数轴上表示2和5的两点之间的距离是________,数轴上表示−2和−5的两点之间的距离是________,数轴上表示1和−3的两点之间的距离是________;(2)数轴上表示x和−1的两点A和B之间的距离是________,如果|AB|=2,那么x=________;(3)当代数式|x+1|+|x−2|取最小值时,相应x的取值范围是________.【答案】(1)3;3;4(2)1;-3(3)−1⩽x⩽2【解析】【解答】解:(1)、|2−5|=|−3|=3;|−2−(−5)|=|−2+5|=3;|1−(−3)|=|4|=4;( 2 )、|x−(−1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=−2,所以x=1或x=−3;( 3 )、数形结合,若|x+1|+|x−2|取最小值,那么表示x的点在−1和2之间的线段上,所以−1⩽x⩽2.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可算出答案;(2)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值得出AB=,又 |AB|=2 ,从而列出方程,求解即可;(3)|x+1|+|x−2| 表示数x的点到-1的点距离与表示x的点到2的点距离和,根据两点之间线段最短得出当表示x的点在-1与2之间的时候,代数式|x+1|+|x−2|有最小值,从而得出x的取值范围.2.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.3.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.4.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.5.我们知道,在数轴上,表示数表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A、B,分别对应数a,b,那么A、B两点间的距离为:如图,点A在数轴上对应的数为a,点B对应的数为b,且a,b满足:(1)求a,b的值;(2)求线段AB的长;(3)如图①,点C在数轴上对应的数为x,且是方程的解,在数轴上是否存在点M使?若存在,求出点M对应的数;若不存在,说明理由. (4)如图②,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,当N在B的右侧运动时,请直接判断的值是不变的还是变化的,如果不变请直接写出其值,如果是变化的请说明理由.【答案】(1)解:,,且,解得,,;(2)解:(3)解:存在.设M点对应的数为m,解方程,得,点C对应的数为,,,即,①当时,有,解得,;②当时,有,此方程无解;③当时,有,解得, .综上,M点对应的数为:或4.(4)解:设点N对应的数为n,则,,若N点是B点右侧一点,NA的中点为Q,P为NB的三等分点且靠近于B点,,,,点Q对应的数为:,点P对应的数为:,,①当时,,此时的值随N点的运动而变化;②当时,,此时的值随N点的运动而不变化.【解析】【分析】(1)根据“若非负数和等于0,则非负数均为0”列出方程进行解答便可;(2)根据数轴上两点的距离公式进行计算便可;(3)根据已知线段的关系式,列出绝对值方程进行解答便可;(4)用N点表示的数n,列出关于n的代数式进行讨论解答便可.6.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.7.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A 表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.8.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。
苏科版七年级数学上册有理数单元测试卷42一、选择题(共10小题;共50分)的绝对值等于A.2. 下列四个数中,其相反数是正整数的是A.3. 下列各式中结果为负数的是A. C. D.4. 下列实数中,属于无理数的是A. B. D.5. 某商品进价为元,商店将其价格提高后以零售价销售,在销售旺季过后,商店又以折(即售价的)优惠开展促销活动,这时一件商品的售价为A. 元B. 元C. 元D. 元6. 实数,中,无理数的个数是A. B. C. D.7. 计算的结果是B. C. D.8. 下列命题正确的是A. 零的倒数是零B. 乘积是的两数互为倒数C. 如果一个数是,那么它的倒数是D. 任何不等于的数的倒数都大于零9. 年中央财政下达义务教育补助经费亿元,比上年增长.其中亿元用科学记数法表示为A. 元B. 元C. 元D. 元10. 已知:如图,数轴上、、、四点对应的分别是整数、、、,且有,那么,原点应是点A. B. C. D.二、填空题(共6小题;共30分)11. 某天温度最高是,最低是,这一天温差是.12. “五一”期间,某服装商店举行促销活动,全部商品八折销售,小华购买一件原价为元的运动服,打折后他比按原价购买节省了元.13. 已知数小于它的相反数且数轴上表示数的点与原点相距个单位长度,将点向右移动个单位长度后,点对应的数是.14. 下列叙述:①存在两个不同的无理数,它们的和是整数;②存在两个不同的无理数,它们的积是整数;③存在两个不同的非整数的有理数,它们的和与商都是整数.其中正确的是.(填序号)15. 有理数,,.16. 沙均匀铺在长米,宽米的长方体沙坑内,可以铺分米厚.三、解答题(共8小题;共104分)17. 写出下列各数的倒数:.18. 如图所示,图中阴影部分表示哪些数?19. 如图,数轴上,两点分别对应有理数,;,两点之间的距离表示为,在数轴上,两点之间的距离实际上可理解为数轴上表示与的两点之间的距离.利用数形结合思想回答下列问题.(1.(2)写出所有符合条件的整数,使成立.(3)根据以上探索猜想,对于任何有理数是否有最小值?如果有,指出当满足什么条件时取得最小值,并写出最小值,如果没有,请说明理由.20. 运算:,,,,,.(1)请你认真思考上述运算,归纳运算的法则:两数进行运算时,.特别地,和任何数进行运算,或任何数和进行运算,.(2)计算:.(3)是否存在有理数,,使得,若存在,求出,的值,若不存在,说明理由.21. “十一”黄金周期间,某市在天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)若 9 月 30 日外出旅游人数记为,请用的代数式表示 10 月 2 日外出旅游的人数.