二次根式的加减测试题3
- 格式:doc
- 大小:140.50 KB
- 文档页数:3
人教版八年级数学下册《16-3二次根式的加减》同步练习题(附答案)1.下列二次根式中,与是同类二次根式的是()A.B.C.D.2.若4与可以合并,则m的值不可以是()A.B.C.D.3.下列运算正确的是()A.=B.+=C.3x3﹣5x3=﹣2D.8x3÷4x=2x34.++…+的整数部分是()A.3B.5C.9D.65.计算(﹣3)2022(+3)2023的值为()A.1B.+3C.﹣3D.36.设x、y都是负数,则等于()A.B.C.D.7.已知:a+b=﹣5,ab=1,则+的值为()A.5B.﹣5C.25D.5或﹣58.若x2+y2=1,则的值为()A.0B.1C.2D.39.已知x=﹣2,x4+8x3+16x2的值为()A.B.C.3D.910.若a=2﹣,则代数式2a2﹣8a﹣1的值等()A.1B.﹣1C.4+4D.﹣211.如图,在一个长方形中无重叠的放入面积分别为9cm2和8cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.2+1B.1C.8﹣6D.6﹣812.将一个边长为a的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积()A.(2﹣2)a2B.a2C.a2D.(3﹣2)a2 13.已知x+y=﹣6,xy=8,求代数式x+y的值.14.已知:,则ab3+a3b的值为.15.已知x=,则x4+2x3+x2+1=.16.已知a+b=3,ab=2,则的值为.17.已知x为奇数,且=,求•的值.18.已知a=.(1)求a2﹣4a+4的值;(2)化简并求值:.19.计算:(1)(1﹣π)0+|﹣|﹣+()﹣1;(2)(+﹣)2﹣(﹣+)2.20.(1)已知x=+2,y=﹣2,求下列各式的值:①+;②x2﹣xy+y2;(2)若+=8,求﹣.参考答案1.解:因为=2,=2,=2,=2,所以与是同类二次根式,故选:B.2.解:A、把代入根式分别化简:4=4=,==,故选项不符合题意;B、把代入根式化简:4=4=;==,故选项不合题意;C、把代入根式化简:4=4=1;=,故选项不合题意;D、把代入根式化简:4=4=,==,故符合题意.故选:D.3.解:A,,正确.B,,不正确.C,3x3﹣5x3=﹣2x3,不正确.D,8x3÷4x=2x2,不正确.故选:A.4.解:原式=+…+=++…+=++…+=++…+=﹣1=﹣1+10=9.故选C.5.解:原式=(﹣3)2022(+3)2022×(+3)=[(﹣3)(+3)]2022×(+3)=(10﹣9)2022×(+3)=1×(+3)=+3,故选:B.6.解:∵x、y都是负数,∴=﹣(﹣x+2﹣y)=﹣()2,故选:D.7.解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,又∵a+b=﹣5,ab=1,∴原式=﹣=5;故选:A.8.解:因为x2+y2=1,所以﹣1≤x≤1,﹣1≤y≤1,因为=,其中y﹣2<0,所以x+1≤0,又因为﹣1≤x≤1,所以x+1=0,x=﹣1,所以y=0,所以原式=+=2+0=2.故选:C.9.解:∵x=﹣2,∴x2=(﹣2)2=()2﹣2××2+22=7﹣4+4=11﹣4,则原式=x2(x2+8x+16)=x2(x+4)2=(11﹣4)(﹣2+4)2=(11﹣4)(2+)2=(11﹣4)(11+4)=112﹣(4)2=121﹣112=9,故选:D.10.解:∵a=2﹣,∴2a2﹣8a﹣1=2(a﹣2)2﹣9=2(2﹣﹣2)2﹣9=2×5﹣9=1.故选:A.11.解:如图.由题意知:(cm2),.∴HC=3(cm),LM=LF=MF=.∴S空白部分=S矩形HLFG+S矩形MCDE=HL•LF+MC•ME=HL•LF+MC•LF=(HL+MC)•LF=(HC﹣LM)•LF=(3﹣)×=(cm2).故选:D.12.解:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为x,即正八边形的边长为x,依题意得x+2x=a,则x==,∴正八边形的面积=a2﹣4××=(2﹣2)a2.故选:A.13.解:∵x+y=﹣6,xy=8,∴x<0,y<0,∴x+y=﹣﹣=﹣2=﹣2=﹣4.故答案为:﹣4.14.解:∵,∴a+b=+=,ab=×==,则原式=ab(a2+b2)=ab[(a+b)2﹣2ab]=×(3﹣2×)=×=,故答案为:.15.解:∵x=,∴x4+2x3+x2+1=x2(x2+2x+1)+1=x2(x+1)2+1=()2×(+1)2+1=×+1=+1=+1=1+1=2,故答案为:2.16.解:===,∵a+b=3,ab=2,∴a>0,b>0,∴原式===,故答案为:.17.解:∵=,∴.解得:7≤x<9.∵x为奇数,∴x=7.∵•==(x+1)•,∴原式=(7+1)×=8×4=32.18.解:(1)a===2﹣,a2﹣4a+4=(a﹣2)2,将a=2﹣代入(a﹣2)2得(﹣)2=3.(2),=﹣=(a﹣1)﹣,∵a=2﹣,∴a﹣1=1﹣<0,∴原式=a﹣1+=2﹣﹣1+2+=3.19.解:(1)原式=1+﹣﹣2+=1﹣;(2)原式=(+﹣+﹣+)(+﹣﹣+﹣)=2×(2﹣2)=4﹣4=4﹣8.20.解:(1)①+=,∵x=+2,y=﹣2,∴x+y=2,xy=3,当x+y=2,xy=3时,原式=;②x2﹣xy+y2=(x+y)2﹣3xy,∵x=+2,y=﹣2,∴x+y=2,xy=3,当x+y=2,xy=3时,原式=(2)2﹣3×3=19;(2)设=x,=y,则39﹣a2=x2,5+a2=y2,∴x2+y2=44,∵+=8,∴(x+y)2=64,∴x2+2xy+y2=64,∴2xy=64﹣(x2+y2)=64﹣44=20,∴(x﹣y)2=x2﹣2xy+y2=44﹣20=24,∴x﹣y=±2,即﹣=±2,故答案为:±2.。
21.3二次根式的加减 达标训练一、基础·巩固·达标1.下列根式,不能与48合并的是( )A.12.0B.18C.311 D.75-2.计算:2145051183-+.3.计算:(5+62)(62-5).4.计算:(1)628-⨯; (2)2510⨯;(3)(6-1)2; (4)(3+1)(3-1).5.计算:1435-⨯(精确到0.001).6.化简:(1)|23||32||21|-+-+-; (2)|a -b |+|b -c |+|c -a |(c >b >a ).7.如果一个长方形的长是27 m,宽是12 m ,长方形的周长是多少? (3≈1.732,结果精确到0.1)8.设a 和b 互为相反数,c 和d 互为倒数,m 的倒数等于它本身. 化简式子mcd+(a +b )m -|m |.9.已知实数x ,y ,z 满足|4x -4y +1|+z y +231+z 2-z +41=0,求(y +z )·x 2的值.二、综合·应用·创新 10.已知x +x 1=2+10,求x 2+21x的值.11.已知一个直角三角形的两直角边的长是(3+5) cm 和(5-3) cm ,求这个直角三角形的周长和面积.12.已知正数a 和b ,有下列命题:(1)若a +b =2,则ab ≤1;(2)若a +b =3,则ab ≤23;(3)若a +b =6,则ab ≤3. 根据以上三个命题所提供的规律猜想:若a +b =9,则ab ≤ .13.如图21-3-2所示,已知正方形ABCD 的面积是49平方厘米,正方形EFGH 的面积是25平方厘米,且AH =DG =CF =BE ,BF =CG =DH =AE ,求AD 的长,EF 的长,△AEH 的面积.图21-3-2三、回顾·热身·展望14.江苏宿迁模拟 下列运算中错误的是( )A.632=⨯B.2221=C.252322=+D.32322--=)(15.化简253-时,甲的解法是:252525253253++-+-=))(()(=,乙的解法是:25252525253+--+-=))((=,以下判断正确的是( )A.甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D. 甲、乙的解法都不正确 16.已知a -b =23-1,ab =3,则(a +1)(b -1)的值为( )A.-3B.33C.22D.-22 17.已知x =3-2,那么x +x1的值等于( ) A.23 B.-23 C.22 D.-22 18.下列各式正确的是( )A.323222++=B.32533523)=(++C.12151215121522-⋅+-=D.212214= 19.计算:(2+1)(2-1)= . 20.计算:12315520⋅-÷+)(.参考答案一、基础·巩固·达标1.下列根式,不能与48合并的是( )A.12.0B.18C.311 D.75- 提示:将二次根式化成最简二次根式后,若被开方数相同才能合并.3575,3511001212.0,3448-=-===,故选B. 答案: B 2.计算:2145051183-+. 提示:二次根式加减运算时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并. 解:()282219222292145051183=-+=-+=-+. 3.计算:(5+62)(62-5).提示:利用乘法公式进行计算.解:()()()1252456256262522-=-=-=-+. 4.计算:(1)628-⨯; (2)2510⨯;(3)(6-1)2; (4)(3+1)(3-1). 提示:根据ab b a =⋅(a≥0,b≥0)与bab a =(a≥0,b>0)可求. 解:(1)264616628628-=-=-=-⨯=-⨯.(2)52525025021052510====⨯=⨯. (3)()()62716261622-=+-=-.(4)()()()2131313132=-=-=-+.5.计算:1435-⨯(精确到0.001).提示:可借助计算器,但精确要求应严格执行,不应忽略. 解:5×3-14=15-14=3.873-3.742=0.131. 