初中数学中考完整题库
- 格式:docx
- 大小:118.17 KB
- 文档页数:6
中考数学题库(含答案和解析)一、选择题(本题共有10小题.每题3分.共30分)1.(3分)﹣2的绝对值等于()A.2 B.﹣2 C.D.±22.(3分)计算2a﹣a.正确的结果是()A.﹣2a3B.1 C.2 D.a3.(3分)要使分式有意义.x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 4.(3分)数据5.7.8.8.9的众数是()A.5 B.7 C.8 D.9、5.(3分)如图.在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.则CD的长是()A.20 B.10 C.5 D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图.则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中.三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm.则△ABC的周长为()A.60cm B.45cm C.30cm D.cm 9.(3分)如图.△ABC是⊙O的内接三角形.AC是⊙O的直径.∠C =50°.∠ABC的平分线BD交⊙O于点D.则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图.已知点A(4.0).O为坐标原点.P是线段OA上任意一点(不含端点O.A).过P、O两点的二次函数y1和过P、A 两点的二次函数y2的图象开口均向下.它们的顶点分别为B、C.射线OB与AC相交于点D.当OD=AD=3时.这两个二次函数的最大值之和等于()A.B.C.3 D.4二、填空题(本题共有6小题.每题4分.共24分)11.(4分)当x=1时.代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中.每人各打10发子弹.根据命中环数求得方差分别是=0.6.=0.8.则运动员的成绩比较稳定.14.(4分)如图.在△ABC中.D、E分别是AB、AC上的点.点F在BC的延长线上.DE∥BC.∠A=46°.∠1=52°.则∠2=度.15.(4分)一次函数y=kx+b(k.b为常数.且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图.将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形.这个黑色菱形可分割成n个边长为1的小三角形.若=.则△ABC的边长是.三、解答题(本题共有8小题.共66分)17.(6分)计算:+(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图.已知反比例函数y=(k≠0)的图象经过点(﹣2.8).(1)求这个反比例函数的解析式;(2)若(2.y1).(4.y2)是这个反比例函数图象上的两个点.请比较y1、y2的大小.并说明理由.20.(8分)已知:如图.在▱ABCD中.点F在AB的延长线上.且BF =AB.连接FD.交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3.求AD的长.21.(8分)某市开展了“雷锋精神你我传承.关爱老人从我做起”的主题活动.随机调查了本市部分老人与子女同住情况.根据收集到的数据.绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他A50%B5%根据统计图表中的信息.解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人.请估计该市与子女“同住”的老人总数.22.(10分)已知.如图.在梯形ABCD中.AD∥BC.DA=DC.以点D 为圆心.DA长为半径的⊙D与AB相切于A.与BC交于点F.过点D 作DE⊥BC.垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4.=.求CF的长.23.(10分)为进一步建设秀美、宜居的生态环境.某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.现计划用210000元资金.购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍.恰好用完计划资金.求这三种树各能购买多少棵?(3)若又增加了10120元的购树款.在购买总棵树不变的前提下.求丙种树最多可以购买多少棵?24.(12分)如图1.已知菱形ABCD的边长为2.点A在x轴负半轴上.点B在坐标原点.点D的坐标为(﹣.3).抛物线y=ax2+b (a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2).过点B作BE⊥CD于点E.交抛物线于点F.连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t.使△ADF与△DEF相似?若存在.求出t的值;若不存在.请说明理由;②连接FC.以点F为旋转中心.将△FEC按顺时针方向旋转180°.得△FE′C′.当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时.求t的取值范围.(写出答案即可)参考答案与试题解析一、选择题(本题共有10小题.每题3分.共30分)1.【分析】根据绝对值的性质.当a是正有理数时.a的绝对值是它本身a;即可解答.【解答】解:根据绝对值的性质.|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质.①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.【分析】根据合并同类项的法则:把同类项的系数相加.所得结果作为系数.字母和字母的指数不变.进行运算即可.【解答】解:2a﹣a=a.故选:D.【点评】此题考查了同类项的合并.属于基础题.关键是掌握合并同类项的法则.3.【分析】根据分母不等于0.列式即可得解.【解答】解:根据题意得.x≠0.故选:B.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次.且次数最多. 所以众数是8.故选:C.【点评】本题考查了众数的定义.熟记定义是解题的关键.需要注意.众数有时候可以不止一个.5.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半.即可求出CD的长.【解答】解:∵在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线的性质.在直角三角形中.斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).6.【分析】根据扇形统计图整个圆的面积表示总数(单位1).然后结合图形即可得出唱歌兴趣小组人数所占的百分比.也可求出圆心角的度数.【解答】解:唱歌所占百分数为:1﹣50%﹣30%=20%.唱歌兴趣小组人数的扇形的圆心角度数为:360°×20%=72°.故选:B.【点评】此题考查了扇形统计图.解答本题的关键是熟练扇形统计图的特点.用整个圆的面积表示总数(单位1).用圆的扇形面积表示各部分占总数的百分数.7.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看.所得到的图形.即可得出答案.【解答】解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形.所以这个几何体是长方体;故选:D.【点评】本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看.所得到的图形.8.【分析】根据三角形的中位线平行且等于底边的一半.又相似三角形的周长的比等于相似比.问题可求.【解答】解:∵△ABC三条中位线围成的三角形与△ABC相似. ∴相似比是.∵△ABC中的三条中位线围成的三角形周长是15cm.∴△ABC的周长为30cm.故选:C.【点评】本题主要考查三角形的中位线定理.要熟记相似三角形的周长比、高、中线的比等于相似比.面积比等于相似比的平方.9.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数.进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径.∴∠ABC=90°.∵∠C=50°.∴∠BAC=40°.∵∠ABC的平分线BD交⊙O于点D.∴∠ABD=∠DBC=45°.∴∠CAD=∠DBC=45°.∴∠BAD=∠BAC+∠CAD=40°+45°=85°.故选:B.【点评】本题考查的是圆周角定理.即在同圆或等圆中.同弧或等弧所对的圆周角相等.直径所对的圆周角是直角.10.【分析】过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M.则BF+CM是这两个二次函数的最大值之和.BF∥DE∥CM.求出AE=OE=2.DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.推出△OBF∽△ODE.△ACM∽△ADE.得出=.=.代入求出BF和CM.相加即可求出答案.【解答】解:过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M. ∵BF⊥OA.DE⊥OA.CM⊥OA.