(2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人.(3)如果最多一天有出游人数万人,问 9 月 30 日出去旅游的人数有多少?22. 求下列各式中的实数.(1;(2;(3.23. (1)(2)(3)24. 若,,,,,是六个有理数,并且,,,试求的值.答案第一部分1. A2. C3. D 【解析】A;B;C.;D.,选项D正确.4. A 【解析】是有理数,是开方开不尽的数,是无理数.故选:A.5. D【解析】商品的售价为(元).6. A 【解析】实数,,中有个无理数.7. D 【解析】原式.8. B 【解析】A、零没有倒数,本选项说法错误;B、乘积是的两数互为倒数,本选项说法正确;C、如果,则没有倒数,本选项说法错误;D、的倒数是,,则任何不等于的数的倒数都大于零说法错误.9. D10. A【解析】由数轴可知,,,,解得.第二部分11.【解析】由题意得:温差.12.13.【解析】当在原点的左边时,表示的数是;当在原点的右边时,表示的数是.因为数小于它的相反数,所以.所以将点向右移动个单位长度后,点对应的数是.14. ①②③【解析】①存在两个不同的无理数,它们的和是整数,如和,故正确;②存在两个不同的无理数,它们的积是整数,如和,故正确;③存在两个不同的非整数的有理数,它们的和与商都是整数,如故答案为:①②③.15.【解析】由图可知:,16.【解析】(分米).答:可以铺分米.第三部分17. 各数的倒数分别为:,.18. ,,,,,,,,.19. (1).(2),.(3)对于任何有理数有最小值.当时,原式可以取得最小值,最小值为.20. (1)同号两数,取正号,并把绝对值相加;等于这个数的绝对值(2)【解析】(3)由定义可知,,,.21. (1)根据题意得:9 月 30 日外出旅游人数记为,10 月 1 日外出旅游人数为,10 月 2 日外出旅游人数为;(2)分别表示出 10 月 3 号外出旅游人数为;10 月 4 号外出旅游人数为;10 月 5 号外出旅游人数为;10 月 6 号外出旅游人数为;10 月 7 号外出旅游人数为;10 月 3 号外出旅游人数最多;7 号最少;相差万.(3)最多一天有出游人数万人,即万,9 月 30 日出去旅游的人数有万.22. (1).(2).(3).23. (1) .(2)(3)24. .。
2022-2023学年七年级数学上学期复习备考高分秘籍【苏科版】专题2.5第2章有理数单元测试(培优提升卷)(七上苏科)注意事项:本试卷满分120分,试题共26题,其中选择8道、填空10道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·江苏·七年级期中)冰箱冷藏室的温度零上3℃,记作+3℃,冷冻室的温度零下8℃,应记作( )A.8℃B.﹣8℃C.11℃D.﹣5℃【答案】B【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】冰箱冷藏室的温度零上3℃,记作+3℃,冷冻室的温度零下8℃,应记作﹣8℃.故选:B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.(2022·江苏·扬州市江都区实验初级中学七年级阶段练习)下列运算中,正确的是( )A.-32=(-3)2B.(-1)2022=-2022×(-4)=4×(-4)C.7-(-3)=7+3D.143.(2021·江苏南京·七年级期末)有理数a、b、c在数轴上对应点的位置如图所示,若|b|>|c|,则下列结论中正确的是()A .abc <0B .b +c <0C .a +c >0D .ac >ab 【答案】B 【分析】根据题意,a 和b 是负数,但是c 的正负不确定,根据有理数加减乘除运算法则讨论式子的正负.【详解】解:∵|b |>|c |,∴数轴的原点应该在表示b 的点和表示c 的点的中点的右边,∴c 有可能是正数也有可能是负数,a 和b 是负数,ab >0,但是abc 的符号不能确定,故A 错误;若b 和c 都是负数,则b +c <0,若b 是负数,c 是正数,且|b |>|c |,则b +c <0,故B 正确;若a 和c 都是负数,则a +c <0,若a 是正数,c 是负数,且|a |>|c |,则a +c <0,故C 错误;若b 是负数,c 是正数,则ac <ab ,故D 错误.故选:B .【点睛】本题考查数轴和有理数的加减乘除运算法则,解题的关键是通过有理数加减乘除运算法则判断式子的正负.4.(2022·江苏无锡·七年级阶段练习)在简便运算时,把24×(-994748)变形成最合适的形式是( )A .24×(148-100)B .24×(-100-148)C .24×(100-148)D .24×(-99+4748)5.(2022·江苏扬州·七年级阶段练习)如图,半径为1个单位长度的圆从A 点沿数轴向左滚动(无滑动)两周到达点B ,则点B 表示的数是( )A.2πB.-4πC.-4π+1D.-4π-1【答案】D【分析】先求出滚动两周的距离,然后根据数轴上的点与实数一一对应,可得B点表示的数.【详解】解:滚动两周的距离为2×2π×1=4π,∴点B表示的数是-4π-1,故选:D.【点睛】本题考查了数轴上的动点问题,求出滚动两周的距离是解题的关键.6.(2022·江苏·七年级专题练习)下列说法中,正确的个数是( )①若|1a|=1a,则a≥0;②若|a|>|b|,则有(a+b)(a﹣b)是正数;③A、B、C三点在数轴上对应的数分别是﹣2、6、x,若相邻两点的距离相等,则x=2;④若代数式2x+|9﹣3x|+|1﹣x|+2011的值与x无关,则该代数式值为2021;⑤a+b+c=0,abc<0,则b c|a|+a c|b|+a b|c|的值为±1.A.1个B.2个C.3个D.4个7.(2022·江苏·七年级专题练习)如图所示,在这个数据运算程序中,若开始输入的x的值为4,输出的结果是2,返回进行第二次运算则输出的是1,…,则第2020次输出的结果是( )A.﹣1B.-2C.-4D.-68.(2018·江苏·铜山进修学校七年级期中)我们平常用的是十进制,如:1967=1×103+9×102+6×101+7,表示十进制的数要用10个数码:0,1,2,3,4,5,6,7,8,9.在计算机中用的是二进制,只有两个数码:0,1.如:二进制中111=1×22+1×21+1相当于十进制中的7,又如:11011=1×24+1×23+0×22+1×21+1相当于十进制中的27.