6.化简:(1)|23||32||21|-+-+-;(2)|a -b |+|b -c |+|c -a |(c >b >a ). 提示:先去绝对值符号,再化简. 解:(1)∵2>3>2>1,∴|1-2|+|-23|+|3-2|=2-1+23-+2-3=1. (2)∵c>b>a ,∴|a -b|+|b -c|+|c -a|=(b -a )+(c -b )+(c -a )=2c -2a.7.如果一个长方形的长是27 m,宽是12 m ,长方形的周长是多少? (3≈1.732,结果精确到0.1)提示: 长方形的周长=2(长+宽).解:长方形的周长为2(27+12)=2(33+23)=103≈10×1.732≈17.3(m ). 8.设a 和b 互为相反数,c 和d 互为倒数,m 的倒数等于它本身,化简式子mcd+(a +b )m -|m |.提示:∵a 与b 互为相反数,∴a+b=0.又∵c 与d 互为倒数,∴cd=1. 又∵m 的倒数等于它本身,∴m=±1. 解:当m=1时,m cd +(a+b)m -|m |=11+0×1-1=0;当m=-1时,mcd+(a+b)m -|m |=-1+0×-1-1=-2.9.已知实数x ,y ,z 满足|4x -4y +1|+z y +231+z 2-z +41=0,求(y +z )·x 2的值. 提示:从|4x -4y+1|≥0,z 2y +≥0,z 2-z+41=(z -21)2≥0出发,可利用非负性求解.有限个非负数之和为零,则每一个数都为零. 解:把已知等式化为|4x -4y+1|+31z 2y ++(z -21)2=0, ∵|4x -4y+1|≥0,z 2y +≥0,(z -12)2≥0,∴⎪⎪⎩⎪⎪⎨⎧=-=+=+-.021,02,0144z z y y x ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=214121z y x∴(y+z)·x 2=1612121412=⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛+-.二、综合·应用·创新 10.已知x +x 1=2+10,求x 2+21x的值. 提示:由x 2+21x 与x+x1的关系求值. 解:221x x +=(xx 1+)2-2=(102+)2-2=14+410-2=12+410. 答案:12+41011.已知一个直角三角形的两直角边的长是(3+5) cm 和(5-3) cm ,求这个直角三角形的周长和面积.提示:由勾股定理求出斜边的长,再求三角形的周长;两直角边乘积的一半就是三角形的面积. 解:斜边的长是()()142563102831028355322==-++=-++,直角三角形的周长是 (3+5)+(5-3)+214=10+214 (cm); 面积是21(3+5)(5-3)=21(25-3)=11(cm 2). 12.已知正数a 和b ,有下列命题:(1)若a +b =2,则ab ≤1;(2)若a +b =3,则ab ≤23;(3)若a +b =6,则ab ≤3. 根据以上三个命题所提供的规律猜想:若a +b =9,则ab ≤ . 提示:根据规律可以看出ab ≤2ba +,所以若a+b=9,则ab ≤29.答案:9213.如图21-3-2所示,已知正方形ABCD 的面积是49平方厘米,正方形EFGH 的面积是25平方厘米,且AH =DG =CF =BE ,BF =CG =DH =AE ,求AD 的长,EF 的长,△AEH 的面积.图21-3-2提示: 由正方形ABCD 的面积是49平方厘米,正方形EFGH 的面积是25平方厘米,容易得到AD =7 cm,EF =5 cm ,然后得到△AEH ≌△DHG ≌△CGF ≌△BFE ,即可求出△AEH 的面积. 解:∵ 正方形ABCD 面积为49 cm 2,∴AD =7 cm.∵ 正方形EFGH 的面积是25 cm 2, ∴ EF =5 cm.又∵ 四边形ABCD 是正方形, AH =DG =CF =BE ,BF =CG =DH =AE , ∴ △AEH ≌△DHG ≌△CGF ≌△BFE . ∴ S △AEH =41(49-25)=6 cm 2. ∴ AD =7 cm,EF =5 cm , S △AEH =6 cm 2. 三、回顾·热身·展望14.江苏宿迁模拟 下列运算中错误的是( )A.632=⨯B.2221=C.252322=+D.32322--=)(提示:可通过运算找出错误答案.()2332322-=-=-.故选D.答案: D 15.化简253-时,甲的解法是:252525253253++-+-=))(()(=,乙的解法是:25252525253+--+-=))((=,以下判断正确的是 ( ) A.甲的解法正确,乙的解法不正确 B. 甲的解法不正确,乙的解法正确 C.甲、乙的解法都正确 D. 甲、乙的解法都不正确 提示:可通过计算进行判断.答案: C16.已知a -b =23-1,ab =3,则(a +1)(b -1)的值为( )A.-3B.33C.22D.-22提示:可通过计算进行判断,(a+1)(b -1)=ab -a+b -1=ab -(a -b)-1=()31132311323-=-+-=---. 答案: A17.已知x =3-2,那么x +x1的值等于( ) A.23 B.-23 C.22 D.-22 提示:可直接代入求值. ()()3223232323231231=++++-=-+-=+x x .故选 A.答案:A18.下列各式正确的是( )A.323222++=B.32533523)=(++C.12151215121522-⋅+-=D.212214= 提示:判断是否正确,要看化简的过程,22329214,3523,13943222===+=+不能合并与.故选 C . 答案: C19.计算:(2+1)(2-1)= .提示:运用乘法公式进行计算.解:(2+1)(2-1)=(2)2-12=2-1=1. 20.计算:12315520⋅-÷+)(. 提示:把整式乘除的方法运用到二次根式的计算中,使计算更方便. 解:()12315520⋅-÷+()123151520⨯-⨯+==2+1-2 =1.。
21.3二次根式的加减法班级 座号 姓名 成绩一、填空与选择(每小题4分,共40分).1.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数 ,称这几个二次根式为同类二次根式.2.二次根式的加减:①先把各个二次根式化成 ____________;②再把 _____________分别合并.3.下列各式中,与2是同类二次根式的是 ( ).A .23B .6C .8D .104. 已知二次根式42-a 与3是同类二次根式,则的a 值可以是( ).A .8B .7C .6D .55.计算8-2的结果是( ).A .6B .6C .2D .26. 下列计算正确的是( )A3= B .532=+ C .= D .224=-7.化简:3+(5-3)=_____________.8.计算:计算:_____________9.如果两个最简二次根式3213+-a a 与能合并,那么=a ________10.如图是由边长为1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A →B →C 所走的路程为_______m .(结果保留根号)二、计算与解答(60分).11.(20分)计算:(1)481227+- (2)()()1515-+(3)22521332+- (4)22)2332()2332(--+12.(8分)若3的整数部分为x ,小数部分为y ,求53xy -的值.13. (10分)先化简再求值: 215),6()3)(3(+=--+-a a a a a 其中14.(提升与拓展)(10分)计算211++321++431++…+100991+15.(提升与拓展)(12分)如图,菱形ABCD 的对角线AC =472,472-=+BD ,求菱形的边长和面积.。
第十六章 二次根式16.3 二次根式的加减1.可以合并的二次根式将二次根式化成最简二次根式,如果被开方数__________,则这样的欠根式可以合并.【注意】判断被开方数相同的二次根式是以化为最简二次根式为前提的,是过化简来判断化简前的二次根式是不是被开方数相同的二次根式.合并的方法与合并同类项类似,把根号外的因数(式)相加,根指和被开方数不变,合并的依据是乘法分配律,如()m a n a m n a +=+a ≥0.【拓展】几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 同类二次根式与同类项无论是在表现形式上还是运算法则上都有非常类似之处,学习时可对比来应用.2.二次根式的加减二次根式加减的法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行__________.二次根式的加减法与整式的加减法类似,步骤如下:(1)将各个二次根式化成最简二次根式;(2)找出化简后被开方数相同的二次根式;(3)合并被开方数相同的二次根式——将系数相加仍作为系数,根指数与被开方数保持不变.【注意】(1)化成最简二次根式后被开方数不相同的二次根式不能合并,但是不能丢弃,它们也是结果的一部分.(2)整式加减运算中的交换律、结合律、去括号法则、添括号法则在二次根式运算中仍然适用. (3)根号外的因式就是这个根式的系数,二次根式的系数是带分数的要化为假分数的形式.3.二次根式的混合运算(1)二次根式的混合运算顺序与整式的混合运算顺序一样:先乘方,再乘除,最后加减,有括号的先算括号里面的(或先去掉括号).(2)在二次根式的运算中,有理数的运算律、多项式乘法法则及乘法公式(平方差公式、完全平方公式)仍然适用.二次根式混合运算的结果一定要化成最简二次根式或整式.K知识参考答案:1.相同2.合并K—重点合并二次根式;二次根式的加减运算;二次根式的混合运算K—难点二次根式的混合运算K—易错合并被开方数相同的二次根式时漏掉括号一、合并二次根式判断几个二次根式在加减运算中是否可以合并,一定要先看它们是不是最简二次根式.【例1】2A10B12C 12D16【答案】C101223=122=166=.故选C.【例2】下列说法正确的是A.被开方数相同的二次根式可以合并B880 C.只有根指数为2的根式才能合并D250【答案】A【解析】A.被开方数相同的二次根式可以合并,故A正确;B822=8045=B错误;C.只有根指数为2的根式才能合并,故C错误;D5052=2可以合并,故D错误.故选A.二、二次根式的加减运算二次根式的加减运算的实质就是合并被开方数相同的二次根式.【例3】下列计算正确的是A.8383-=-B.4949+=+ C.3552-=D.32222-=【答案】D【例4】计算114+38 23A32B3C 3D32【答案】B【解析】原式=232+-3B.三、二次根式的混合运算在进行二次根式的计算时,能用乘法公式的要尽量使用乘法公式,有时还需要灵活运用公式和逆用公式,这样可以使计算过程大大简化.【例5】计算1(5245)(5)5-÷-的结果为A.5 B.5-C.7 D.7-【答案】A【解析】原式5(5235)(5)(55)(5)55=⨯-⨯÷-=-÷-=A.。