∴BF∥DE∥CM.∵OD=AD=3.DE⊥OA.∴OE=EA=OA=2.由勾股定理得:DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.∵BF∥DE∥CM.∴△OBF∽△ODE.△ACM∽△ADE.∴=.=.∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x.即=.=.解得:BF=x.CM=﹣x.∴BF+CM=.故选:A.【点评】本题考查了二次函数的最值.勾股定理.等腰三角形性质.相似三角形的性质和判定的应用.主要考查学生运用性质和定理进行推理和计算的能力.题目比较好.但是有一定的难度.二、填空题(本题共有6小题.每题4分.共24分)11.【分析】把x=1直接代入代数式x+2中求值即可.【解答】解:当x=1时.x+2=1+2=3.故答案为:3.【点评】本题考查了代数式求值.明确运算顺序是关键.12.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式.熟记公式结构是解题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.即可求出答案.【解答】解:∵=0.6.=0.8.∴<.甲的方差小于乙的方差.∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.14.【分析】先根据三角形的外角性质求出∠DEC的度数.再根据平行线的性质得出结论即可.【解答】解:∵∠DEC是△ADE的外角.∠A=46°.∠1=52°.∴∠DEC=∠A+∠1=46°+52°=98°.∵DE∥BC.∴∠2=∠DEC=98°.故答案为:98.【点评】本题考查的是平行线的性质及三角形的外角性质.用到的知识点为:两直线平行.内错角相等.15.【分析】先根据一次函数y=kx+b过(2.3).(0.1)点.求出一次函数的解析式.再求出一次函数y=x+1的图象与x轴的交点坐标.即可求出答案.【解答】解∵一次函数y=kx+b过(2.3).(0.1)点.∴.解得:.一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(﹣1.0)点.∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程.关键是根据函数的图象求出一次函数的图象与x轴的交点坐标.再利用交点坐标与方程的关系求方程的解.16.【分析】设正△ABC的边长为x.根据等边三角形的高为边长的倍.求出正△ABC的面积.再根据菱形的性质结合图形表示出菱形的两对角线.然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积.然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x.则高为x.S△ABC=x•x=x2.∵所分成的都是正三角形.∴结合图形可得黑色菱形的较长的对角线为x﹣.较短的对角线为(x﹣)=x﹣1.∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2.∴==.整理得.11x2﹣144x+144=0.解得x1=(不符合题意.舍去).x2=12.所以.△ABC的边长是12.故答案为:12.【点评】本题考查了菱形的性质.等边三角形的性质.熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键.本题难点在于根据三角形的面积与菱形的面积列出方程.三、解答题(本题共有8小题.共66分)17.【分析】分别进行二次根式的化简、零指数幂.然后代入tan45°=1.进行运算即可.【解答】解:原式=4﹣1+4+1=8.【点评】此题考查了实数的运算.解答本题关键是掌握零指数幂的运算.二次根式的化简.属于基础题.18.【分析】①+②消去未知数y求x的值.再把x=3代入②.求未知数y的值.【解答】解:①+②得3x=9.解得x=3.把x=3代入②.得3﹣y=1.解得y=2.∴原方程组的解是.【点评】本题考查了解二元一次方程组.熟练掌握加减消元法的解题步骤是关键.19.【分析】(1)把经过的点的坐标代入解析式进行计算即可得解;(2)根据反比例函数图象的性质.在每一个象限内.函数值y随x的增大而增大解答.【解答】解:(1)把(﹣2.8)代入y=.得8=.解得:k=﹣16.所以y=﹣;(2)y1<y2.理由:∵k=﹣16<0.∴在每一个象限内.函数值y随x的增大而增大.∵点(2.y1).(4.y2)都在第四象限.且2<4.【点评】本题考查了待定系数法求反比例函数解析式.反比例函数图象的增减性.是中学阶段的重点.需熟练掌握.20.【分析】(1)由四边形ABCD是平行四边形.根据平行四边形的对边平行且相等.即可得AB=DC.AB∥DC.继而可求得∠CDE=∠F.又由BF=AB.即可利用AAS.判定△DCE≌△FBE;(2)由(1).可得BE=EC.即可求得BC的长.又由平行四边形的对边相等.即可求得AD的长.【解答】(1)证明:∵四边形ABCD是平行四边形.∴AB=DC.AB∥DC.∴∠CDE=∠F.又∵BF=AB.∴DC=FB.在△DCE和△FBE中.∵∴△DCE≌△FBE(AAS)(2)解:∵△DCE≌△FBE.∴EB=EC.∵EC=3.∴BC=2EB=6.∵四边形ABCD是平行四边形.∴AD=BC.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中.注意数形结合思想的应用.21.【分析】(1)有统计图表中的信息可知:其他所占的比例为5%.又人数为25人.所以可以求出总人数.进而求出a和b的值;(2)有(1)的数据可将条形统计图补充完整;(3)用该老人的总数15万人乘以与子女“同住”所占的比例30%即为估计值.【解答】解:(1)老人总数为250÷50%=500(人).b=%=15%.a=1﹣50%﹣15%﹣5%=30%.(2)如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人).【点评】本题考查了条形统计图、用样本估计总数的知识.解题的关键是从统计图中整理出进一步解题的信息.22.【分析】(1)根据AD∥BC和AB切圆D于A.求出DAB=∠ADE =∠DEB=90°.即可推出结论;(2)根据矩形的性质求出AB=DE=4.根据垂径定理求出CF=2CE.设AD=3k.则BC=4k.BE=3k.EC=k.DC=AD=3k.在△DEC中由勾股定理得出一个关于k的方程.求出k的值.即可求出答案.【解答】(1)证明:∵⊙D与AB相切于点A.∴AB⊥AD.∵AD∥BC.DE⊥BC.∴DE⊥AD.∴∠DAB=∠ADE=∠DEB=90°.∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形.∴DE=AB=4.∵DC=DA.∴点C在⊙D上.∵D为圆心.DE⊥BC.∴CF=2EC.∵.设AD=3k(k>0)则BC=4k.∴BE=3k.EC=BC﹣BE=4k﹣3k=k.DC=AD=3k.由勾股定理得DE2+EC2=DC2.即42+k2=(3k)2.∴k2=2.∵k>0.∴k=.∴CF=2EC=2.【点评】本题考查了勾股定理.切线的判定和性质.矩形的判定.垂径定理等知识点的应用.通过做此题培养了学生的推理能力和计算能力.用的数学思想是方程思想.题目具有一定的代表性.是一道比较好的题目.23.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵.得出等式方程.求出即可;(3)假设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.则乙种树每棵200元.丙种树每棵×200=300(元);(2)设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000.解得x=300∴2x=600.1000﹣3x=100.答:能购买甲种树600棵.乙种树300棵.丙种树100棵;(3)设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.解得:y≤201.2.∵y为正整数.∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用.将现实生活中的事件与数学思想联系起来.读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化.购买总棵树不变的情况下得出不等式方程.24.【分析】(1)根据已知条件求出AB和CD的中点坐标.然后利用待定系数法求该二次函数的解析式;(2)本问是难点所在.需要认真全面地分析解答:①如图2所示.△ADF与△DEF相似.包括三种情况.需要分类讨论:(I)若∠ADF=90°时.△ADF∽△DEF.求此时t的值;(II)若∠DF A=90°时.△DEF∽△FBA.利用相似三角形的对应边成比例可以求得相应的t的值;(III)∠DAF≠90°.此时t不存在;②如图3所示.画出旋转后的图形.认真分析满足题意要求时.需要具备什么样的限制条件.然后根据限制条件列出不等式.求出t的取值范围.确定限制条件是解题的关键.【解答】解:(1)由题意得AB的中点坐标为(﹣.0).CD的中点坐标为(0.3).分别代入y=ax2+b得.解得..∴y=﹣x2+3.(2)①如图2所示.在Rt△BCE中.∠BEC=90°.BE=3.BC=2∴sin C===.∴∠C=60°.∠CBE=30°∴EC=BC=.DE=又∵AD∥BC.