那么二进制中的1011相当于十进制中的()A.9B.10C.11D.12【答案】C【分析】根据题意得出1011=1×23+0×22+1×21+1,求出即可【详解】1011=1×23+0×22+1×21+1=11,即二进制中的1011相当于十进制中的11.故答案选C.【点睛】考查了有理数的乘方,结合计算机教学,主要考查学生的理解能力、阅读能力和计算能力.第II卷(非选择题)二、填空题9.(2022·江苏·南京市第二十九中学七年级阶段练习)-3的绝对值是___________,-11的倒数是___________.510.(2022·江苏镇江·七年级阶段练习)镇江西津渡古街是镇江文物古迹保存最多、最集中、最好的街区,其占地约50万平方米,50万平方米这个数字用科学记数法可记为____________平方米.【答案】5×105【分析】根据科学记数法的公式a×10n,1≤a<10书写即可;【详解】50万=5×105;故答案是5×105.【点睛】本题主要考查了科学记数法的表示,准确书写是解题的关键.11.(2021·江苏宿迁·七年级阶段练习)某粮店出售的三种品牌的面粉袋上,分别标有质量为(50±0.1)kg, (50±0.2)kg,(50±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差__________.【答案】0.6kg【分析】先找出质量的最大值和最小值,根据有理数的减法法则计算.【详解】解:质量最小值是50-0.3=49.7(kg),最大值是50+0.3=50.3(kg),∴50.3-49.7=0.6(kg).故答案为:0.6kg.【点睛】本题考查有理数减法的实际应用,是基础考点,掌握相关知识是解题关键.12.(2022·江苏·南京市第二十九中学七年级阶段练习)若|a|=7,b=5,且a+b<0,那么a-b=___________.【答案】-12【分析】根据绝对值的性质求出a,再根据有理数的加法运算法则判断出a的情况,然后根据有理数的减法运算法则进行计算即可得解.【详解】解:∵|a|=7,∴a=±7,∵a+b<0,b=5,∴a=-7,∴a-b=-7-5=-12,故答案为:-12.【点睛】本题考查了有理数的减法,主要利用了减去一个数等于加上这个数的相反数,确定出a的对应情况是解题的关键.13.(2022·江苏·南京市第二十九中学七年级阶段练习)小亮有5张卡片,上面分别写有-3、-5、0、+3、+4,他想从这5张卡片中取出2张,使得这2张卡片上的数字相除的商最小,商的最小值是___________.14.(2022·江苏·南京市第二十九中学七年级阶段练习)如图,一远古牧人在从右到左依次排列的绳子上打结,满4进1,用来记录他所放牧的羊的只数.由图可知,他所放牧的羊的只数是___________.【答案】27【分析】根据题意“满4进1”可知,从右到左第一根绳子上一个结代表一个1,第二根绳子上一个结代表4,第三根绳子一个结代表42,再进行计算即可.【详解】解:1×42+2×4+3×1=27,故答案为:27.【点睛】本题主要考查了用数字表示事件,解题的关键是正确理解“满4进1”的计数规则.15.(2019·江苏南通·七年级阶段练习)当x=_____时,﹣10+|x﹣1|有最小值,最小值为_____.【答案】 1 -10【分析】(1)要使﹣10+|x﹣1|最小,则|x﹣1|最小,即|x﹣1|=0,解出答案,(2)根据(1)中,求出最小值.【详解】|x﹣1|=0,解得:x=1,最小值=-10,故答案为(1)1,(2)-10.【点睛】本题主要考查了绝对值的基本性质,绝对值最小值为0.16.(2022·江苏·南闸实验学校七年级阶段练习)如果有理数a,b满足|ab﹣2|+(1﹣b)2=0,则1ab +1(a1)(b1)+1(a2)(b2)+⋯+1(a2022)(b2022)的值为______.17.(2020·江苏·南京师范大学附属中学树人学校七年级阶段练习)观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述的数字宝塔中,从上往下数,2020在第_____层.【答案】44.【分析】根据题目中每层最大数字的特点,发现数字变化的特点,从而解答本题.【详解】解:由题意可得,第1层最大数是22-1,第2层最大数是32-1,第3层最大数是42-1,第4层最大数是52-1,……∵442-1<2020<452-1,∴2020在第44层,故答案为:44.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的层数.18.(2022·江苏·七年级期中)已知点O是数轴的原点,点A、B、C在数轴上对应的数分别是﹣12、b、c,且b、c满足(b﹣9)2+|c﹣15|=0,动点P从点A出发以2单位/秒的速度向右运动,同时点Q从点C出发,以1个单位/秒速度向左运动,O 、B 两点之间为“变速区”,规则为从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速,从点B 运动到点O 期间速度变为原来的3倍,之后立刻恢复原速,运动时间为 _____秒时,P 、Q 两点到点B 的距离相等.三、解答题19.(2022·江苏无锡·七年级阶段练习)把下列各数填入表示它所在的数集的大括号:-25,3,-2020,-103,0.101001001…,0,-(-30%),π3,-|-4|,-2.3(1)正数集合: {____________________________...};(2)无理数集合: {____________________________...};(3)分数集合: {____________________________...};(4)非正整数集合:{____________________________...}.20.(2021·江苏镇江·七年级期中)计算:(1)4×(―3)―5×(―2)+6(2)(―24)×12―3×2―(―3)2(3)―12021―(1―0.5)×13(4)(―2)3×6―8×+8÷1821.(2017·江苏连云港·七年级期中)已知(x+3)2与|y﹣2|互为相反数,z是绝对值最小的有理数,求(x+y)y +xyz的值.【答案】1【分析】根据题意z是绝对值最小的有理数可知,z=0,且互为相反数的两数和为0,注意平方和绝对值都具有非负性.【详解】解:因为(x+3)2与|y﹣2|互为相反数,所以(x+3)2+|y﹣2|=0,因为(x+3)2≥0,|y﹣2|≥0,所以(x+3)2=0,|y﹣2|=0,即x+3=0,y﹣2=0,所以x=﹣3,y=2,因为z是绝对值最小的有理数,所以z=0.所以(x+y)y+xyz=(﹣3+2)2+(﹣3)×2×0=1.