二次根式加减法练习题一、选择题1.以下根式,不可以与48归并的是()A. B.18 C.11D.7532.计算|2﹣|+|4﹣|的值是()A.﹣2B.2C.2﹣6D.6﹣23.小明的作业本上有以下四题:①=4a2;②?=5a;③a==;④÷=4.做错的题是()A.①B.②C.③D.④4.若最简二次根式和能归并,则x的值可能为()A.B.C.2D.55.已知等腰三角形的两边长为2和5,则此等腰三角形的周长为()A.4+5B.2+10C.4+10D.4+5或2+106.已知a b231,ab3,则(a1)(b1)的值为()A.3B.33C.322D.317.计算(21)(21)2的结果是()A.21B.3(21) C.1D.1 8.以下计算中正确的有()A.0个B.1个C.2个D.3个(1)347(2)23555(3)3a2b ab(4)127542525739.计算3x y9xy2x3y4y x,结果等于()x x yA.2xyB.0C.y xyD.3xyx10.已知a1003997,b1001999,c21001,则a,b,c的大小关系为()A.a b cB.a cbC.b a cD.cb a 11.知足等式x y xy2003x2003y2003xy2003的正整数对(x,y)的个数是().A.1B.2C.3D.412.a、b为有理数,且知足等式a b36?1423,则a b的值().A.2B.4C.6D.8第1页(共4页)13.已知x2xy y0(x0,y0),则3x xy y的值为() 5x3xy4yA.1B.1C.2D.3 3234二、填空题14.化简:=.15.计算(+1)2018(﹣1)2017=.16.已知x1=+,x2=﹣,则x12+x22=.17.假如最简根式a5与2a bb可以进行归并,则a b9.18.计算:(325)2,(3623)2.19.若a310,则代数式a26a2的值为.20.已知xy3,那么x y y x的值是.x y21.已知x,y为实数,且知足1x(y1)1y=0,那么x2011﹣y2011=22.如图,以1为直角边长作直角三角形,以它的斜边长和1为直角边作第二个直角三角形,再以它的斜边和1为直角边作第三个直角三角形,1以此类推,所得第n个直角三角形的斜边长为.1123.比较大小:2004200320022001.1124.方程2(x-)=x+1的解是.1 1____________25.已知a、b、c为正数,d为负数,化简ab c2d2=______.ab c2d226.已知a是43的小数部分,那么代数式a2a2a?a4的a24a4a22a a 值为________________.27.计算(31)20012(31)20002(31)19992001=.三、解答题28.计算:①205145125②29a34a③81a35aa34a5.539a第2页(共4页)④⑤2a-3a2b+54a-2b a2b⑥21218–(41()()27–33–42)⑦532532⑧5-4-2⑨2n-abmn+nm22n41111737(am m mn)÷abm⑩(a+b ab)÷(a+b-ab)(a≠b)a b ab b aba ab29.已知a、b为有理数,m、n分别表示57的整数部分和小数部分,且amn bn2 1,求2a+b的值30..已知x32,y32求代数式3x25xy3y2的值3232第3页(共4页)31.察看以下各式及其化简过程:322(2)222112(21)221;526(3)2232(2)232.(1)依据上述两个根式的化简过程的基本思想,将10221化简;(2)针对上述各式反应的规律,请你写出a2b m n(mn)中a,b与m,n之间的关系.32.有这样一道题,计算xx24x x24x2的值,此中x1005,某x x24x x24同学把“x1005”错钞成“x1050”,但他的计算结果是正确的.请你回答这是怎么回事?试说明原因.33.先化简,再求值.[]÷,此中a=3,b=4.仔细察看图,仔细剖析各式,而后解答各个问题.21A41A3(1)12,S12;1A512;2,S S3S2A2(2)13S224M M S11(3)214,S33;A12OL1)请用含n的(n为正整数)的等式表示上述变化规律.2)计算出OA10的长度.(3)求出S12S22S32L S102的值.第4页(共4页)。
二次根式乘除加减练习测试题附参考答案The pony was revised in January 2021二次根式的乘除,加减练习题双基演练1.23×(-25)=_________,a ×ab =________.2.(2×7)2=_______,22(2)(3)⨯=________.3.15×5=_________, 3.6 5.4⨯=_________,3bc ×13c b-=_______. 4.设长方形的长a=250,宽b=332,则面积S=________.5.已知,x>0,y>0,则2x y ·2xy =__________.6.化简462a a b +结果等于()A .a 2(a 2+b )B .a (a 2+b )C .a 222a ab +D .a 2221a b +7.已知a=2,b=10,用含a 、b 的代数式表示20,这个代数式是()A .a+bB .abC .2aD .2b8.若29x -=3x -·3x +,则x 的取值范围是()A .-3≤x ≤3B .x>-3C .x ≤3D .-3<x<3能力提升93153×(-1210 313223③3m ·3n m ·223m n n ④52xy y ×(-323x y )×35x y10.计算(23-×23+)2002=_______.11.当x<0,y<0时,下列等式成立的是()A .2x y x y =-B .2xy y x =C .393x y x xy =-D .429x y =3x 2y12.若把根号外的因式移到根号内,则a 1a-等于() A .-a -B .a -C .-a D .a13.仿照20.5=22×0.5=220.5⨯=2的做法,化简下列各式:①100.1=②515= 聚焦中考14.下列各数中,与数32-积为有理数的是( )A 32+B 32-C 32+-D 315.已知b a <,化简b a 3-的正确结果是( )A ab a --B ab a -C ab aD ab a -16.观察分析下列数据,寻找规律:0,3,6,3,32,15,……那么第10个数是_____17.(2004。
二次根式加减乘除运算上次课程检测:1.下列二次根式中与8不是同类二次根式的是( ) A . 21 B. 50 C. 81 D . 54 2.(24-315+2223)×2的值是( ). A .2033-330 B .330-233 C .230-233 D .2033-303.计算: (1)1312248233⎛⎫-+÷ ⎪ ⎪⎝ (2)101200925206-⎛⎫-+-- ⎪⎝⎭4.当715+=x ,715-=y ,求22y xy x +-的值.5.如图1,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有多少米.新授一、选择题:1.估计418⨯的运算结果应在( ) A .1到2之间 B .2到3之间 C .3到4之间 D .4到5之间2.等式2111x x x +-=-g 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-13.设a >0,b >0,则下列运算错误的是( )A .b a ab •= B . b a b a +=+ C . a a =2)( D . ba b a = 图14. ①33+3=63;②177=1;③2+6=8=22;④243=22,其中错误的有( ).A .3个B .2个C .1个D .0个5.下列判断⑴12 3 和1348 不是同类二次根式;⑵145 和125 不是同类二次根式; ⑶8x 与8x不是同类二次根式,其中错误的个数是( ) A 、3 B 、2 C 、1 D 、06.如果a 是任意实数,下列各式中一定有意义的是( )A 、 aB 、1a 2C 、3-aD 、-a 2 7.如图1,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定 8.如图2,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只 蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .521B .25C .1055+D .35图2 图3 图4二、填空1.如图3,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .2.如图4,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.3、二次根式外(内)的因式移到根号内(外)(1)化简aa 1-的结果是________. (2)已知a<b,化简二次根式b a 3-的结果是________.(3)把11)1(---a a 中根号外的因式移到根号内,则原式应等于________ 4.设b a ==3,2 , 54.0=_________________.(用含a 、b 的式子表示)5.定义运算“☆”的运算法则为x ☆y=4+xy ,则(2☆6)☆6=___________.6.若5+7 的小数部分是a ,5-7 的小数部分是b ,则ab +5b =A B C 图1 “路”4m 3m三、计算:(1)()28104101⨯+-+⎪⎭⎫ ⎝⎛-π (2)20)6()15(3--+-(3 ) 4832714122+- (4)1-四、简答1、已知2310x x -+=.2.已知4x 2+y 2-4x -6y +10=0,求(23+y )-(x 2。