∴∠ADC+∠C=180°∴∠ADC=180°﹣60°=120°要使△ADF与△DEF相似.则△ADF中必有一个角为直角.(I)若∠ADF=90°∠EDF=120°﹣90°=30°在Rt△DEF中.DE=.求得EF=1.DF=2.又∵E(t.3).F(t.﹣t2+3).∴EF=3﹣(﹣t2+3)=t2∴t2=1.∵t>0.∴t=1此时=2..∴.又∵∠ADF=∠DEF∴△ADF∽△DEF(II)若∠DF A=90°.可证得△DEF∽△FBA.则设EF=m.则FB=3﹣m∴.即m2﹣3m+6=0.此方程无实数根.∴此时t不存在;(III)由题意得.∠DAF<∠DAB=60°∴∠DAF≠90°.此时t不存在.综上所述.存在t=1.使△ADF与△DEF相似;②如图3所示.依题意作出旋转后的三角形△FE′C′.过C′作MN⊥x轴.分别交抛物线、x轴于点M、点N.观察图形可知.欲使△FE′C′落在指定区域内.必须满足:EE′≤BE且MN≥C′N.∵F(t.3﹣t2).∴EF=3﹣(3﹣t2)=t2.∴EE′=2EF=2t2.由EE′≤BE.得2t2≤3.解得t≤.∵C′E′=CE=.∴C′点的横坐标为t﹣.∴MN=3﹣(t﹣)2.又C′N=BE′=BE﹣EE′=3﹣2t2.由MN≥C′N.得3﹣(t﹣)2≥3﹣2t2.解得t≥或t≤﹣﹣3(舍).∴t的取值范围为:.【点评】本题是动线型中考压轴题.综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点.难度较大.对考生能力要求很高.本题难点在于第(2)问.(2)①中.需要结合△ADF与△DEF 相似的三种情况.分别进行讨论.避免漏解;(2)②中.确定“限制条件”是解题关键.。
初中数学中招试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.1010010001…(每两个1之间0的个数依次增加)B. 2.5C. πD. √42. 一个正数的平方根是2,那么这个正数是:A. 4B. -4C. 2D. -23. 一个三角形的三个内角之和是:A. 90°B. 180°C. 360°D. 720°4. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 可以是负数或零5. 以下哪个是二次方程?A. x + 5 = 0B. x^2 + 5x + 6 = 0C. x^3 - 2x^2 + 3x - 4 = 0D. 2x - 3 = 06. 一个数乘以分数的意义是:A. 求这个数的几倍B. 求这个数的几分之几C. 求这个数的相反数D. 求这个数的倒数7. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1D. 08. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 19. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1010. 以下哪个选项是不等式?A. 3x + 5 = 8B. 2x - 4 > 6C. 7x = 35D. 5x - 3答案:1. C2. A3. B4. C5. B6. B7. A8. A9. A10. B二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是______。
12. 一个数的绝对值是5,那么这个数可以是______。
13. 一个三角形的两个内角分别是30°和60°,那么第三个内角是______。
14. 如果一个数的平方是25,那么这个数可以是______。
15. 一个数的立方是-8,那么这个数是______。
16. 一个数的1/3是4,那么这个数是______。
初中数学试题及答案中考一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.33333D. π答案:B2. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是:A. 3B. 5C. 8D. 13答案:C3. 如果一个二次方程的解为x1=2和x2=-3,那么这个二次方程可以表示为:A. x^2 - 5x + 6 = 0B. x^2 + x - 6 = 0C. x^2 - x - 6 = 0D. x^2 + 5x + 6 = 0答案:A4. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14答案:A5. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 菱形D. 不规则多边形答案:C6. 一个圆的半径为5cm,那么这个圆的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C8. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是:A. 8cm³B. 12cm³C. 24cm³D. 36cm³答案:C9. 下列哪个选项是正确的不等式?A. 2x > 3xB. 5x ≤ 2xC. 3x < 6xD. 4x ≥ 8答案:D10. 一个角的补角是它的余角的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是________或________。
答案:5 或 -512. 一个等差数列的首项是3,公差是2,那么第5项的值是________。
答案:1113. 如果一个三角形的内角和为180°,其中一个角是60°,另一个角是75°,那么第三个角的度数是________。
初一中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 计算下列算式的结果:(-3) × (-2) = ?A. 6B. -6C. 3D. -3答案:A3. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C4. 以下哪个选项是不等式?A. 3x + 2 = 11B. 2x - 5 > 3C. 4y - 7 = 0D. 6z + 8 ≤ 14答案:B5. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 25B. 50C. 75D. 100答案:B6. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:7 = 10:14D. 1:2 = 3:6答案:D7. 一个数的平方是36,这个数可能是:A. 6B. -6C. 6或-6D. 0答案:C8. 以下哪个选项是正确的因式分解?A. x^2 - 4 = (x + 2)(x - 2)B. x^2 + 4 = (x + 2)(x - 2)C. x^2 - 4x + 4 = (x - 2)^2D. x^2 + 4x + 4 = (x + 2)^2答案:C9. 以下哪个选项是正确的合并同类项?A. 3x + 5x = 8xB. 3x + 5y = 8xyC. 3x - 5x = -2xD. 3x^2 + 5x = 8x^2答案:C10. 以下哪个选项是正确的解方程?A. 2x - 3 = 7,解得 x = 5B. 3x + 2 = 11,解得 x = 3C. 4x - 5 = 15,解得 x = 5D. 5x + 6 = 21,解得 x = 3答案:B二、填空题(每题3分,共15分)11. 一个数的相反数是-7,这个数是______。
答案:712. 一个数的倒数是2,这个数是______。
考试时间:120分钟满分:150分一、选择题(每小题3分,共30分)1. 下列各数中,有理数是()A. √9B. πC. √-1D. 2.52. 若 a < b,则下列不等式中正确的是()A. a - 1 < b - 1B. a + 1 > b + 1C. -a > -bD. a + 1 < b + 13. 已知一次函数 y = kx + b 的图象经过点(2,-1),则下列选项中,k的值可能是()A. 1B. -1C. 0.5D. -0.54. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°5. 若 x^2 - 4x + 3 = 0,则 x 的值是()A. 1 或 3B. -1 或 3C. 1 或 -3D. -1 或 -36. 下列函数中,y是x的反比例函数的是()A. y = x + 1B. y = 2xC. y = 1/xD. y = x^27. 若平行四边形ABCD的对角线BD平分对角∠ABC,则∠BAD的度数是()A. 45°B. 90°C. 135°D. 180°8. 在直角坐标系中,点P(-2,3)关于y轴的对称点是()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,-3)9. 若 a、b、c 是等差数列的连续三项,且 a + b + c = 12,则 b 的值是()A. 3B. 4C. 5D. 610. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 等腰三角形D. 梯形二、填空题(每小题3分,共30分)11. 2的平方根是______,-3的立方根是______。
12. 若 a = -2,则 |a| + a = ______。
13. 在△ABC中,∠A = 90°,AB = 6,AC = 8,则BC的长度是______。