故答案为:1【点睛】本题考查有理数的混合运算、非负数的性质、绝对值的性质等知识,解题的关键是熟练掌握非负数的性质.22.(2020·江苏·兴化市乐吾实验学校七年级期中)网购的盛行,带动了快递行业的快速发展.一天快递员小李骑车从快递公司出发,在一条东西方向的马路上来回送件,规定在快递公司东边记为正,快递公司西边记为负,小李一天所走的路程记录如下:(单位:千米):+4,-3,+5,-2.5,2.5,-3,-2.8,+1.5,+1.5,-1.2.(1)该快递员最后到达的地方在快递公司的哪个方向?距快递公司多远?(2)该快递员在这次送件过程中,共走了多少千米?【答案】(1)东边,2千米;(2)27千米【分析】(1)根据题目中的数据,可以解答本题;(2)将题目中的数据的绝对值相加,即可解答本题.【详解】解:(1)4+(-3)+5+(-2.5)+2.5+(-3)+(-2.8)+1.5+1.5+(-1.2)=2(千米),答:该快递员最后到达的地方在快递公司的东边,距快递公司2千米;(2)4+|-3|+5+|-2.5|+2.5+|-3|+|-2.8|+1.5+1.5+|-1.2|=27(千米),答:该快递员在这次送件过程中,共走了27千米.【点睛】本题考查了正数和负数,解答本题的关键是明确正负数在题目中的实际意义.23.(2019·江苏·泰州市姜堰区张甸初级中学七年级期中)下面是一个数值转换机的示意图.(1)当输入x=-4,y=1时,则输出结果为 ,当输入x=-1,y=2,则输出结果为 .(2)用含x、y的代数式表示输出结果为 .(3)若输入x的值为1,输出结果为11时,求输入y的值.(4)若(1)中输出的两个结果依次对应数轴上的点A,B,点C为A、B之间的一个动点,若将数轴以点C为折点,将此数轴向右对折,若A点与数轴上的D点重合,且B、D两点之间的距离为1,则点C在数轴上表示的数为.(直接写出答案)【答案】(1)-7, 2;(2)2x+y2;(3)±3;(4)-2或-3【分析】(1)将x,y的值分别代入流程图进行计算即可;(2)通过(1)即可总结出代数式;(3)令x=1,代数式的值为11,解关于y的一元一次方程即可;(4)先求出A、B两点,然后折叠,通过线段的和差即可完成解答.【详解】(1)将x=-4,y=1代入流程图得:-7;将x=-1,y=2代入流程图得:2,故答案为-7,2;(2)由(1)得代数式为(3)令x=1,代数式2x+y2的值为11,得:2×1+ y2=11,解得y=±3(4)①如图:当D在AB上时:则C为-3;①如图:当D在AB延长线上时:则C为-2;故C为-2或-3.【点睛】本题考查了流程图、代数式以及数轴的相关知识,正确的识别流程图并灵活运用数轴是解答本题的关键.24.(2018·江苏泰州·七年级期中)有4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)【答案】 10 -12 (―5―7)×(―2)×1【分析】(1)观察这四个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选-5和-2;(2)根据题意可知卡片中的最大数与最小数之间的差值即为所求;(3)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如(―5―7)×(―2)×1=24.【详解】解:(1)根据题意得:(-5)×(-2)=10,故答案为10;(2)由题意可得,从中取出2张卡片,使这2张卡片上数字的差最小,最小值是:-5-7=-12,故答案为-12;(3)(答案不唯一)如(―5―7)×(―2)×1=24.【点睛】此题实际上是有理数的混合运算的逆运算,先给你数,让你列混合运算的式子,所以学生平时要培养自己的逆向思维能力.25.(2022·江苏·七年级期中)概念学习现规定:求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如2÷2÷2,(―3)÷(―3)÷(―3)÷(―3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(―3)÷(―3)÷(―3)÷(―3)写作(―3)④,读作“(―3)的圈4次方”,一般地,把a ÷a ÷a ÷⋅⋅⋅÷a ︸n 个a(a ≠0)写作a ⓝ,读作“a 的圈n 次方”.初步探究(1)直接写出计算结果:3②=________,=________;(2)下列关于除方说法中,错误的有________;(在横线上填写序号即可)A .任何非零数的圈2次方都等于1B .任何非零数的圈3次方都等于它的倒数C .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数D .圈n 次方等于它本身的数是1或―1深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?除方→→乘方幂的形式(3)归纳:请把有理数a(a ≠0)的圈n(n ≥3)次方写成幂的形式为:a ⓝ=________;(4)比较:(―2)⑧________(―4)⑥;填“>”“<”或“=”)(5)计算:―1⑳+14②÷―×(―7)⑥―(―48)÷.26.(2022·江苏·七年级期中)已知数轴上有A、B、C三点,分别对应有理数-26、-10、10,动点P从B出发,以每秒1个单位的速度向终点C移动,同时,动点Q从A出发,以每秒3个单位的速度向终点C移动,设点P的移动时间为t秒.(1)当t=5秒时,数轴上点P对应的数为,点Q对应的数为;P、Q两点间的距离为.(2)用含t的代数式表示数轴上点P对应的数为.(3)在点P运动到C点的过程中(点Q运动到C点后停止运动),请用含t的代数式表示P、Q两点间的距离.【答案】(1)-5,-11;6.(2)-10+t.(3)当0≤t≤8时,PQ=-2t+16;当8<t≤12时,PQ=2t-16;当12<t≤20时,PQ=20-t.【分析】(1)由题意根据数轴上动点向正方向移动用加法以及两点间距离公式进行分析计算;(2)根据题意点P的移动时间为t秒列出代数式即可;(3)根据题意分当0≤t≤8时,当8<t≤12时,当12<t≤20时三种情况进行分析即可.【详解】解:(1)由题意可得当t=5秒时,数轴上点P对应的数为:―10+1×5=―5,点Q对应的数为:―26+3×5=―11,P、Q两点间的距离为:|―5―(―11)|=6,故答案为:-5, -11;6.(2)用含t的代数式表示数轴上点P对应的数为:-10+t.故答案为:-10+t.(3)当0≤t≤8时,PQ=(-10+t)-(-26+3t) =-2t+16;当8<t≤12时,PQ=(-26+3t)-(-10+t)=2t-16;当12<t≤20时,PQ=10-(-10+t) =20-t.