专题16.3二次根式的加减【十大题型】【人教版】【题型1判断同类二次根式】 (1)【题型2根据同类二次根式的概念求字母的取值】 (3)【题型3运用乘法公式和运算律简化二次根式的混合运算】 (5)【题型4比较二次根式的大小】 (8)【题型5已知字母的取值化简求值】 (10)【题型6已知条件式化简求值】 (12)【题型7与二次根式有关的整体代入求值问题】 (14)【题型8二次根式混合运算的实际应用】 (16)【题型9二次根式的新定义类问题】 (19)【题型10二次根式的阅读理解类问题】 (24)【知识点1同类二次根式】把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.【题型1判断同类二次根式】【例1】(2023·上海·八年级假期作业)判断下列各组的二次根式是否为同类二次根式?(1)24,48,(2)4,33o<0),−2B3(<0).【答案】(1)不是(2)不是【分析】根据二次根式性质化简后,结合同类二次根式定义判断即可得到答案.【详解】(1)解:∵24=26;48=43;12=6∴24,48,12(2)解:4J2;33=−3B(<0);−2B3=2B(<0);∴4,33,−2B3不是同类二次根式.【点睛】本题主要考查二次根属性及同类二次根式的概念,熟记二次根式性质先化简再判断是解决问题的关键.【变式1-1】(2023春·四川宜宾·)A.216B.125C.48D.32【答案】C【分析】先利用二次根式的性质化简,再根据同类二次根式的定义判断.=,216=66,125=55,48=43,32=42,是同类二次根式的是48,故选:C.【点睛】本题考查了二次根式的化简,同类二次根式的定义,熟练掌握二次根式的性质是解题的关键.【变式1-2】(2023春·上海·八年级期末)下列各式中,属于同类二次根式的是()A.B与B2B.2与2C.3与D.与3【答案】C【分析】化简各选项后根据同类二次根式的定义判断.【详解】A、B与B2=的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、2与2的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、3与D、3是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.【变式1-3】(2023春·河南洛阳·八年级统考阶段练习)下列各式经过化简后与−−273不是同类二次根式的是()A.273B C.D【答案】A【分析】同类二次根式是指化为最简二次根式后,被开方式相同的二次根式.【详解】解:−−273=-−3x⋅(3p2=-3x−3选项A:273=3δ(3x)2=3x3;选项B选项C:选项D−3.B、C、D中都含有−3,是同类二次根式,A不是,故选A.【点睛】本题考查了同类二次根式的概念.【题型2根据同类二次根式的概念求字母的取值】【例2】(2023·上海·八年级假期作业)若5+8与7是同类二次根式,求的最小正整数?【答案】=4【分析】5+8不一定是最简二次根式,从而由同类二次根式定义列出方程求解即可得到答案.【详解】解:由题意得:5+8=2×7(为正整数),∵2>0,则5+8>0,∴当=1时,5+8=7,解得=−0.2,不是正整数,舍去;当=2时,5+8=28,解得=4,符合题意,即的最小正整数为4.【点睛】本题主要考查同类二次根式的概念,此题中要注意前面一个二次根式并不是最简的,根据题意列出方程求解是解决问题的关键.【变式2-1】分别求出满足下列条件的字母a的取值:(1)若最简二次根式3与﹣8是同类二次根式;(2)若二次根式3与﹣8是同类二次根式.【答案】(1)=23(2)=223【分析】(1)根据同类二次根式的被开方数相同列出方程,通过解方程求得答案;(2)根据同类二次根式的被开方数相同列出方程,通过解方程求得答案.【详解】(1)∵﹣8=﹣22,最简二次根式3与﹣8是同类二次根式,∴3a=2,解得=23.(2)∵二次根式3与﹣8是同类二次根式,∴3a=2n2,解得a=223.【点睛】考查了同类二次根式和最简二次根式.同类二次根式:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【变式2-2】(2023春·重庆綦江·八年级校考期中)最简二次根式2+1与r47+可以合并成一个二次根式,则−=.【答案】−8【分析】最简二次根式2+1与r47+能合并成一个二次根式,则两个二次根式的被开方数相等,即可求得a,b值,代入即可求解.【详解】解:根据题意得:2+1=7+s+4=2,则=−2,=6,所以−=−2−6=−8,故答案是:−8.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.【变式2-3】(2023春·河南信阳·八年级统考期末)先阅读解题过程,再回答后面的问题.如果、是正整数,且162+和KK1+7在二次根式的加减法中可以合并成一项,求、的值.解:∵162+和KK1+7可以合并,∴−−1=2162+=+7,即−=331+16=7,解得=5547=8647.∵、是正整数,∴此题无解.问:(1)以上解法是否正确?如果不正确,错在哪里?(2)给出正确的解答过程.【答案】(1)不正确,原因是没有把162+转化为最简二次根式;(2)见解析【分析】(1)要知道,同类二次根式是化简后被开方数相同.(2)先把162+转化为最简二次根式,然后再根据两个二根式能合并列出相应方程组进行求解即可.【详解】解:(1)不正确,原因是没有把162+转化为最简二次根式;(2)正确解答过程如下:∵162+=42+,162+和KK1+7可以合并,∴−−1=22+=+7,解得:=5=2,经检验=5,=2符合题意,∴=5,=2.【点睛】本题考查同类二次根式的概念,同类二次根式化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.【知识点2二次根式的加减法则】二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.【题型3运用乘法公式和运算律简化二次根式的混合运算】【例3】(2023春·黑龙江牡丹江·八年级统考期末)计算(1)412−+48÷23(2)26+3×26−3−(33−2)2+【答案】(1)143(2)−8+76+2【分析】(1)先计算括号里,再计算除法;(2)先运用平方差公式和完全平方公式、分母有理化进行计算,再相加减即可【详解】(1)原式=83−+43÷23=3÷23=143=143(2)原式=24−3−27−66+2+=21−29+66+6+2=−8+76+2【点睛】本题考查二次根式的混合运算、平方差公式、完全平方公式,分母有理化,掌握二次根式混合运算的计算方法是解题的关键.【变式3-1】(2023春·广东江门·八年级统考期末)计算:27+6+36−3−42−36÷22+1【分析】先化简二次根式,同步计算二次根式的乘法与除法运算,再合并即可.【详解】解:27+6+36−3−42−36÷22=33+6−3−2+=+1.【点睛】本题考查的是二次根式的混合运算,熟记二次根式的混合运算的运算顺序是解本题的关键.【变式3-2】(2023春·北京·八年级校考阶段练习)计算:(1)48÷3+×12−24(2)(7+43)(7−43)−(35−1)2【答案】(1)4−6(2)65−45【分析】(1)利用二次根式的乘除法则运算即可得;(2)利用完全平方公式和平方差公式进行计算即可得.【详解】(1)解:原式=48÷3+−26=16+6−26=4−6(2)解:原式=49−48−(45−65+1)=1−46+65=65−45【点睛】本题考查了二次根式的计算,完全平方公式和平方差公式,解题的关键是掌握这些知识点.【变式3-3】(2023春·湖北黄冈·八年级校联考阶段练习)计算:(1)3×−÷2(2)212−+348;(3)2+32−5+25−2;(4)2−32022×2+32023−2−−−20.【答案】(1)−154(2)143(3)4+26(4)1【分析】(1)根据二次根式的乘法和除法法则运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)利用完全平方公式和平方差公式计算;(4)先根据积的乘方、绝对值和零指数幂的意义计算,然后利用平方差公式计算后合并即可.【详解】(1)解:原式=3×−×2×=3×−×2×5=−154;(2)原式=43−23+123=143;(3)原式=2+26+3−5−4=2+26+3−1=4+26;(4)原式=2−32+32022×2+3−3−1=12022×2+3−3−1=1×2+3−3−1=2+3−3−1=1.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则、零指数幂是解决问题的关键.【题型4比较二次根式的大小】【例4】(2023春·八年级课时练习)比较大小错误的是()A.5<7B.35+2<82﹣1C6D.|1-3|>3-1【答案】D【分析】利用比较实数大小的方法逐项判断正误即可.