中考数学题库(含答案和解析)一、选择题1.(3分)计算(﹣20)+16的结果是()A.﹣4B.4C.﹣2016D.2016 2.(3分)为了迎接杭州G20峰会.某校开展了设计“YJG20”图标的活动.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)由六个相同的立方体搭成的几何体如图所示.则它的主视图是()A.B.C.D.4.(3分)受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响.2016年湖州市在春节黄金周期间共接待游客约2800000人次.同比增长约56%.将2800000用科学记数法表示应是()A.28×105B.2.8×106C.2.8×105D.0.28×105 5.(3分)数据1.2.3.4.4.5的众数是()A.5B.3C.3.5D.46.(3分)如图.AB∥CD.BP和CP分别平分∠ABC和∠DCB.AD过点P.且与AB垂直.若AD=8.则点P到BC的距离是()A.8B.6C.4D.27.(3分)有一枚均匀的正方体骰子.骰子各个面上的点数分别为1.2.3.4.5.6.若任意抛掷一次骰子.朝上的面的点数记为x.计算|x﹣4|.则其结果恰为2的概率是()A.B.C.D.8.(3分)如图.圆O是Rt△ABC的外接圆.∠ACB=90°.∠A=25°.过点C作圆O的切线.交AB的延长线于点D.则∠D的度数是()A.25°B.40°C.50°D.65°9.(3分)定义:若点P(a.b)在函数y=的图象上.将以a为二次项系数.b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2.)在函数y=的图象上.则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”.其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”.的图象都经过同一点.下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题.命题(2)是真命题D.命题(1)是真命题.命题(2)是假命题10.(3分)如图1.在等腰三角形ABC中.AB=AC=4.BC=7.如图2.在底边BC上取一点D.连结AD.使得∠DAC=∠ACD.如图3.将△ACD沿着AD所在直线折叠.使得点C落在点E处.连结BE.得到四边形ABED.则BE的长是()A.4B.C.3D.2二、填空题(本题有6小题.每小题4分.共24分)11.(4分)数5的相反数是.12.(4分)方程=1的根是x=.13.(4分)如图.在Rt△ABC中.∠ACB=90°.BC=6.AC=8.分别以点A.B为圆心.大于线段AB长度一半的长为半径作弧.相交于点E.F.过点E.F作直线EF.交AB于点D.连结CD.则CD的长是.14.(4分)如图1是我们常用的折叠式小刀.图2中刀柄外形是一个矩形挖去一个小半圆.其中刀片的两条边缘线可看成两条平行的线段.转动刀片时会形成如图2所示的∠1与∠2.则∠1与∠2的度数和是度.15.(4分)已知四个有理数a.b.x.y同时满足以下关系式:b>a.x+y =a+b.y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是.16.(4分)已知点P在一次函数y=kx+b(k.b为常数.且k<0.b>0)的图象上.将点P向左平移1个单位.再向上平移2个单位得到点Q.点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图.该一次函数的图象分别与x轴、y轴交于A.B两点.且与反比例函数y=图象交于C.D两点(点C在第二象限内).过点C 作CE⊥x轴于点E.记S1为四边形CEOB的面积.S2为△OAB的面积.若=.则b的值是.三、解答题(本题有8小题.共66分)17.(6分)计算:tan45°﹣sin30°+(2﹣)0.18.(6分)当a=3.b=﹣1时.求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.19.(6分)湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制.鱼塘的宽最多只能挖20米.当鱼塘的宽是20米.鱼塘的长为多少米?20.(8分)如图.已知四边形ABCD内接于圆O.连结BD.∠BAD=105°.∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3.求的长.21.(8分)中华文明.源远流长;中华诗词.寓意深广.为了传承优秀传统文化.我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛.赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次海选比赛的成绩分布情况.随机抽取了其中200名学生的海选比赛成绩(成绩x取整数.总分100分)作为样本进行整理.得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息.解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中.记表示B组人数所占的百分比为a%.则a的值为.表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”.请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?22.(10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进.拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心.其中规划建造三类养老专用房间共100间.这三类养老专用房间分别为单人间(1个养老床位).双人间(2个养老床位).三人间(3个养老床位).因实际需要.单人间房间数在10至30之间(包括10和30).且双人间的房间数是单人间的2倍.设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个.求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?23.(10分)如图.已知二次函数y=﹣x2+bx+c(b.c为常数)的图象经过点A(3.1).点C(0.4).顶点为点M.过点A作AB∥x轴.交y 轴于点D.交该二次函数图象于点B.连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位.使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界).求m的取值范围;(3)点P是直线AC上的动点.若点P.点C.点M所构成的三角形与△BCD相似.请直接写出所有点P的坐标(直接写出结果.不必写解答过程).24.(12分)数学活动课上.某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转.且60°角的顶点始终与点C重合.较短的直角边和斜边所在的两直线分别交线段AB.AD于点E.F(不包括线段的端点).(1)初步尝试如图1.若AD=AB.求证:①△BCE≌△ACF.②AE+AF=AC;(2)类比发现如图2.若AD=2AB.过点C作CH⊥AD于点H.求证:AE=2FH;(3)深入探究如图3.若AD=3AB.探究得:的值为常数t.则t=.参考答案与试题解析一、选择题(本大题有10小题.每小题3分.共30分)下面每小题给出的四个选项中.只有一个是正确的.请选出各题中一个最符合题意的选项.并在答题卷上将相应题次中对应字母的方框涂黑.不选、多选、错选均不给分1.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(﹣20)+16.=﹣(20﹣16).=﹣4.故选:A.【点评】本题考查了有理数的加法.是基础题.熟记运算法则是解题的关键.2.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形.因为找不到任何这样的一点.旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形.因为找不到任何这样的一条直线.沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;C、不是轴对称图形.因为找不到任何这样的一条直线.沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;D、是轴对称图形.又是中心对称图形.故正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴.图形两部分折叠后可重合;中心对称图形是要寻找对称中心.旋转180度后两部分重合.3.【分析】根据主视方向确定看到的平面图形即可.【解答】解:结合几何体发现:从主视方向看到上面有一个正方形.下面有3个正方形.故选:A.【点评】本题考查了简单组合体的三视图的知识.解题的关键是了解主视图是由主视方向看到的平面图形.属于基础题.难度不大.4.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时.n是正数;当原数的绝对值小于1时.n是负数.【解答】解:2800000=2.8×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.表示时关键要正确确定a 的值以及n的值.5.【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据1.2.3.4.4.5中.4出现的次数最多.