【点睛】本题考查数轴上的动点问题,熟练掌握列代数式表示动点以及两点间距离公式,运用数形结合思维和分类讨论思维进行分析是解题的关键.27.(2022·江苏·七年级期中)(1)尝试:比较下列各式的大小关系:(用>,<,=,≥,≤填空)①|―2|+|3|___________|―2+3|;②|―6|+|4|_________|―6+4|;③|―3|+|―4|_________|―3―4|;④|0|+|―7|__________|0―7|;(2)归纳:观察上面的数量关系,可以得到:|a|+|b|___________|a+b|(用>,<,=,≥,≤填空)(3)应用:利用上面得到的结论解决下面问题:若|m|+|n|=16,|m+n|=2,则m=______________.(4)拓展:当a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|(请直接写出结果,不需过程)【答案】(1)①>;②>;③=;④=;(2)≥;(3)±9或±7;(4)1个正数,2个负数;2个正数,1个负数;1个0,1个正数,1个负数.【分析】(1)①根据绝对值运算、有理数的加法即可得;②根据绝对值运算、有理数的加法即可得;③根据绝对值运算、有理数的加减法即可得;④根据绝对值运算、有理数的加减法即可得;(2)根据(1)的结果归纳类推即可得;(3)先根据上述结论得出m、n异号,再分m为正数,n为负数和m为负数,n为正数两种情况,然后代入解绝对值方程即可得;(4)先根据a,b,c中0的个数进行分类,再结合上述结论、绝对值运算分析即可得.【详解】(1)①|―2|+|3|=2+3=5,|―2+3|=|1|=1,则|―2|+|3|>|―2+3|,故答案为:>;②|―6|+|4|=6+4=10,|―6+4|=|―2|=2,则|―6|+|4|>|―6+4|,故答案为:>;③|―3|+|―4|=3+4=7,|―3―4|=|―7|=7,则|―3|+|―4|=|―3―4|,故答案为:=;④|0|+|―7|=0+7=7,|0―7|=|―7|=7,则|0|+|―7|=|0―7|,故答案为:=;(2)由(1)的结果,归纳类推得:|a|+|b|≥|a+b|,故答案为:≥;(3)∵|m|+|n|=16,|m+n|=2,∴|m|+|n|>|m+n|,由上述结论可得:m、n异号,①当m为正数,n为负数时,则|m|+|n|=m―n=16,即n=m―16,将n=m―16代入|m+n|=2得:|m+m―16|=2,解得m=9或m=7,符合题设;②当m为负数,n为正数时,则|m|+|n|=―m+n=16,即n=m+16,将n=m+16代入|m+n|=2得:|m+m+16|=2,解得m=―9或m=―7,符合题设;综上,m=±9或m=±7,故答案为:±9或±7;(4)由题意,分以下四类:第一类:当a,b,c三个数都不等于0时,①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|,②2个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|,③3个正数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,④3个负数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去;第二类:当a,b,c三个数中有1个等于0时,①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|;第三类:当a,b,c三个数中有2个等于0时,①2个0,1个正数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去,②2个0,1个负数,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去;第四类:当a,b,c三个数都等于0时,此时|a|+|b|+|c|=|a+b+c|,不符题意,舍去;综上,|a|+|b|+|c|>|a+b+c|成立的条件是:1个正数,2个负数;2个正数,1个负数;1个0,1个正数,1个负数.【点睛】本题考查了绝对值、有理数的加减运算,熟练掌握绝对值运算,并正确归纳出规律是解题关键.。
苏科版七年级数学上册有理数单元测试卷67一、选择题(共10小题;共50分)的绝对值是D.的相反数是A.3. 若是有理数,则下列说法正确的是一定为正数 B. 一定为负数一定为负数一定为正数4. 下列实数中,属于无理数的是A. B. D.5. 据统计,今年月某市完成工业总产值亿元,比去年同期工业总产值增长,请估计去年同期工业总产值在A. (亿元)B. (亿元)C. (亿元)D. (亿元)6. 实,,中,无理数是A. C.7. 已知:,且,,都不等于,则,,中最小的数是A. B. C. D. 和8. 下列叙述中正确的是A. 任何数的负倒数都是负数B. 倒数等于它本身的数是的倒数是它本身 D. 任何数的倒数都小于9. “厉害了,我的国!”年月日,国家统计局对外公布,全年国内生产总值()首次站上万亿元的历史新台阶.把万亿用科学记数法表示为A. B. C. D.10. 数轴上,在表示数与的两点之间,表示整数的点的个数是A. B. C. D.二、填空题(共6小题;共30分)11. 我市某天的最高气温是,最低气温是,则这天的日温差是.12. 如图是一个数值转换器,若输入的值为,则输出的结果是.13. 在数轴上与距离个单位长度的点表示的数是.14. 数轴上表示,的点为,,且、两点到点的距离相等,则点所表示的数.15. 有理数,,.16. 如果一个数的是,那么这个数是.三、解答题(共8小题;共104分)17. 已知,,互为相反数,,互为倒数,求的值.18. 把下列各数填在相应的集合中:,,,,,,,;;;.19. 对于数轴上的点,,,,点,分别是线段,的中点,若,则将的值称为线段,的相对离散度.特别地,当点,重合时,规定,设数轴上点表示的数为,点表示的数为.(1)若数轴上点,,,表示的数分别是,,,则线段,的相对离散度是,线段,的相对离散度是.(2)设数轴上点右侧的点表示的数是,若线段,的相对离散度为,求的值.(3)数轴上点,都在点的右侧(其中点,不重合),点是线段的中点,设线段,的相对离散度为,线段,的相对离散度为,当时,直接写出点所表示的数的取值范围.20. 运算:,,,,,.(1)请你认真思考上述运算,归纳运算的法则:两数进行运算时,.特别地,和任何数进行运算,或任何数和进行运算,.(2)计算:.