【详解】A、由于5<7,则5<7,故正确;B、由于35+2<6+2=8,而8=9-1<82-1,则35+2<82﹣1,故正确;C、由于−23>−5>−7−5=−6,故正确;D、由于1−=3−1,故1>3−1错误.故选:D【点睛】本题考查了实数大小的比较,涉及二次根式的比较,不等式的性质等知识,其中掌握二次根式大小的比较是关键.【变式4-1】(2023春·江苏·从小到大排列.<<【分析】先求出三个数的平方,再比较大小即可.【详解】2=15,2=16,2=17,∵1117,<<<【点睛】本题考查了比较二次根式的大小,熟知正数比较大小的法则是解答此题的关键.平方法是比较二次根式的大小常用的方法.【变式4-2】(2023春·河南新乡·八年级校考阶段练习)阅读下列化简过程:=2−1,==3−2,==4−3,…从中找出化简的方法与规律,然后解答下列问题:…·2021+1;(2)设===,,的大小关系.【答案】(1)2020(2)>>【分析】(1)根据题意将式子先化简,再运用平方差公式求解即可;(2)根据题意将a,b,c求出来,再进行二次根式的大小比较即可.【详解】(1)根据题意可得,原式=2−1+3−2+…+2021−2020·2021+1=2021−1·2021+1=2021−1=2020;(2)根据题意可得,==3+2,==2+3,==5+2,∵2<2,∴3+2<2+3,即<,∵5>3,∴2+3<2+5,即<,∴>>.【点睛】本题考查了二次根式的加减运算和平方差公式,正确的理解题意是解决本题的关键.<<m的个数是.【变式4-3】(2023春·【答案】7【分析】先将前后二次根式化为最简二次根式,再进行估值,根据估值确定m的个数.【详解】解:∵2≈1.414,5≈2.236,=(2-1(2-1)≈3.312=3+5)8×(3+5)4=2(3+5)≈10.472,m∴3.312<m<10.472,∵3.3121与10.472之间的整数有4、5、6、7、8、9、10,共7个,∴整数m的个数是7,故答案为:7.【点睛】本题考查了二次根式的化简以及二次根式的估值,解题的关键是熟练化简二次根式.【题型5已知字母的取值化简求值】【例5】(2023春·云南昭通·八年级统考期末)若x=3+22,y=3-22,求−【答案】0【分析】先运用平方差及完全平方公式进行因式分解,再约分,将分式化到最简即可.−r−K=−−+=0.故当x=3+22,y=3−22时,原式=0.【点睛】本题考查了二次根式的化简求值.运用公式将分子因式分解可使运算简便.由于所求代数式化简之后是一个常数0,与字母取值无关.因而无论x、y取何值,原式都等于0.【变式5-1】(2023春·四川自贡·八年级统考期末)已知=2+1,求代数式3−222+2−1−2的值.【答案】0【分析】把x值带入后,利用完全平方公式和平方差公式计算即可.【详解】当x=2+1时,原式=3−222+12+2−12+1−2=3−223+22+2−12+1−2=32−(22)2+22−1−2=9-8+2-1-2=0【点睛】本题考查了整式的混合运算−化简求值,解题的关键是把x代入求值时利用公式,比较简单.【变式5-2】(2023春·山东临沂·八年级校考期末)已知=2+1,求2K1−−1的值.【分析】根据分式的运算法则将2K1−−1化简,然后将=2+1代入计算即可求出答案.【详解】解:2K1−−1=2−1−(+1)=2−(2−1)−1=1−1当=2+1时,==原式=【点睛】本题考查分式的运算,熟练运用分式的运算法则是解题的关键.⋅B,再求当==.【变式5-3】(2023春·上海·【答案】xy;1【分析】分子中先提出公因式B进行因式分解,分子分母约去公因式后再利用二次根式乘法进行化简,然后代入数值进行求解即可.⋅Br B=B⋅B=B,=当=【点睛】本题考查了二次根式的化简求值,正确确定运算顺序以及运算方法是解题的关键.【题型6已知条件式化简求值】【例6】(2023春·贵州毕节·八年级校考期末)若,为实数,且=1−4+4−1+12.【答案】22【分析】先根据二次根式有意义的条件求出x的值,进而求出y的值,然后代值计算即可.【详解】解:∵=1−4+4−1+12要有意义,∴1−4≥04−1≥0,∴14≤≤14即=14,∴=1−4+4−1+12=12,∴1,=2++=22.【点睛】本题主要考查了二次根式有意义的条件,二次根式的求值,正确求出x、y的值是解题的关键.【变式6-1】(2023春·四川乐山·八年级统考期末)已知a、b满足4−+1+−12−9=0,求代数式⋅+−÷−−的值.【答案】3+1【分析】先根据非负数的性质求出a、b的值,然后代值计算即可.【详解】解:∵4−+1+−12−9=0,4−+1≥0,−12−9≥0,∴4−+1=0,−12−9=0∴4−+1=0−12−9=0.解得=−1=−3.⋅÷−−=−3−1×−3−1−−3÷−−1−−3=3×33+−1+3÷1+3=3+2÷2=3+1.【点睛】本题主要考查了二次根式的化简求值,非负数的性质,解二元一次方程组,灵活运用所学知识是解题的关键.【变式6-2】(2023春•肥城市期中)已知=为奇数,求(+【答案】43【分析】由二次根式的非负性可确定的取值范围,再根据为奇数可确定的值,然后对原式先化简再代入求值.【详解】解:由分式和二次根式有意义的条件,可得−6≥09−>0,解得6≤<9,且为奇数,∴=7,∴原式=(+=(+1)+1=(+1)(−1)=(7+1)×(7−1)=43.【点睛】本题主要考查了分式和二次根式有意义的条件、二次根式的化简求值等知识,解答本题的关键是根据x的取值范围,确定x的值,然后代入求解.【变式6-3】(2023·八年级单元测试)若=2+4++1的值.【答案】2.【分析】已知条件比较复杂,将已知条件变形得出所求式子的结构求值即可.【详解】∵+=,∴2+=∴2=−∴4++1=−2++1=∵>0,∴2+4++1=−++3=2.【点睛】本题考查了二次根式的化简求值,式子较复杂需要先化简条件.【题型7与二次根式有关的整体代入求值问题】【例7】(2023春·广东广州·八年级华南师大附中校考阶段练习)若=5+1,=5−1,求下列代数式的值.(1)2+B(2)2−2【答案】(1)85(2)45【分析】(1)先求解+=25,B=5+15−1=5−1=4,再结合因式分解求解代数式的值即可;(2)先求解+=25,−=2,再结合平方差公式进行计算即可.【详解】(1)解:∵=5+1,=5−1,∴+=25,B=5+15−1=5−1=4,∴2+B=B+=4×25=85;(2)∵=5+1,=5−1,∴+=25,−=2,∴2−2=+−=25×2=45.【点睛】本题考查的是求解代数式的值,二次根式的加减运算,二次根式的混合运算,熟记运算法则是解本题的关键.【变式7-1】(2023春·陕西安康·八年级统考期末)已知=3−7,=3+7,求−的值.【答案】−67【分析】先计算出+s−与B的值,再把−变形为【详解】解:∵=3−7,=3+7,∴+=6,−=−27,B=2,∴−=2−2B===−67.【点睛】本题主要考查了分式的化简求值,正确进行变形能简化计算.【变式7-2】(2023春·八年级单元测试)已知a=2+1,求a3-a2-3a+2016的值.【答案】2017【分析】先根据a=2+1,可得:a-1=2,然后利用完全平方公式两边平方可得:(a-1)2=2,继而可得:a2-2a =1,然后整体代入a3-a2-3a+2016=a(a2-2a)+(a2-2a)-a+2016,即可求解.【详解】解:∵a=2+1,∴a-1=2,∴(a-1)2=2,即a2-2a=1,∴原式=a(a2-2a)+(a2-2a)-a+2016=a+1-a+2016=2017.【点睛】本题主要考查代数式化简求值,解决本题的关键是要利用完全平方公式巧变形,再整体代入思想求解.【变式7-3】(2023春·广东珠海·八年级统考期末)已知+1=7,求下列各式的值;(1)2+12;(2)2−12.【答案】(1)5(2)±21【分析】(1)利用完全平方公式可得2+12=(+1)2−2,即可求解;(2)根据完全平方公式可得(−1)2=(+1)2−4,求得−1=3,然后利用平方差公式计算2−12的值.【详解】(1)解:∵+1=7,∴+=2+2+12=7,∴2+12=5;(2)解:由(1)得2+12=5,∴−=2−2+12=5−2=3,∴−1=±3,又∵2−12=+−∴当−1=3时,2−12=7×3=21,当−1=−3时,2−12=7×(−3)=−21.【点睛】本题主要考查二次根式的化简求值及完全平方公式、平方差公式,熟练掌握乘法公式是解题的关键.【题型8二次根式混合运算的实际应用】【例8】(2023春·北京海淀·八年级期末)快递公司为顾客交寄的快递提供纸箱包装服务.现有三款包装纸箱,底面规格如下表:型号长宽小号20cm18cm中号25cm20cm大号30cm25cm已知甲、乙两件礼品底面都是正方形,底面积分别为80cm2,180cm2,若要将它们合在一个包装箱中寄出,底面摆放方式如左上图,从节约枌料的角度考虑,应选择哪种底面型号的纸箱?请说明理由.【答案】应选择中底面型号的纸箱【分析】先求出甲、乙两件礼品的边长之和为105cm,进而估算出20<105<25<30,由此即可得到答案.【详解】解:应选择中型号的纸箱,理由如下:∵甲、乙两件礼品底面都是正方形,底面积分别为80cm2,180cm2,∴甲、乙两件礼品的边长分别为45cm,65cm,∴甲、乙两件礼品的边长之和为45cm+65cm=105cm,∵400<500<625<900,∴20<105<25<30,∴只有中型号和大型号两个型号可供选择,∵25×20<30×25,∴从节约枌料的角度考虑,应选择中底面型号的纸箱.【点睛】本题主要考查了二次根式的应用,正确估算出甲、乙两件礼品的边长之和的范围是解题的关键.【变式8-1】(2023春·广东汕头·八年级校联考期末)甲容器中装有浓度为a的果汁40kg,乙容器中装有浓度为b的果汁90kg,两个容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m的值为.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后=90m即可.