∴这组数据的众数是:4.故选:D.【点评】此题主要考查了众数的定义.正确把握定义是解题关键.6.【分析】过点P作PE⊥BC于E.根据角平分线上的点到角的两边的距离相等可得P A=PE.PD=PE.那么PE=P A=PD.又AD=8.进而求出PE=4.【解答】解:过点P作PE⊥BC于E.∵AB∥CD.P A⊥AB.∴PD⊥CD.∵BP和CP分别平分∠ABC和∠DCB.∴P A=PE.PD=PE.∴PE=P A=PD.∵P A+PD=AD=8.∴P A=PD=4.∴PE=4.故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质.熟记性质并作辅助线是解题的关键.7.【分析】先求出绝对值方程|x﹣4|=2的解.即可解决问题.【解答】解:∵|x﹣4|=2.∴x=2或6.∴其结果恰为2的概率==.故选:C.【点评】本题考查概率的定义、绝对值方程等知识.解题的关键是理解题意.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.属于中考常考题型.8.【分析】首先连接OC.由∠A=25°.可求得∠BOC的度数.由CD是圆O的切线.可得OC⊥CD.继而求得答案.【解答】解:连接OC.∵圆O是Rt△ABC的外接圆.∠ACB=90°.∴AB是直径.∵∠A=25°.∴∠BOC=2∠A=50°.∵CD是圆O的切线.∴OC⊥CD.∴∠D=90°﹣∠BOC=40°.故选:B.【点评】此题考查了切线的性质以及圆周角的性质.注意准确作出辅助线是解此题的关键.9.【分析】(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y 轴左侧.a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx.x=0时.y=0.经过原点.即可得出结论.【解答】解:(1)∵P(a.b)在y=上.∴a和b同号.所以对称轴在y轴左侧.∴存在函数y=的一个“派生函数”.其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx.∴x=0时.y=0.∴所有“派生函数”为y=ax2+bx经过原点.∴函数y=的所有“派生函数”.的图象都经过同一点.是真命题.故选:C.【点评】本题考查命题与定理、二次函数的性质.理解题意是解题的关键.记住二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧.a、b异号对称轴在y轴右侧.属于基础题.10.【分析】只要证明△ABD∽△MBE.得=.只要求出BM、BD 即可解决问题.【解答】解:∵AB=AC.∴∠ABC=∠C.∵∠DAC=∠ACD.∴∠DAC=∠ABC.∵∠C=∠C.∴△CAD∽△CBA.∴=.∴=.∴CD=.BD=BC﹣CD=.∵∠DAM=∠DAC=∠DBA.∠ADM=∠ADB.∴△ADM∽△BDA.∴=.即=.∴DM=.MB=BD﹣DM=.∵∠ABM=∠C=∠MED.∴A、B、E、D四点共圆.∴∠ADB=∠BEM.∠EBM=∠EAD=∠ABD.∴△ABD∽△MBE.(不用四点共圆.可以先证明△BMA∽△EMD.推出△BME∽AMD.推出∠ADB=∠BEM也可以!)∴=.∴BE===.故选:B.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识.解题的关键是充分利用相似三角形的性质解决问题.本题需要三次相似解决问题.题目比较难.属于中考选择题中的压轴题.二、填空题(本题有6小题.每小题4分.共24分)11.【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数.进而得出答案.【解答】解:数5的相反数是:﹣5.故答案为:﹣5.【点评】此题主要考查了相反数的定义.正确把握定义是解题关键.12.【分析】把分式方程转化成整式方程.求出整式方程的解.再代入x ﹣3进行检验即可.【解答】解:两边都乘以x﹣3.得:2x﹣1=x﹣3.解得:x=﹣2.检验:当x=﹣2时.x﹣3=﹣5≠0.故方程的解为x=﹣2.故答案为:﹣2.【点评】此题考查了解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.【分析】首先说明AD=DB.利用直角三角形斜边中线等于斜边一半.即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线.∴AD=DB.Rt△ABC中.∵∠ACB=90°.BC=6.AC=8.∴AB===10.∵AD=DB.∠ACB=90°.∴CD=AB=5.故答案为5.【点评】本题考查勾股定理.直角三角形斜边中线性质、基本作图等知识.解题的关键是知道线段的垂直平分线的作法.出现中点想到直角三角形斜边中线性质.属于中考常考题型.14.【分析】如图2.AB∥CD.∠AEC=90°.作EF∥AB.根据平行线的传递性得到EF∥CD.则根据平行线的性质得∠1=∠AEF.∠2=∠CEF.所以∠1+∠2=∠AEC=90°【解答】解:如图2.AB∥CD.∠AEC=90°.作EF∥AB.则EF∥CD.所以∠1=∠AEF.∠2=∠CEF.所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.【点评】本题考查了平行线的性质:两直线平行.同位角相等;两直线平行.同旁内角互补;两直线平行.内错角相等.15.【分析】由x+y=a+b得出y=a+b﹣x.x=a+b﹣y.求出b<x.y<a.即可得出答案.【解答】解:∵x+y=a+b.∴y=a+b﹣x.x=a+b﹣y.把y=a+b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b.2b<2x.b<x①.把x=a+b﹣y代入y﹣x<a﹣b得:y﹣(a+b﹣y)<a﹣b.2y<2a.y<a②.∵b>a③.∴由①②③得:y<a<b<x.故答案为:y<a<b<x.【点评】本题考查了有理数的大小比较的应用.能选择适当的方法求出①②是解此题的关键.16.【分析】(1)设出点P的坐标.根据平移的特性写出点Q的坐标.由点P、Q均在一次函数y=kx+b(k.b为常数.且k<0.b>0)的图象上.即可得出关于k、m、n、b的四元一次方程组.两式做差即可得出k值;(2)根据BO⊥x轴.CE⊥x轴可以找出△AOB∽△AEC.根据相似三角形的性质可得出=.设点C的坐标为(x.﹣2x+b).则OB=b.CE =﹣2x+b.根据=结合点C为两函数图象的交点.即可得出关于x、b的方程组.解之即可求出b值.取其正值即可得出结论.【解答】解:(1)设点P的坐标为(m.n).则点Q的坐标为(m﹣1.n+2).依题意得:.解得:k=﹣2.故答案为:﹣2.(2)根据题意得:==.∴=.设点C的坐标为(x.﹣2x+b).则OB=b.CE=﹣2x+b.∴.解得:b=3.或b=﹣3(舍去).故答案为:3.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数系数k的几何意义以及相似三角形的判定及性质.解题的关键:(1)由P点坐标表示出Q点坐标;(2)利用相似三角形的性质结合点C为两函数图象的交点找出关于x、b的方程组.三、解答题(本题有8小题.共66分)17.【分析】直接利用特殊角的三角函数值以及零指数幂的性质分析得出答案.【解答】解:原式=1﹣+1=.【点评】此题主要考查了实数运算.正确化简各数是解题关键.18.【分析】(1)把a与b的值代入计算即可求出值;(2)原式利用完全平方公式变形.将a与b的值代入计算即可求出值.【解答】解:(1)当a=3.b=﹣1时.原式=2×4=8;(2)当a=3.b=﹣1时.原式=(a+b)2=22=4.【点评】此题考查了代数式求值.熟练掌握运算法则是解本题的关键.19.【分析】(1)根据矩形的面积=长×宽.列出y与x的函数表达式即可;(2)把x=20代入计算求出y的值.即可得到结果.【解答】解:(1)由长方形面积为2000平方米.得到xy=2000.即y =;(2)当x=20(米)时.y==100(米).则当鱼塘的宽是20米时.鱼塘的长为100米.【点评】此题考查了反比例函数的应用.弄清题意是解本题的关键.20.【分析】(1)直接利用圆周角定理得出∠DCB的度数.再利用∠DCB=∠DBC求出答案;(2)首先求出的度数.再利用弧长公式直接求出答案.【解答】(1)证明:∵四边形ABCD内接于圆O.∴∠DCB+∠BAD=180°.∵∠BAD=105°.∴∠DCB=180°﹣105°=75°.∵∠DBC=75°.∴∠DCB=∠DBC=75°.∴BD=CD;(2)解:∵∠DCB=∠DBC=75°.∴∠BDC=30°.由圆周角定理.得.的度数为:60°.故===π.答:的长为π.【点评】此题主要考查了弧长公式应用以及圆周角定理等知识.根据题意得出∠DCB的度数是解题关键.21.【分析】(1)用随机抽取的总人数减去A、B、C、E组的人数.求出D组的人数.从而补全统计图;(2)用B组抽查的人数除以总人数.即可求出a;用360乘以C组所占的百分比.求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比.即可得出答案.【解答】解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人).补图如下:(2)B组人数所占的百分比是×100%=15%.则a的值是15;C组扇形的圆心角θ的度数为360×=72°;故答案为:15.72;(3)根据题意得:2000×=700(人).