(3)是否存在有理数,,使得,若存在,求出,的值,若不存在,说明理由.21. 计算:(1);(2.22. 下列关于的说法哪一个不正确?试说明理由.甲:是一个正数;乙:是一个小数;丙:是一个无限小数;丁:是一个有理数.23. 【概念学习】规定:求若干个相同的有理数(均不等于)的除法运算叫做除方.例如,记作,读作“的圈次方”;再例如,记作,读作" 的圈次方";一般地,把记作,读作“的圈次方”.(1)【初步探究】①直接写出计算结果:,.②关于除方,下列说法错误的是.A.任何非零数的圈次方都等于1B.对于任何大于的整数,C.D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?①依照上面的算式,将下列运算结果直接写成幂的形式:;.②将一个非零有理数的圈次方写成幂的形式为.③将(为大于等于的整数)写成幂的形式为.24. 计算:.答案第一部分1. D .2. A3. D4. A 【解析】是有理数,是开方开不尽的数,是无理数.故选:A.5. D【解析】要先算出去年同期工业总产值,即(亿元).6. A7. B 【解析】,,,,,,中最小的数是.8. C9. A10. D第二部分11.12.13. 或【解析】在的右边与距离个单位长度的点是;在的左边与距离个单位长度的点是14.【解析】由数轴可知,,,16.【解析】设这个数是,依题意得:,解得:.故答案为:.第三部分17. ,互为相反数,,又,互为倒数,,则.18. 正数集合:;;非负整数集合:;有理数集合:.19. (1);【解析】,,,表示的数分别是,,,中点:,中点:,中点,中点,表示的数为,表示的数为,,,,,,,线段,的相对离散度为,,重合,线段,的相对离散度为:.(2)点在点右侧,,,中点:,中点:,,,,当时,即,符合题意.当时,,,,,符合题意,,综上:或.(3).【解析】设点,表示的数分别为,,点,在点的右侧,,,,,,中点:,中点:,中点:,中点:,,,,,,,不重合,,整理可得,两边同时平方得,,,,,,,,,,,,,,,,即.20. (1)同号两数,取正号,并把绝对值相加;等于这个数的绝对值(2)【解析】(3)由定义可知,,,.21. (1)(2)22. 丁的说法不正确,是无理数.23. (1);;C【解析】①,②A选项:任何非零数的圈次方都等于,故A正确;B选项:对于任何大于等于的整数,,故B正确;C选项:,故C错误;D选项:负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,故D正确.(2);;;【解析】①②③第11页(共11 页)。
第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、345万这个数用科学记数法表示为()A. 0.345×10 7B.3.45×10 6C.34.5×10 5D.345×10 42、-9的相反数是().A.-9B.C.9D.3、如果|a|=-a,下列成立的是( )A.-a一定是非负数B.-a一定是负数C.|a|一定是正数 D.|a|不能是04、下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是()A.桂林11.2ºCB.广州13.5ºCC.北京-4.8ºCD.南京3.4ºC5、马虎同学做了以下4道计算题:①0﹣(﹣1)=1;②÷(﹣)=﹣1;③﹣+ =﹣(+ )=﹣1;④﹣7﹣2×5=﹣9×5=﹣45.请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题6、阅读材料:求值:1+2+22+23+24++22013.解:设S=1+2+22+23+24+…+22013.将等式两边同时乘以2,得2S=2+22+23+24+…+22013+22014将下式减去上式,得2S﹣S=22014﹣1.即S=1+2+22+23+24++22013=22014﹣1.请你仿照此法计算1+3+32+33+34+…+32018的值是()A.3 2018﹣1B.C.3 2019﹣1D.7、的倒数是()A. B. C. D.8、下列运算正确的是()A.(﹣3)2=﹣9B.(﹣1)2015×1=﹣1C.﹣5+3=8D.﹣|﹣2|=29、把一张厚度为0.1mm的纸对折8次后厚度接近于().A.0.8mmB.2.5cmC.2.5mmD.0.8cm10、某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为A. B. C. D.11、已知,两数在数轴上对应的点如图所示,下列结论正确的是()A. B. C. D.12、下列计算正确的是()A.﹣(﹣1)2+(﹣1)=0B.﹣2 2+|﹣3|=7C.﹣(﹣2)3=8 D.13、据统计,某日参观上海“世博会”的人数约为356000,用科学记数法表示为()A. B. C. D.14、下列计算正确的是( )A.a 6+a 6=2a 12B.2 ﹣2÷2 0×2 3=32C.a 3•(﹣a) 5•a 12=﹣a20 D.(﹣ab 2)•(﹣2a 2b) 3=a 3b 315、下列说法不正确的是()A.最小的整数是0B.最小的非负整数是0C.相反数是它本身的数是0 D.任何数的绝对值都不小于0二、填空题(共10题,共计30分)16、如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是________17、支出-200元表示的实际意义是________ .18、=________ =________19、,,,,,3.141141114中,无理数有________个.20、 ________.21、用幂的形式可表示为________,其值为________.22、若 x 的相反数是2,,则的值为________.23、滨海县某天早晨气温是﹣2℃,到中午气温上升了8℃,这天中午气温是________℃.24、比﹣1大1的数为________.25、有理数a、b、c在数轴上的位置如图所示,则化简得到的结果是________ 。