【详解】解:根据题意,甲容器中纯果汁含量为40akg,乙容器中纯果汁含量为90bkg,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,40=整理得,610a-610b=5ma-5mb,∴610(a-b)=5m(a-b),∴m【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.【变式8-2】(2023春·山东滨州·八年级统考期中)(1)用“=”、“>”、“<”填空:4+324×3,1+165+525×5.(2)由(1)中各式猜想+与2B(≥0,≥0)的大小关系,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为2002的花圃,所用的篱笆至少是多少米?【答案】(1)>,>,=;(2)+≥2B(≥0,≥0);(3)40米【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想+≥2B;比较大小,可以作差,根据完全平方公式进行计算,问题得证;(3)设花圃的长为a米,宽为b米,需要篱笆的长度为(a+2b)米,利用第(2)问的公式即可求得最小值.【详解】解:(1)∵4+3=7,24×3=43∴72=49,(43)2=48∵49>48∴4+3>24×3∵1+16=7=<1∴1+16>×6∵5+5=10,25×5=10,∴5+5=25×5故答案为:>,>,=.(2)+≥2B理由如下:当m≥0,n≥0时,∵(−p2≥0∴(p2−2⋅+(p2≥0∴−2B+≥0∴+≥2B(3)设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:+2≥2⋅2=22B=22×200=40.∴篱笆至少需要40米.故答案为:40.【点睛】本题主要考查了二次根式的计算,体现了由特殊到一般的思想方法,解题的关键是联想到完全平方公式,利用平方的非负性求证.【变式8-3】(2023春·江苏·八年级专题练习)甲容器中装有浓度为a的果汁40kg,乙容器中装有浓度为b 的果汁90kg,两个容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m的值为.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利用混合后=90m即可.【详解】解:根据题意,甲容器中纯果汁含量为40akg,乙容器中纯果汁含量为90bkg,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,40=整理得,610a-610b=5ma-5mb,∴610(a-b)=5m(a-b),∴m【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.【题型9二次根式的新定义类问题】【例9】(2023春·贵州黔西·八年级校考阶段练习)我们规定用,表示数对,给出如下定义:记==(0,>0,与,称为数对,的一对“对称数对”.例如:4,1的一对“对称数对”1与1(1)数对25,4的一对“对称数对”是______和______;(2)若数对3,的一对“对称数对”的两个数对相同,求的值;(3)若数对,2的一对“对称数对”的其中一个数对是2,1,求的值.【答案】(1)(15,2)和(2,15)(2)=13(3)=1=即可;【分析】(1)根据题意将a=25,b=4代入=(2)(3,y))的一对“对称数对”(3)将数对,2的一对“对称数对”=1,解出x即可.=15,4=2,【详解】(1∴数对25,4的一对“对称数对”是(15,2)和(2,15).故答案为:(15,2)和(2,15);(2)∵数对3,的一对“对称数对”的两个数对相同,=,解得:=1;=(3∴数对,2的“对称数对”分别为,2)和(2,.∵数对,2的一对“对称数对”的其中一个数对是2,1,=1,解得:=1.【点睛】本题考查新定义题型,严格按照新定义要求,结合学过的相关知识根据题意列方程求解是解决问题的关键.【变式9-1】(2023春·全国·八年级专题练习)定义:若两个二次根式a,b满足⋅=,且c是有理数,则称a与b是关于c的共轭二次根式.(1)若a与2是关于4的共轭二次根式,求a的值;(2)若2+3与4+3是关于2的共轭二次根式,求m的值.【答案】(1)22(2)-2【分析】(1)根据共轭二次根式的定义建立等式,即可得到答案;(2)根据共轭二次根式的定义建立等式,即可得到答案.【详解】(1)∵a与2是关于4的共轭二次根式,∴2=4.=22.∴=(2)∵2+3与4+3是关于2的共轭二次根式,∴2+3⋅4+3=2.==4−23.∴4+3=∴=−2.【点睛】此题主要考查了新定义共轭二次根式的理解和应用,并会利用二次根式的性质进行计算.【变式9-2】(2023春·重庆涪陵·八年级统考期末)对于任意实数m,n,若定义新运算⊗=−≥,+<,给出三个说法:①18⊗2=22;②11⊗2+12⊗3+13⊗4+⋅⋅⋅+199⊗100=100⊗1;③⊗⋅⊗=−.以上说法中正确的个数是()A.0个B.1个C.2个D.3个【答案】D【分析】利用新定义进行计算逐一判断即可.【详解】解:∵18>2,∴18⊗2=18−2=32−2=22,所以①正确;11⊗212⊗313⊗4199⊗100=1+23+4+⋯+=2−1+3−2+⋯+100−99=100−1=100⊗1所以②正确;当≥时,⊗⋅⊗=−+=−=−,当<时,⊗⋅⊗=+−=−=−,所以③正确;故正确的为①②③,有3个,故选D.【点睛】本题考查新定义,二次根式的混合运算,掌握新定义的运算法则是解题的关键.【变式9-3】(2023春·北京·八年级校考阶段练习)材料一:平方运算和开方运算是互逆运算.如a2±2ab+b2=(a±b)2,那么2±2B+2=|±U.如何将双重二次根式5±26化简?我们可以把5±26转化为(3)2±26+(2)2=(3±2)2完全平方的形式,因此双重二次根式5±26=(3±2)2=3±2得以化简.材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y')给出如下定义:若′={o>0)−o<0),则称点Q为点P的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).请选择合适的材料解决下面的问题:(1)点(2,−3)的“横负纵变点”为______,点(−33,−2)的“横负纵变点”为______;(2)化简:7+210;(3)已知a为常数(1≤a≤2),点M(−2,m)且=(+2−1+−2−1),点′是点M的“横负纵变点”,求点′'的坐标.【答案】(1)(2,−3);(−33,2)(2)5+2(3)(﹣2,﹣2)【分析】(1)根据“横负纵变点”的定义,′={o>0)−o<0),即可;(2)根据材料一,双重二次根式的化简,将7+210化为(5)2+210+(2)2,再根据2±2B+2=(±p2,即可化简;(3)根据1≤≤2,得−1−1≤0;将=2(+2−1+−2−1)化简得=((−1+1)2+(−1−1)2;根据2±2B+2=|±U,得=(|−1+1|+|−1−1|,求出的值,求出的坐标,根据横负纵变点”的定义,′={o>0)−o<0),即可求出′的坐标.【详解】(1)∵2>0∴点(2,−3)的“横负纵变点”为(2,−3)∵−33<0∴点(−33,−2)的“横负纵变点”为(−33,2)故答案为:(2,−3);(−33,2).(2)7+210=(5)2+210+(2)2=(5+2)2=5+2∴7+210化简得:5+2.(3)∵1≤≤2∴0≤−1≤2−1∴0≤−1≤1∴0≤−1≤1∴−1−1≤0∵=2(+2−1+−2−1)=((−1)2+2−1×1+12+(−1)2−2−1×1+12)((−1+1)2+(−1−1)2==(|−1+1|+|−1−1|)∴=∴=∴点(−2,2)∵−2<0∴′(−2,−2)故′的坐标为:(−2,−2).【点睛】本题考查了二次根式的加减,新定义等知识,解题的关键是理解新定义公式,化简最简二次根式.【题型10二次根式的阅读理解类问题】【例10】(2023春·江苏·八年级期末)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=1+22.善于思考的小明进行了以下探索:设+2=+22(其中a、b、m、n均为整数),则有+2=2+22+2B2.∴=2+22,=2B.这样小明就找到了一种把类似+2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若+3=+32,用含m、n的式子分别表示a、b,得:=,=;(2)利用所探索的结论,请找一组正整数a、b、m、n填空:=+32;(3)若−65=−52且a、m、n均为正整数,求a的值.【答案】(1)2+32,2B(2)13,4,1,2(3)14或46【分析】(1)根据上面的例子,将+32,按完全平方展开,可得出答案;(2)由(1)可写出一组答案,不唯一;(3)将−52展开得出2−25B+52,由题意得B=3,2+52=,再由a、m、n均为正整数,可得出答案.【详解】(1)解:∵+3=+32,∴+3=2+32+2B3,∴=2+32,=2B;故答案为:2+32,2B.(2)由(1)可得=13,=4,=1,=2;故答案为:13,4,1,2.(3)∵−65=−52,∴+5=2+52+2B5,∴B=3,2+52=,∵a、m、n均为正整数,∴=3,=1,=14或=1,=3,=46;故答案为:14或46.【点睛】本题考查了二次根式的混合运算,完全平方公式,分析所给的材料进行解答是解题的关键.==3−23−2=【变式10-1】(2023春·江西赣州·八年级统考期中)3−2,像上述解题过程中,3+2与3−2相乘的积不含二次根式,我们可以将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化.解答下面的问题:(1)=___________;若n=___________.