答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图.从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【分析】(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x.根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程.解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30).则建造双人间的房间数为2t.三人间的房间数为100﹣3t.根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程.解方程即可得出结论;②设该养老中心建成后能提供养老床位y个.根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式.根据一次函数的性质结合t的取值范围.即可得出结论.【解答】解:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x.由题意可列出方程:2(1+x)2=2.88.解得:x1=0.2=20%.x2=﹣2.2(不合题意.舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)①设规划建造单人间的房间数为t(10≤t≤30).则建造双人间的房间数为2t.三人间的房间数为100﹣3t.由题意得:t+4t+3(100﹣3t)=200.解得:t=25.答:t的值是25.②设该养老中心建成后能提供养老床位y个.由题意得:y=t+4t+3(100﹣3t)=﹣4t+300(10≤t≤30).∵k=﹣4<0.∴y随t的增大而减小.当t=10时.y的最大值为300﹣4×10=260(个).当t=30时.y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个.最少提供养老床位180个.【点评】本题考查了一次函数的应用、解一元一次方程以及解一元二次方程.解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)①根据数量关系找出关于t的一元一次方程;②根据数量关系找出y关于t的函数关系式.本题属于中档题.难度不大.解决该题型题目时.根据数量关系列出方程(方程组或函数关系式)是关键.23.【分析】(1)将点A、点C的坐标代入函数解析式.即可求出b、c 的值.通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的.可先求出直线AC 的解析式.将x=1代入求出点M在向下平移时与AC、AB相交时y 的值.即可得到m的取值范围;(3)由题意分析可得∠MCP=90°.则若△PCM与△BCD相似.则要进行分类讨论.分成△PCM∽△BDC或△PCM∽△CDB两种.然后利用边的对应比值求出点坐标.【解答】解:(1)把点A(3.1).点C(0.4)代入二次函数y=﹣x2+bx+c 得.解得∴二次函数解析式为y=﹣x2+2x+4.配方得y=﹣(x﹣1)2+5.∴点M的坐标为(1.5);(2)设直线AC解析式为y=kx+b.把点A(3.1).C(0.4)代入得.解得∴直线AC的解析式为y=﹣x+4.如图所示.对称轴直线x=1与△ABC两边分别交于点E、点F把x=1代入直线AC解析式y=﹣x+4解得y=3.则点E坐标为(1.3).点F坐标为(1.1)∴1<5﹣m<3.解得2<m<4;(3)连接MC.作MG⊥y轴并延长交AC于点N.则点G坐标为(0.5)∵MG=1.GC=5﹣4=1∴MC==.把y=5代入y=﹣x+4解得x=﹣1.则点N坐标为(﹣1.5).∵NG=GC.GM=GC.∴∠NCG=∠GCM=45°.∴∠NCM=90°.由此可知.若点P在AC上.则∠MCP=90°.则点D与点C必为相似三角形对应点①若有△PCM∽△BDC.则有∵BD=1.CD=3.∴CP===.∵CD=DA=3.∴∠DCA=45°.若点P在y轴右侧.作PH⊥y轴.∵∠PCH=45°.CP=∴PH==把x=代入y=﹣x+4.解得y=.∴P1();同理可得.若点P在y轴左侧.则把x=﹣代入y=﹣x+4.解得y=∴P2();②若有△PCM∽△CDB.则有∴CP==3∴PH=3÷=3.若点P在y轴右侧.把x=3代入y=﹣x+4.解得y=1;若点P在y轴左侧.把x=﹣3代入y=﹣x+4.解得y=7∴P3(3.1);P4(﹣3.7).∴所有符合题意得点P坐标有4个.分别为P1().P2().P3(3.1).P4(﹣3.7).【点评】本题考查了二次函数的图象与性质、一次函数解析式及相似三角形性质.解题的关键是分类讨论三角形相似的不同情况.结合特殊角的使用来求出点P的坐标.24.【分析】(1)①先证明△ABC.△ACD都是等边三角形.再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF.由此即可证明.(2)设DH=x.由题意.CD=2x.CH=x.由△ACE∽△HCF.得=由此即可证明.(3)如图3中.作CN⊥AD于N.CM⊥BA于M.CM与AD交于点H.先证明△CFN∽△CEM.得=.由AB•CM=AD•CN.AD=3AB.推出CM=3CN.所以==.设CN=a.FN=b.则CM=3a.EM=3b.想办法求出AC.AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形.∠BAD=120°.∴∠D=∠B=60°.∵AD=AB.∴△ABC.△ACD都是等边三角形.∴∠B=∠CAD=60°.∠ACB=60°.BC=AC.∵∠ECF=60°.∴∠BCE+∠ACE=∠ACF+∠ACE=60°.∴∠BCE=∠ACF.在△BCE和△ACF中.∴△BCE≌△ACF.②∵△BCE≌△ACF.∴BE=AF.∴AE+AF=AE+BE=AB=AC.(2)设DH=x.由题意.CD=2x.CH=x.∴AD=2AB=4x.∴AH=AD﹣DH=3x.∵CH⊥AD.∴AC==2x.∴AC2+CD2=AD2.∴∠ACD=90°.∴∠BAC=∠ACD=90°.∴∠CAD=30°.∴∠ACH=60°.∵∠ECF=60°.∴∠HCF=∠ACE.∴△ACE∽△HCF.∴==2.∴AE=2FH.(3)如图3中.作CN⊥AD于N.CM⊥BA于M.CM与AD交于点H.∵∠ECF+∠EAF=180°.∴∠AEC+∠AFC=180°.∵∠AFC+∠CFN=180°.∴∠CFN=∠AEC.∵∠M=∠CNF=90°.∴△CFN∽△CEM.∴=.∵AB•CM=AD•CN.AD=3AB.∴CM=3CN.∴==.设CN=a.FN=b.则CM=3a.EM=3b.∵∠MAH=60°.∠M=90°.∴∠AHM=∠CHN=30°.∴HC=2a.HM=a.HN=a.∴AM=a.AH=a.∴AC==a.AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN ﹣3FN=3AH+3HN﹣AM=a.∴==.故答案为.【点评】本题考查几何变换综合题.全等三角形的判定和性质.相似三角形的判定和性质、等边三角形的性质等知识.解题的关键是正确寻找全等三角形或相似三角形.学会添加常用辅助线.学会利用参数解决问题.属于中考压轴题.。
初三数学中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...(循环)B. √4C. πD. √9答案:C2. 以下哪个方程是一元二次方程?A. x + 2 = 0B. x² + 2x + 1 = 0C. 2x - 3y = 0D. x³ - 2x² + 3 = 0答案:B3. 若一个角的补角是120°,则该角的度数为:A. 60°B. 30°C. 150°D. 90°答案:A4. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x² + 1C. y = √xD. y = 1/x答案:A5. 在一个直角三角形中,若一个锐角为30°,则另一个锐角的度数为:A. 30°B. 45°C. 60°D. 90°答案:C6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 等腰梯形D. 任意五边形答案:C7. 已知一个等腰三角形的两边长分别为5和8,那么它的周长可能是:A. 18B. 21C. 26D. 30答案:C8. 以下哪个选项是反比例函数?A. y = 2/xB. y = x + 3C. y = x²D. y = √x答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 以上都是答案:D二、填空题(每题3分,共15分)11. 一个数的平方是16,这个数是______。
答案:±412. 一个圆的半径是3cm,那么它的直径是______。
答案:6cm13. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的周长是______。
答案:16cm14. 一个角的余角是40°,那么这个角的度数是______。
