第10章第二节无穷级数的性质与敛散性 优质课件
- 格式:ppt
- 大小:410.51 KB
- 文档页数:10
第十章 无穷级数一、概念 1.定义无穷数列}{n u 中:∑∞==++++121......n nn uu u u无穷数列}{n u 的各项之和∑∞=1n nu叫无穷级数,简称级数。
n u 叫∑∞=1n nu的一般项(通项);......21++++n u u u 为展开式。
【例】 ①∑∞=++++⨯+⨯=+1...)1(1...321211)1(1n n n n n ②...ln ...3ln 2ln 1ln ln 1+++++=∑∞=n n n③ (323)21++++=∑∞=nn nne e e e ne④......32321++++=∑∞=n x x x x nx nn n 2.级数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧=∑∞=),1x u u u n n n n (其中函数项级数:(数项级数)是具体数字常数项级数:每一项都①两个特殊的数项级数⎪⎪⎩⎪⎪⎨⎧≥⋅-≥∑∑∞=∞=0,1011n n n n n n n u u u u )(交错级数:中,正项级数:②一个特殊的函数项级数∑∞=1)(n nx u中,nn n x a x u ⋅=)((常数乘以x 的幂级数),即∑∞=1n nn xa 称为幂级数。
3.级数∑∞=1n nu的收敛与发散前n 项和n n u u u S +++= (21)数列}{n S 叫∑∞=1n nu的部分和数列。
敛散性:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=→∑∑∑∑∞=→∞∞=∞=∞=→∞→∞发散不存在,则若分和数列的极限)要求级数的和,即求部的和,记为叫收敛,则存在(若1111lim ()lim lim n n n n n n n n n n n n n n u S Su u S u S S S 【例】①∑∞=+1)1(1n n n 111)111(...)3121()211()1(1...321211+-=+-++-+-=+++⨯+⨯=n n n n n S n 1lim =∞→n n S ,∑∞=+∴1)1(1n n n 收敛②∑∞=1ln n n!ln ln ...2ln 1ln n n S n =+++=+∞=∞→n n S lim ,∑∞=∴1ln n n 发散4.几何级数与-p 级数 (1)∑∞=-11n n aq几何级数,首项a ,公比qqq a aq aq a S n n n --=++=-1)1( (1)∞→n 时:⎪⎪⎪⎪⎨⎧∞→⎩⎨⎧=⋅-+-+-=-=∞→∞→===-不存在时时n n n n S n a a a a a S q S n na S q q 0)1(...,1,,11||1Ⅰ:1||<q ,0lim =∞→nn q ,qaS n n -=∞→1limⅡ:1||>q ,∞=∞→nn q lim ,∞=∞→n n S limⅢ:【例】①111)21(2121-∞=∞=⋅=∑∑n n n n 收敛nn n n S 211211)211(2121...21212-=--=+++= ∴1lim =∞→n n S②1111)35(3135-∞=∞=-⋅=∑∑n n n n n ,135>=q 发散(2)-p 级数⇒≤⇒>发散收敛11p p ∑∞=131n n收敛∑∑∞=∞==121111n n n n 发散调和级数 (31)21111+++=∑∞=n n发散二、级数的性质 1.∑∞=1n nu与∑∞=1n nku具有相同敛散性(0≠k )【例】∑∞=14n n 发散,∑∞=-125n n收敛2.在∑∞=1n nu中增加、减少、改变有限项不改变敛散性。