充分讨论模型-整数规划问题.
- 格式:ppt
- 大小:118.00 KB
- 文档页数:19
整数规划的数学模型及解的特点整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。
例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。
松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。
若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。
一、整数线性规划数学模型的一般形式∑==nj jj x c Z 1min)max(或中部分或全部取整数n j nj i jij x x x mj ni x b xa ts ,...,,...2,1,...,2,10),(.211==≥=≥≤∑=整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。
有时,也称为全整数规划。
2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。
3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。
1 解整数规划问题0—1型整数规划0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z变量xi 称为0—1变量,或称为二进制变量。
0—1型整数规划中0—1变量作为逻辑变量(logical variable),常被用来表示系统是否处于某一特定状态,或者决策时是否取某个方案。
运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。
整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。
整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。
整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。
整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。
由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。
求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。
分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。
分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。
割平面法是一种通过添加新的约束条件来减少解空间的方法。
它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。
割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。
启发式算法是一种基于经验和启发式搜索的方法。
它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。
常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。
启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。
综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。
整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。
常用的求解方法包括分支定界法、割平面法和启发式算法等。
这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。
整数规划模型整数规划模型是一种数学模型,用于解决优化问题。
在整数规划中,决策变量必须是整数。
这种模型广泛应用于工程、科学、运筹学和管理等领域。
整数规划模型的一般形式如下:\[\text{maximize} \quad c^Tx\]\[\text{subject to} \quad Ax \leq b\]\[x_j \text{整数} , j = 1,2,...,n\]其中,c是一个n维向量,表示目标函数的系数;x是n维向量,表示决策变量;A是m×n维矩阵,表示约束条件的系数矩阵;b是一个m维向量,表示约束条件的上界。
整数规划模型的目标是找到一个满足约束条件的决策变量向量x,使得目标函数值最大或最小。
由于决策变量必须是整数,所以整数规划模型要比普通的线性规划模型更复杂。
整数规划模型可以应用于许多实际问题。
例如,一个公司要决定生产哪种产品以最大化利润,但每种产品有一定的生产限制,需要整数规划模型来确定生产量;一个配送中心要决定如何分配物流资源以最小化成本,但每个分配决策都必须是整数,需要整数规划模型来求解。
求解整数规划模型可以使用多种算法。
例如,分支定界算法通过将问题分解为一个个子问题,并通过剪枝策略来减少搜索空间,最终找到最优解;约简与延迟约束算法通过线性松弛将整数规划转化为一个松弛线性规划问题,并通过迭代加入约束条件来逼近整数解。
整数规划模型的求解过程需要注意一些问题。
首先,由于整数规划是一个NP难问题,没有通用的多项式时间算法可以解决所有情况。
其次,整数规划模型可能有多个最优解,求解算法可能只能找到其中一个最优解。
最后,整数规划模型的求解过程可能需要大量的计算资源和时间。
总之,整数规划模型是一种重要的数学模型,可以用于解决各种实际优化问题。
但由于其复杂性和求解困难,需要合理选择算法和求解策略来获得满意的结果。
XX大学毕业论文数学建模中的整数规划问题研究院系名称:专业:学生姓名:学号:指导老师:XX大学制二〇一年月日1.引言应用数学学科的一项重要任务是从自然科学、社会科学、工程技术以及现代化管理中提出问题和解决问题。
这就要求我们学会如何将实际问题经过分析、简化,转化为一个数学问题,然后用适当的数学方法解决,即建立数学模型。
随着科学技术的发展,特别是计算机技术的发展,数学的应用领域已由传统的物理领域迅速的扩展到非物理领域。
数学在发展高科技、提高生产力水平和实现现代化管理等方面的作用越来越明显。
正是这样的背景下,数学模型这个词汇越来越多的出现在现代化生产、工作和社会生活中。
数学模型的分类方法有很多种,例如按照建模所用的数学方法的不同,可分为:初等模型、运筹学模型、微分方程模型、概率统计模型、控制论模型等。
而运筹学模型中的规划模型又可分为非线性规划模型和线性规划模型,本文通过实例剖析线性规划中整数规划方法在数学模型种的应用2.主要结果2.1数学建模中的整数规划问题在研究线性规划的问题中,一般问题的最优解都是非整数,即为分数或小数,但对于实际中的具体问题的解常常要求必须取整数.例如问题的解表示是人数、机器设备的台数、机械车辆数等都是整数.为了求整数解,我们设想把所求得的非整数解采用“舍人取整”的方法处理,似乎是变成了整数解,但事实上这样得到的结果未必可行.因为取整以后就不一定是原问题的可行解了,或者虽然是可行解,但也不一定是最优解.因此,对于要求最优整数解的问题,需要寻求直接的求解方法,这就是整数规划方法.2.2整数规划的基本概念]1[整数规划的一般模型为:()()()⎪⎩⎪⎨⎧=≥=≥=≤=∑∑==,,,2,1,0,,,2,1),(..,minmax11njxxmibxat sxcjjnjijijnjjjz为整数(2.1)整数规划求解方法总的基本思想是:松弛问题(2.1)中的约束条件(譬如去掉整数约束条件),使构成易于求解的新问题——松弛问题(A),如果这个问题(A)的最优解是元问题(2.1)的可行解,则就是原问题(2.1)的最优解;否则,在保证不改变松弛问题(A)的可行性的条件下,修正松弛问题(A)的可行域(增加新的约束),变成新的问题(B),再求问题(B)的解,重复这一过程直到修正问题的最优解在原问题(2.1)的可行域内为止,即得到了原问题的最优解.2.3整数规划的解法2.3.1整数规划的分枝定界法分枝定界法的基本思想:将原问题(2.1)中的整数约束去掉变为问题(A),求出问题(A)的最优解,如果它不是原问题的可行解,则通过附加线性不等式约束,将问题(A)分枝变为若干子问题(iB)(i=1,2,…,I),即对每一个非整数变量附加两个互相排斥(不交叉)的整型约束,即可得到两个子问题,继续求解定界,重复这一过程,知道得到最优解为止。