中考数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x-3>0的解集?A. x>1B. x<1C. x>3/2D. x<3/2答案:C2. 一个圆的半径为3cm,其面积是多少平方厘米?A. 28.26B. 18.84C. 9.42D. 15.7答案:B3. 如果一个数的立方根等于它本身,那么这个数可能是?A. 0B. 1C. -1D. A和B答案:D4. 计算下列哪个表达式的结果为-1?A. (-2)^3B. (-2)^2C. (-1)^3D. (-1)^2答案:C5. 以下哪个函数的图像是一条直线?A. y = 2x + 3B. y = x^2C. y = √xD. y = 3/x答案:A6. 一个等腰三角形的两边长分别为5cm和10cm,那么它的周长是多少?A. 20cmB. 15cmC. 25cmD. 不能构成三角形答案:D7. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-2) + 1答案:A8. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 10答案:A9. 下列哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:A10. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 11C. 9D. 7答案:A二、填空题(每题3分,共30分)11. 一个直角三角形的两个直角边长分别是3cm和4cm,那么斜边的长度是_________。
答案:5cm12. 一个数的绝对值是5,那么这个数可能是_________或_________。
答案:5或-513. 一个正数的平方根是2,那么这个数是_________。
答案:414. 一个数除以-1/2等于乘以_________。
中考数学题库(含答案和解析)一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.5【分析】算术平方根的概念:一般地.如果一个正数x的平方等于a.即x2=a.那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:=3.故选:B.【点评】考查了算术平方根.注意非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.2.(3分)(2016•杭州)如图.已知直线a∥b∥c.直线m交直线a.b.c于点A.B.C.直线n交直线a.b.c于点D.E.F.若=.则=()A.B.C.D.1【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c.∴==.故选B.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线.所得的对应线段成比例.3.(3分)(2016•杭州)下列选项中.如图所示的圆柱的三视图画法正确的是()A.B.C.D.【分析】根据从正面看到的图叫做主视图.从左面看到的图叫做左视图.从上面看到的图叫做俯视图.可得答案.【解答】解:该圆柱体的主视图、俯视图均为矩形.左视图为圆.故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来.看得见的轮廓线都画成实线.看不见的画成虚线.不能漏掉.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图.则在四月份每日的最低气温这组数据中.中位数和众数分别是()A.14℃.14℃B.15℃.15℃C.14℃.15℃D.15℃.14℃【分析】中位数.因图中是按从小到大的顺序排列的.所以只要找出最中间的一个数(或最中间的两个数)即可.本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组.14℃.故众数是14℃;因图中是按从小到大的顺序排列的.最中间的环数是14℃、14℃.故中位数是14℃.故选:A.【点评】本题属于基础题.考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序.然后再根据奇数和偶数个来确定中位数.如果数据有奇数个.则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2016•杭州)下列各式变形中.正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5.故此选项错误;B、=|x|.正确;C、(x2﹣)÷x=x﹣.故此选项错误;D、x2﹣x+1=(x﹣)2+.故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识.正确掌握相关运算法则是解题关键.6.(3分)(2016•杭州)已知甲煤场有煤518吨.乙煤场有煤106吨.为了使甲煤场存煤是乙煤场的2倍.需要从甲煤场运煤到乙煤场.设从甲煤场运煤x 吨到乙煤场.则可列方程为()A.518=2(106+x) B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)【分析】设从甲煤场运煤x吨到乙煤场.根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场.可得:518﹣x=2(106+x).故选C.【点评】考查了由实际问题抽象出一元一次方程.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程.再求解.7.(3分)(2016•杭州)设函数y=(k≠0.x>0)的图象如图所示.若z=.则z关于x的函数图象可能为()A. B.C.D.【分析】根据反比例函数解析式以及z=.即可找出z关于x的函数解析式.再根据反比例函数图象在第一象限可得出k>0.结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0.x>0).∴z===(k≠0.x>0).∵反比例函数y=(k≠0.x>0)的图象在第一象限.∴k>0.∴>0.∴z关于x的函数图象为第一象限内.且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象.解题的关键是找出z关于x的函数解析式.本题属于基础题.难度不大.解决该题型题目时.根据分式的变换找出z关于x的函数关系式是关键.8.(3分)(2016•杭州)如图.已知AC是⊙O的直径.点B在圆周上(不与A、C重合).点D在AC的延长线上.连接BD交⊙O于点E.若∠AOB=3∠ADB.则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【分析】连接EO.只要证明∠D=∠EOD即可解决问题.【解答】解:连接EO.∵OB=OE.∴∠B=∠OEB.∵∠OEB=∠D+∠DOE.∠AOB=3∠D.∴∠B+∠D=3∠D.∴∠D+∠DOE+∠D=3∠D.∴∠DOE=∠D.∴ED=EO=OB.故选D.【点评】本题考查圆的有关知识、三角形的外角等知识.解题的关键是添加除以辅助线.利用等腰三角形的判定方法解决问题.属于中考常考题型.9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n).过锐角顶点把该纸片剪成两个三角形.若这两个三角形都为等腰三角形.则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图.根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2.整理即可求解【解答】解:如图.m2+m2=(n﹣m)2.2m2=n2﹣2mn+m2.m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形.等腰三角形的性质.勾股定理.关键是熟练掌握等腰三角形的性质.根据勾股定理得到等量关系.10.(3分)(2016•杭州)设a.b是实数.定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2.则下列结论:①若a@b=0.则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a.b.满足a@b=a2+5b2④设a.b是矩形的长和宽.若矩形的周长固定.则当a=b时.a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③【分析】根据新定义可以计算出啊各个小题中的结论是否成立.从而可以判断各个小题中的说法是否正确.从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0.整理得:(a+b+a﹣b)(a+b﹣a+b)=0.即4ab=0.解得:a=0或b=0.正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac.∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2.a@b=(a+b)2﹣(a﹣b)2.令a2+5b2=(a+b)2﹣(a﹣b)2.解得.a=0.b=0.故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab.(a﹣b)2≥0.则a2﹣2ab+b2≥0.即a2+b2≥2ab.∴a2+b2+2ab≥4ab.∴4ab的最大值是a2+b2+2ab.此时a2+b2+2ab=4ab.解得.a=b.∴a@b最大时.a=b.故④正确.故选C.【点评】本题考查因式分解的应用、整式的混合运算、二次函数的最值.解题的关键是明确题意.找出所求问题需要的条件.二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值.熟记各特殊角的三角函数值是解答此题的关键.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别).