一、初一数学有理数解答题压轴题精选(难)1.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.2.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.3.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、2019的相反数是()A. B.2019 C.-2019 D.-2、下列各数中,无理数是()A.﹣3B.0.3C.D.03、如图所示,数轴上两点分别对应实数,则下列结论正确的是()A. B. C. D.4、﹣6的绝对值是()A.6B.C.-6D.5、下列说法正确的是()A.带负号的数一定是负数.B.方程是一元一次方程.C.数轴上的点都表示有理数.D.单项式的次数是2.6、下列实数是无理数的是( )A.3.14159B.C.D.7、下列说法正确的是( )A.正数、负数统称为有理数;B.分数和整数统称为有理数;C.正有理数、负有理数统称为有理数;D.以上都不符合题意8、-2的相反数是()A.-B.C.-2D.29、的相反数为()A. B.-2 C. D.210、11月10日,万米级全海深载人潜水器“奋斗者”号在西太平洋马里亚纳海沟成功坐底,抵达洋底深度显示为10909米,刷新中国载人深潜新记录,其中10909用科学记数法可表示为()A. B. C. D.11、有理数a、b在数轴上的对应的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b=0C.a+b<0D.a﹣b>012、若x=1,则|x-4|=( )A.3B.-3C.5D.-513、下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个14、若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣515、下列计算正确的是( ).A.-3+3=0B.-4-4=0C.5÷=1D.6 2=12二、填空题(共10题,共计30分)16、大于 - 2 而小于 4 的整数共有(________)个.17、“可燃冰”作为新型能源,有着巨大的开发潜力,1kg“燃冰”完全燃烧放出的热量约为420000000焦耳,数据420000000学记数法可表示为________。
一、初一数学有理数解答题压轴题精选(难)1.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.2.已知数轴上有A,B,C三个点,对应的数分别为﹣36,﹣12,12;动点P从A出发,以每秒1个单位的速度向终点C移动,设运动时间为t秒(1)若点P到A点的距离是到点B距离的2倍,求点P的对应数;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q 两点之间的距离为4?请说明理由.【答案】(1)解:当P在A、B之间,PA+PB=AB,因为点P到A点的距离是到点B距离的2倍,所以PA=2PB,故2PB+PB=AB,代数可得PB=8,故P点对应数为﹣12﹣8=﹣20;当P在B、C之间,PA﹣PB=AB,所以2PB﹣PB=AB,故PB=AB=24,故P点对应数为﹣12+24=12,与点C重合.(2)解:分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度.PA﹣QA=4,设时间为t1, AB+t1×1﹣3t1=4,故24+t1×1﹣3t1=4,则t1=10;第二种情况:当Q超过P时,两点相距4个单位长度.QA﹣PA=4,设时间为t2,3t2﹣(t2+AB)=4,故3t2﹣(t2+24)=4,则t2=14;第三种情况:当Q从C点返回未和P相遇时,两点相距4个单位长度.设时间为t3,3t3+t3+4+AB=2AC,故3t3+t3+4+24=2×48,则t3=17;第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.设时间为t4,3t4+t4+AB=2AC+4,故3t4+t4+24=2×48+4,则t4=19.【解析】【分析】(1)P从A运动到C,存在两种情况:1.P在A、B之间2.P在B、C之间,后计算发现此点与C重合;(2)分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度. 第二种情况:当Q超过P时,两点相距4个单位长度. 第三种情况:当Q 从C点返回未和P相遇时,两点相距4个单位长度,第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.3.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)在数轴上标示出-4、-3、-2、4、(2)结合数轴与绝对值的知识回答下列问题:①数轴上表示4和-2的两点之间的距离是________,表示-2和-4两点之间的距离是________.一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,即那么a=________②若数轴上表示数a的点位于-3和2之间,则的值是________;③当a取________时,|a+4|+|a-1-|+|a-4|的值最小,最小值是________.【答案】(1)解:如图所示:(2)6;2;1或-5;5;1;8.【解析】【解答】解:(2)①数轴上表示4和−2的两点之间的距离是4−(−2)=6,表示−2和−4两点之间的距离是−2−(−4)=2;∵|a−(−2)|=3,∴a−(−2)=±3,解得a=−5或1;②因为|a+3|+|a−2|表示数轴上数a和−3,2之间距离的和,又因为数a位于−3与2之间,所以|a+3|+|a−2|=5;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,所以当a=1时,式子的值最小,此时|a+4|+|a−1|+|a−4|的最小值是8.故答案为:6,2,−5或1;5;1,8.【分析】(1)数轴上原点表示正数,原点左边表示负数,原点右边表示正数,然后在数轴上找出表示各个数的点,用实心的小原点标记,并在实心小圆点上方写出该点所表示的数;(2)①根据数轴上任意两点的距离等于这两点所表示的数差的绝对值即可算出答案;解含绝对值的方程,根据绝对值的意义去掉绝对值符号,再解即可;②因为数a位于−3与2之间,故a+3>0,a−2<0,根据绝对值的意义去掉绝对值符号再合并他即可;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,根据两点之间线段最短即可得出当a=1时,式子的值最小,从而将a=1代入即可算出答案。
初中数学试卷 灿若寒星整理制作
2016七上有理数章节试卷
一、选择题
1.有理数﹣2的相反数是( )
A .2
B .﹣2
C .
D .﹣
2.6的绝对值是( )
A .6
B .﹣6
C .
D .﹣ 3.在﹣,0,,﹣1这四个数中,最小的数是( )
A .﹣
B .0
C .