(2)×2022+1;(3)3+15+3+⋅⋅⋅+2022×2024+1.【答案】(1)2−1;4−3(或2−3);+1−(2)2021(3)2023【分析】(1)分子分母同时乘以有理化因式,再化简整理即可;(2)将括号内每一项都进行分母有理化,再相消,整理之后利用平方差公式求解即可;(3)先进行分母有理化,然后再进行计算即可解答.===2−1=2−1;【详解】(1=43(或2−3);+1−;(22+1+3+2…+2022+20212022+1=2−1+3−2+…+2022−20212022+1=2022−12022+1=2022−1=202120241(3=331+35−3+⋅⋅⋅+2024×2024+1 =3−1+5−3+⋅⋅⋅+2024−20222024+1=2024−12024+1=2023.【点睛】本题主要考查分母有理化,二次根式混合运算,解题的关键是理解材料中分母有理化的方法并应用方法解决问题.【变式10-2】(2023春·八年级单元测试)阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用.其实,有一个类似的方法叫做“分子有理化”,与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式,比如:7−6==分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较7−6和6−5的大小.可以先将它们分子有理化如下:7−6=7+66−5=6+5因为7+6>6+5,所以7−6<6−5.再例如:求=+2−−2的最大值.做法如下:解:由+2≥0,−2≥0可知≥2,而=+2−−2=当=2时,分母+2+−2有最小值2,所以y的最大值是2.解决下述问题:(1)比较32−4和23−10的大小;(2)求=1−+1+−的最大值和最小值.【答案】(1)32−4<23−10;(2)的最大值为2,最小值为2−1.【分析】(1)利用分子有理化得到32−4=23−10=然后比较32+4和23+10的大小即可得到32−4与23−10的大小;(2)利用二次根式有意义的条件得到0⩽N1,而=1−=01+r1,1−有最大值1得到所以的最大值;利用当=1有最小值2−1,1−有最小值0得到的最小值.【详解】解:(1)32−4==23−10=3+10=而32>23,4>10,∴32+4>23+10,∴32−4<23−10;(2)由1−O0,1+O0,O0得0⩽N1,=1−+1+−J1−+∴当=0时,1++有最小值,则1,此时1−有最大值1,所以的最大值为2;当=1时,1++有最大值,有最小值2−1,此时1−有最小值0,所以的最小值为2−1.【点睛】本题考查了非常重要的一种数学思想:类比思想.解决本题关键是要读懂例题,然后根据例题提供的知识点和方法解决问题.同时要注意所解决的问题在方法上类似,但在细节上有所区别.【变式10-3】(2023春·广东惠州·八年级阶段练习)阅读材料:①我们知道:式子+1的几何意义是数轴上表示有理数x的点与表示有理数−1的点之间的距离,且+1=(+1)2;②把根式±2进行化简,若能找到两个数m、n,是2+2=且B=,则把x±2变成2+2±2B=±2开方,从而使得±2化简.如:3+22=1+22+2=12+2×1×2+22=1+22=1+=1+2;(1)化简:5+26.(2)5+26+7+212+9+45(3)直接写出代数式2+2+5+2−22+130的最小值为.【答案】(1)2+3(2)5−1(3)5【分析】(1)先将根号下的数变形为完全平方公式格式,再化简即可;(2)先将各个分母化为完全平方公式格式,再分母有理化,最后合并即可得出答案;(3)先根据完全平方公式化简,再根据非负数的性质得出+12+4≥4,−112+9≥9,即可求出最小值.【详解】(1)5+26=2+26+3=22+2×2×3+32=2+32=2+3=23(2===2+1=2−1+3−2+4−3+5−4 =5−1(3)2+2+5+2−22+130=2+2+1+4+2−22+121+9=+12+4+−112+9。
二次根式的加减(计算题:一般)1、计算(1)(2)(3)(4)(5)(6)2、计算(1) (2)(3)3、(1)× (2)4、(1)(-)(2)| | + || +5、计算:.6、先化简,再求值:(),其中x=﹣2.7、观察下面计算:①②;③④.求:(1)直接写出(n为正整数)的值;(2)利用上面所揭示的规律计算:.8、已知x= (+),y= (-),求下列各式的值:(1)x2-xy+y2;(2)+.9、(1)(2)(3)(4)÷10、化简:(1) (2)11、计算:.12、计算:(1)(2).13、14、先化简,再求值:,其中,.15、16、计算: +(﹣1)+()0.17、计算:.18、化简:(4﹣6)÷﹣(+)(﹣)19、计算﹣(﹣2)0﹣|﹣|+2﹣1.20、已知x=3+2,y=3﹣2,求下列各式的值:(1)x2y+xy2;(2).21、计算:.22、计算:.23、计算:(1);(2);(3).24、先化简,后计算:,其中,.25、(1)计算:(2)先化简,再求值:,其中.26、阅读下面计算过程:试求:(1)=__________;(2)(为正整数)=_______________;(3)的值.27、计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.28、计算:()﹣2﹣()0+2sin30°+|﹣3|.29、计算:()﹣1+16÷(﹣2)3+(2016﹣)0﹣tan60°.30、计算:31、计算:32、计算题(1)(2)(3)2022+202×196+982(4)33、计算(1)(2)34、计算(1)+(﹣1)2016﹣(2)(a4)3•(a2)3÷(a4)2(3)(2x2y﹣x3y2﹣xy3)÷(﹣xy)(4)9(x+2)(x﹣2)﹣(3x﹣1)2(5)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x.35、计算:.36、计算:37、计算:38、计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.39、(2016•海南模拟)计算:(1)9×+﹣;(2).40、计算:(1﹣)0+(﹣1)2016﹣tan30°+()﹣2.41、计算:(﹣3)2+()0﹣+2﹣1+•tan30°.42、计算:|﹣|﹣2cos45°+(2016﹣π)0﹣.43、计算:.44、计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|45、计算:|﹣2|+(π﹣1)0×(﹣1)2012+()﹣3.46、计算:47、计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.48、计算:.49、计算(1)(2)50、计算:﹣12+(﹣2)3×﹣×|﹣|+2÷()2.51、(1)计算:(2)化简:.52、求下列各式的值:(1) (2)-+53、计算:54、计算(1)(2)(-3a3)2·a3+(-a)2·a7-(5a3)3(3)(3x+2)2-(3x-2)2+(3x+2)(3x-2)55、计算:56、阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得= = = ;②参照(四)式得= = = ;(2)化简:.57、计算①+3—5②58、(1)计算:+-;(2)化简:59、60、61、计算:(π﹣3)0+|﹣2|﹣÷+(﹣1)﹣1.62、计算:3+(﹣2)3﹣(π﹣3)0.63、(1)计算:()﹣1﹣﹣()0+|﹣1|(2)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.64、(1)计算:;(2)化简:2a(2a﹣3b)﹣(2a﹣3b)2.65、计算(1)(2)66、计算:(1);(2)。
21.3 二次根式的加减一1.若aa=_______,b=_______. 2_________.3.4________.5.在实数范围内分解因式:a 2-4=_________. 6_________. 7.下列根式中与其他三个不同类的是( )AB8.下列各组二次根式中,可以进行加减合并的一组是()A.189.下列根式合并过程正确的是( )A .-=2 B .C .1212.13141121013)A..11.若,则y 值为( )A.1 C ..312.一个等腰三角形的两边分别为)A ..C ..或13.计算:(1)(2)(3(4)1415的整数部分是a ,小数部分是b ,计算+b 的值为________.16.如图所示,数轴上表示1A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )A -1 B.. D17.已知,,则代数式a 2-b 2-c 2-2bc 的值是( ) A .正数B .负数C .零D .无法确定18.已知2(a 2+b 2+c 2-ab-bc-ac )的值.二次根式的加减二1.)2. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式D. 同类二次根式是根指数为2的根式 3. )C.4. 下列根式中,是最简二次根式的是( )5. 若12x)A. 21x -B. 21x -+C. 3D. -36.10=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4±7.x ,小数部分为yy -的值是( )A. 38. 下列式子中正确的是( )=a b =-C. (a b =-2==9.是同类二次根式的是 。
10.若最简二次根式____,____a b ==。
11.,则它的周长是 cm 。
12.______a =。
13.已知x y ==33_________x y xy +=。
14.已知x =21________x x -+=。
二次根式加减运算(习题)复习巩固1.下列属于同类二次根式的是()A .4和8B .3和13C .20和40D .23和492.(1)若最简二次根式21x -与3是同类二次根式,则x =_________;(2)若8与最简二次根式1a +的和是一个二次根式,则a 的值为__________.3.下列运算错误的是()A .235+=B .236⋅=C .2222÷=D .2(2)2-= 4.计算:(1)12933--+;(2)118522-+;解:原式=解:原式=(3)1520255+-;(4)246123-+.解:原式=解:原式=5.计算:(1)1124628⎛⎫⎛⎫+-+⎪ ⎪⎪ ⎪⎝⎭⎝⎭;(2)11233⎛⎫-⨯⎪⎪⎝⎭;解:原式=解:原式=(3)12035105⎛⎫+-⨯⎪⎝⎭;(4)(4236)22-÷;解:原式=解:原式=(5)1 10486412327⎛⎫-+⎪⎪⎝⎭÷;解:原式=(6)(35)(52)+-;(7)(32)(32)+-;解:原式=解:原式=(8)2(52)+;(9)22(72)(72)--+;解:原式=解:原式=(10)21(26)(26)(3)3-+----;解:原式=(11)(532)(532)-++-;解:原式=(12)21(52)51025--÷+.解:原式=6.如图,在数轴上A ,B 两点表示的数分别是2-,3,若点C 与点B 关于点A 对称,则点C 表示的数是_________.7.如图,在数轴上,点B 与点C 到点A 的距离相等,A ,B 两点所对应的实数分别是1和3-,则点C 对应的实数是_________.【参考答案】 复习巩固1.B 2.(1)2;(2)13.A 4.(1)33-(2)322(3)5(4)322 5.(1)264+(2)5(3)42-(4)3322-(5)1423(6)51-(7)1(8)7210+(9)414-(10)103-(11)26(12)44595-6.223--7.23+。
2022-2023学年华东师大版九年级数学上册《21.3二次根式的加减》同步练习题(附答案)一.选择题1.在、、中与能合并的二次根式的个数是()A.0B.1C.2D.32.下列运算正确的是()A.﹣=B.=2C.﹣=D.=2﹣3.计算×﹣的结果是()A.7B.6C.7D.24.若的整数部分为x,小数部分为y,则(2x+)y的值是()A.B.3C.D.﹣35.如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2B.cm2C.cm2D.cm2二.填空题6.计算:()0=.7.已知x、y满足方程组,则3x﹣y的值为.8.如果最简二次根式与能合并,那么a=.9.计算=.10.(+)2021×(﹣)2022=.11.当x=1+时,代数式x2﹣2x+2021=.12.已知三角形底边的边长是cm,面积是cm2,则此边的高线长cm.三.解答题13.计算:.14.化简15.计算:(3﹣)÷+(1﹣).16.已知a=+1,b=﹣1,计算:(1)2a+2b(2)a2+b217.已知,(1)求a+b,a﹣b的值(2)求代数式的值.18.化简:(4﹣6)÷﹣(+)(﹣)19.细心观察图形,认真分析各式,然后解答问题:OA1=1;OA2==;S1=×1×1=;OA3==;S2=××1=;OA4==;S3=××1=;(1)推算出OA10=.(2)若一个三角形的面积是.则它是第个三角形.(3)用含n(n是正整数)的等式表示上述面积变化规律;(4)求出S12+S22+S23+…+S2100的值.20.设一个三角形的三边长分别为a,b,c,p=(a+b+c),则有下列面积公式:S=(海伦公式),S=(秦九韶公式).请选择合适的公式求下列三角形的面积:(1)三角形的三边长依次为a=5,b=6,c=7.(2)三角形的三边长依次为a=,b=,c=.参考答案一.选择题1.解:=3、=、=,∴与能合并有和,共2个.故选:C.2.解:A、与不是同类项,不能合并,故本选项错误;B、=,故本选项错误;C、﹣=2﹣=,故本选项正确;D、=﹣2,故本选项错误.故选:C.3.解:原式=×﹣=××﹣=7﹣=6.故选:B.4.解:∵3<<4,∴的整数部分x=2,则小数部分是:6﹣﹣2=4﹣,则(2x+)y=(4+)(4﹣)=16﹣13=3.故选:B.5.解:从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,大正方形的边长是+=(+4)cm,留下部分(即阴影部分)的面积是(+4)2﹣30﹣48=8=24(cm2).故选:D.二.填空题6.解:原式=3﹣﹣+1=+1.7.解:,①+②得:3x﹣y=4,故答案为:4.8.解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.9.解:原式==3.10.解:原式=[(+)×(﹣)]2021×(﹣)=(﹣1)2021×(﹣)=﹣1×(﹣)=﹣,故答案为:﹣.11.解:∵x=1+时,∴x﹣1=,∴(x﹣1)2=3,∴x2﹣2x+1=3,∴x2﹣2x=2,∴原式=2+2021=2023,故答案为:2023.12.解:设三角形此边上的高为x厘米,由题意,得×x=,解得x=2.故答案为:2.三.解答题13.解:原式=﹣3+2+2=3﹣.14.解:原式=4+﹣12﹣=﹣8.15.解:原式=3﹣+﹣6=﹣3.16.解:(1)当a=+1,b=﹣1时,原式=2(a+b)=2×(+1+﹣1)=2×2=4;(2)当a=+1,b=﹣1时,原式=(+1)2+(﹣1)2=3+2+3﹣2=6.17.解:(1)∵a=2+,b=2﹣,∴a+b=(2+)+(2﹣)=4,a﹣b=(2+)﹣(2﹣)=2;(2)(1﹣)÷()=.,=a﹣b,由(1)的结论得:原式=2.18.解:原式=(4﹣2)÷﹣(5﹣3)=2÷﹣2=2﹣2=0.19.解:(1))∵OA n2=n,∴OA10=.故答案为:;(2)若一个三角形的面积是,∵S n==,∴=2=,∴它是第20个三角形.故答案为:20;(3)结合已知数据,可得:OA n2=n;S n=;(4)S12+S22+S23+…+S2100=++++…+==20.解:(1)∵,由海伦公式得:===;(2)设,,,代入秦九韶公式,得:====;。
初中数学二次根式的加减乘除混合运算练习题一、单选题1.下列计算或运算中, 正确的是( )A.===-= 2.下列计算正确的是( )A ==4= D =3. )A .2-B .2±C .2D .4 4.下列是最简二次根式( )A C 5.下列说法中,正确的是( )A 3=±B .64的立方根是4±C .6D .25的算术平方根是5 6.下列运算正确的是( )A 2=-B .26=C =D =7.下列二次根式中,x 的取值范围是3x ≥的是( )AB C D 8.下列计算中,正确的是( )4±B.9.3的平方根是( )A.9 C. D.10. )A.3和4之间B.4和5之间C.5和6之间D.6和7之间二、计算题11.计算下列各式的值.1.35(5)()7-÷---三、填空题12.已知,x y 10y +=,则y x += .13.计算= .14.= . 15.如果一个正方形的面积是3,那么它的边长是 .参考答案1.答案:B解析:A.22=⨯=;==C.÷=D.-=故选B. 2.答案:A解析:3.答案:C解析:2==.故选:C .4.答案:C=2=; C 5.答案:D解析:解:A 3=,此选项错误;B .64的立方根是4,此选项错误;C.6的平方根是,此选项错误;D.25的算术平方根是5,此选项正确;故选:D.6.答案:D解析:2=,故本选项错误;B:212=,故本选项错误;CD:根据二次根式乘法运算的法则知本选项正确.故选:D.7.答案:C解析:8.答案:D9.答案:D解析:3的平方根是10.答案:B解析:5==,又,4和5之间,选B.11.答案:1.原式5125()71687=-⨯--=.2.原式=311722 -=-.3.原式=57 12944 -+=-4.原式=1156110 56⨯-⨯=-=.解析:12.答案:1解析:由题意得,2010xy-=⎧⎨+=⎩,解得21xy=⎧⎨=-⎩,则121y x+=-+=13.答案:2====.解析:解:原式2故答案为:214.答案:2===解析:原式2故答案为215.解析:。
21.3 二次根式的加减
1.若a a=_______,b=_______.
2_________.
3.
4,则它的周长是________.
5.在实数范围内分解因式:a 2-4=_________.
6大小关系是_________.
7.下列根式中与其他三个不同类的是( )
A B D 8.下列各组二次根式中,可以进行加减合并的一组是( )
A B .18
9.下列根式合并过程正确的是( )
A .-=2
B .
C .1212.1314=112
1013 )
A ..
11.若,则y 值为( )
A .1 C ..3
12.一个等腰三角形的两边分别为,则这个三角形的周长为( )
A .
B .
C .
D .或 13.计算:
(1)(2)
(3(4)14
14.如果△ABC 的三边,P .
15的整数部分是a ,小数部分是b ,计算+b 的值为________.
16.如图所示,数轴上表示1的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数
是( )
A -1
B .
C .
D -2
17.已知,,则代数式a 2-b 2-c 2-2bc 的值是( )
A .正数
B .负数
C .零
D .无法确定
18.已知2(a 2+b 2+c 2-ab-bc-ac )的值.
19 1.414 1.7320.01).
答案:
1.1 1 2 3..
5.(a 2+2)()() 6
7.C 8.C 9.D 10.C 11.•D 12.D
13.(1)(2)(3)194-13,(4
14. 15..C 17.B 18.•30 •
19.4394≈5.49
20.解:∵S AE ⊥BC ,
∴×AE=52
, ∵∠B=30°,∴AB=2AE=•5,•
∴
ABCD 周长C=AB+BC+CD+DA=2AB+2BC=2×5+2×,
∴
所求ABCD 周长C 的值为。