D .﹣1
4.一个数和它的倒数相等,则这个数是( )
A .1
B .1-
C .±1
D .±1和0
5.下列各式中正确的是( )
A .22)2(2-=
B .33)3(3-=
C .22)2( 2-=-
D .|3| 333=- 6.下列说法正确的是( )
A .一个数的绝对值一定比0大
B .一个数的相反数一定比它本身小
C .绝对值等于它本身的数一定是正数
D .最小的正整数是1
7.有理数-32,(-3)2,|-33|,13-按从小到大的顺序排列是( )
A .1
3-<-32<(-3)2<|-33| B .|-33|<-32<13-<(-3)2
C .-32<1
3-<(-3)2<|-33| D .1
3
-<-32<|-33|<(-3)2 8. 有理数a , b 在数轴上的对应点如图所示,则下面式子中正确的是( )
①b <0<a ;②|b | < |a |;③ab >0;④a -b >a +b .
A .①③
B .①②
C .①④
D .②③
9.若x 的相反数是3,︱y ︱=5,则x +y 的值为( )
A .-8
B . 2
C . 8或-2
D .-8或2 10.古希腊著名的毕达哥拉斯学派把 1、3、6、10 … 这样的数称为“三角形数”,
而把 1、4、9、16 … 这样的数称为“正方形数”. 从图中可以发现,任何一个大于 1 的“正方形数”都可 以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 【 】
A .13 = 3+10
B .25 = 9+16
C .49 = 18+31
D .36 = 15+21
二、填空题
11.比较大小 32- 7
6-.若|3||2|0,a b -++=则a b =_____ 12.A 、B 两地相距6987000m ,用科学记数法表示为_____________m .
13. 数轴上表示数-5和表示数-14的两点之间的距离是_____________.在数轴上,若点P 表示-2,则距P 点3个单位长的点表示的数是_____________
14.315
-的倒数=______,倒数等于本身的数是______;相反数等于本身的数是______.
15.在数轴上表示数a 的点到原点的距离为3,则a -3=_____________.
16.绝对值不大于2的所有整数为________,若||a a =-则a 是_______,
17.若a <0,b >0 ,且| a |>| b | ,则a+b________0. (填“<”或“>”“=”)
18.如图所示的运算程序中,若开始输入的 x 值为 48,我们发现第一次输出的结果为 24,第二次输出的 结果为 12,…,则第 2010 次输出的结果为________________.
19.若m n n m -=-,且4m =,3n =,则m +n =_____________.
20.(1)设a <0,b >0,且a b >,用“<”号把a 、-a 、b 、-b 连接起来为 .
(2)设a <0,b >0,且a +b >0,用“<”号把a 、-a 、b 、-b 连接起来为 .
(3)设ab <0,a +b <0,且a <0,用“<”号把a 、-a 、b 、-b 连接起来为 .
三、计算题
21.计算
(1).5)213(438)414
()5.6(++-+--- (2).25.221341221+--
(3) .1623()(10)()
273-⨯---÷-
(4).314322-⨯-+--()()().
(5).)6
1163245(
481+-⨯-- (6).12111()()369364-÷-+-+
(7).2342(3)()(2)3⎡⎤---⨯---⎢⎥⎣⎦ (8)..22323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
四、解答题
22.出租车司机小张某天下午的运营是在一条东西走向的大道上。
如果规定向东为正,他这天下午的行程记录如下:(单位:千米)
+15,-3,+14,-11,+10,-18,+14
(1).将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?
(2).离开下午出发点最远时是多少千米?
(3).若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?
23.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):
星期
一 二 三 四 五 每股涨
跌 +0.3 +0.1 ﹣0.2 ﹣0.5 +0.2
(1)本周星期五收盘时,每股是多少元?
(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?(精确到分)
24. 2006 年 3 月 17 日俄罗斯特技飞行队在名胜风景旅游区——张家界天门洞特技表演,其中一架飞机起 飞后的高度变化如左下表:
(1)此时这架飞机比起飞点高了多少千米?(2 分)
(2)如果飞机每上升或下降 1 千米需消耗 2 升燃油,那么这架飞机在这 4 个动作表演过程中,一共消耗 了多少升燃油?(3 分)
(3)如果飞机做特技表演时,有 4 个规定动作,起飞后高度变化如下:上升 3.8 千米,下降 2.9 千米,再
上升 1.6 千米.若要使飞机最终比起飞点高出 1 千米,问第 4 个动作是上升还是下降,上升或下降多少千米?(3 分)
25.阅读理解:若 A、B、C 为数轴上三点,若点 C 到 A 的距离是点 C 到 B 的距离 2 倍,我们就称点 C 是【A,B】的好点。
例如,如图 1,点 A 表示的数为-1,点 B 表示的数为 2.表示 1 的点 C 到点 A 的距离是 2,到点B 的距离是 1,那么点 C 是【A,B】的好点;
又如,表示 0 的点 D 到点 A 的距离是 1,到点 B 的距离是 2,那么点 D 就不是【A,B】的好点
但点 D 是【B,A】的好点.
知识运用:如图 2,M、N 为数轴上两点,点 M 所表示的数为-2,点 N 所表示的数为 4.
(1) 数______________ 所表示的点是【M,N】的好点;
(2) 如图 3,A、B 为数轴上两点,点 A 所表示的数为-20,点 B 所表示的数为 40.
现有一只电子蚂蚁 P 从点 B 出发,以 2 个单位每秒的速度向左运动,到达点 A 停止.
设运动的时间为 t.当 t 为何值时, P、A 和 B 中恰有一个点为其余两点的好点?
五、附加题
24.设a 、b 、c 为非零有理数0a a +=,ab ab =,0c c -=. 化简:b a b c b a c -+--+-.
25.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:
S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S ﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a 2+a 3+…+a 2016(a ≠0且a ≠1)的值.。