如图是这包糖果分布百分比的统计图.在这包糖果中任意取一粒.则取出糖果的颜色为绿色或棕色的概率是.【分析】先求出棕色所占的百分比.再根据概率公式列式计算即可得解.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%. 所以.P(绿色或棕色)=30%+20%=50%=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解.则k的值可以是﹣1(写出一个即可).【分析】令k=﹣1.使其能利用平方差公式分解即可.【解答】解:令k=﹣1.整式为x2﹣y2=(x+y)(x﹣y).故答案为:﹣1.【点评】此题考查了因式分解﹣运用公式法.熟练掌握平方差公式是解本题的关键.14.(4分)(2016•杭州)在菱形ABCD中.∠A=30°.在同一平面内.以对角线BD为底边作顶角为120°的等腰三角形BDE.则∠EBC的度数为45°或105°.【分析】如图当点E在BD右侧时.求出∠EBD.∠DBC即可解决问题.当点E 在BD左侧时.求出∠DBE′即可解决问题.【解答】解:如图.∵四边形ABCD是菱形.∴AB=AD=BC=CD.∠A=∠C=30°.∠ABC=∠ADC=150°.∴∠DBA=∠DBC=75°.∵ED=EB.∠DEB=120°.∴∠EBD=∠EDB=30°.∴∠EBC=∠EBD+∠DBC=105°.当点E′在BD左侧时.∵∠DBE′=30°.∴∠E′BC=∠DBC﹣∠DBE′=45°.∴∠EBC=105°或45°.故答案为105°或45°.【点评】本题考查菱形的性质、等腰三角形的性质等知识.解题的关键是正确画出图形.考虑问题要全面.属于中考常考题型.15.(4分)(2016•杭州)在平面直角坐标系中.已知A(2.3).B(0.1).C (3.1).若线段AC与BD互相平分.则点D关于坐标原点的对称点的坐标为(﹣5.﹣3).【分析】直接利用平行四边形的性质得出D点坐标.进而利用关于原点对称点的性质得出答案.【解答】解:如图所示:∵A(2.3).B(0.1).C(3.1).线段AC与BD互相平分.∴D点坐标为:(5.3).∴点D关于坐标原点的对称点的坐标为:(﹣5.﹣3).故答案为:(﹣5.﹣3).【点评】此题主要考查了平行四边形的性质以及关于原点对称点的性质.正确得出D点坐标是解题关键.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3).若y>1.则m的取值范围是<m<.【分析】先解方程组.求得x和y.再根据y>1和0<n<3.求得x的取值范围.最后根据=m.求得m的取值范围.【解答】解:解方程组.得∵y>1∴2n﹣1>1.即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3.即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<【点评】本题主要考查了分式方程的解以及二元一次方程组的解.解题时需要掌握解二元一次方程和一元一次不等式的方法.根据x取值范围得到的取值范围是解题的关键.三、解答题17.(6分)(2016•杭州)计算6÷(﹣).方方同学的计算过程如下.原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确.若不正确.请你写出正确的计算过程.【分析】根据有理数的混合运算顺序.先算括号里面的.再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确.正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.【点评】此题考查了有理数的除法.用到的知识点是有理数的除法、通分、有理数的加法.关键是掌握运算顺序和结果的符号.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆.求该季的汽车产量;(2)圆圆同学说:“因为第二.第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%.所以第二季度的汽车产量一定高于第三季度的汽车产量”.你觉得圆圆说的对吗?为什么?【分析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图.可以求得第一季度的汽车销售量为2100辆时.该季的汽车产量;(2)首先判断圆圆的说法错误.然后说明原因即可解答本题.【解答】解:(1)由题意可得.2100÷70%=3000(辆).即该季的汽车产量是3000辆;(2)圆圆的说法不对.因为百分比仅能够表示所要考查的数据在总量中所占的比例.并不能反映总量的大小.【点评】本题考查折线统计图.解题的关键是明确题意.找出所求问题需要的条件.19.(8分)(2016•杭州)如图.在△ABC中.点D.E分别在边AB.AC上.∠AED=∠B.射线AG分别交线段DE.BC于点F.G.且.(1)求证:△ADF∽△ACG;(2)若.求的值.【分析】(1)欲证明△ADF∽△ACG.由可知.只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=.由此即可证明.【解答】(1)证明:∵∠AED=∠B.∠DAE=∠DAE.∴∠ADF=∠C.∵=.∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG.∴=.又∵=.∴=.∴=1.【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识.记住相似三角形的判定方法是解决问题的关键.属于基础题中考常考题型.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢.时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时.求足球距离地面的高度;(2)当足球距离地面的高度为10米时.求t;(3)若存在实数t1.t2(t1≠t2)当t=t1或t2时.足球距离地面的高度都为m(米).求m的取值范围.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程.解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根.由根的判别式即可得m的范围.【解答】解:(1)当t=3时.h=20t﹣5t2=20×3﹣5×9=15(米).∴当t=3时.足球距离地面的高度为15米;(2)∵h=10.∴20t﹣5t2=10.即t2﹣4t+2=0.解得:t=2+或t=2﹣.故经过2+或2﹣时.足球距离地面的高度为10米;(3)∵m≥0.由题意得t1.t2是方程20t﹣5t2=m 的两个不相等的实数根.∴b2﹣4ac=202﹣20m>0.∴m<20.故m的取值范围是0≤m<20.【点评】本题主要考查二次函数背景下的求值及一元二次方程的应用、根的判别式.根据题意得到相应的方程及将实际问题转化为方程问题是解题的关键.21.(10分)(2016•杭州)如图.已知四边形ABCD和四边形DEFG为正方形.点E在线段DE上.点A.D.G在同一直线上.且AD=3.DE=1.连接AC.CG.AE.并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【分析】(1)作EM⊥AC于M.根据sin∠EAM=求出EM、AE即可解决问题.(2)先证明△GDC≌△EDA.得∠GCD=∠EAD.推出AH⊥GC.再根据S△AGC=•AG•DC=•GC•AH.即可解决问题.【解答】解:(1)作EM⊥AC于M.∵四边形ABCD是正方形.∴∠ADC=90°.AD=DC=3.∠DCA=45°.∴在RT△ADE中.∵∠ADE=90°.AD=3.DE=1.∴AE==.在RT△EMC中.∵∠EMC=90°.∠ECM=45°.EC=2.∴EM=CM=.∴在RT△AEM中.sin∠EAM===.(2)在△GDC和△EDA中..∴△GDC≌△EDA.∴∠GCD=∠EAD.GC=AE=.∵∠EHC=∠EDA=90°.∴AH⊥GC.∵S△AGC=•AG•DC=•GC•AH.∴×4×3=××AH.∴AH=.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识.添加常用辅助线是解决问题的关键.学会用面积法求线段.属于中考常考题型.22.(12分)(2016•杭州)已知函数y1=ax2+bx.y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1.0).函数y2的图象过点(1.2).求a.b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时.比较y1.y2的大小.【分析】(1)结合点的坐标利用待定系数法即可得出关于a、b的二元一次方程组.解方程组即可得出结论;(2)①将函数y1的解析式配方.即可找出其顶点坐标.将顶点坐标代入函数y2的解析式中.即可的出a、b的关系.再根据ab≠0.整理变形后即可得出结论;②由①中的结论.用a表示出b.两函数解析式做差.即可得出y1﹣y2=a(x﹣2)(x﹣1).根据x的取值范围可得出(x﹣2)(x﹣1)<0.分a>0或a<0两种情况考虑.即可得出结论.【解答】解:(1)由题意得:.解得:.故a=1.b=1.(2)①证明:∵y1=ax2+bx=a.∴函数y1的顶点为(﹣.﹣).∵函数y2的图象经过y1的顶点.∴﹣=a(﹣)+b.即b=﹣.∵ab≠0.∴﹣b=2a.∴2a+b=0.②∵b=﹣2a.∴y1=ax2﹣2ax=ax(x﹣2).y2=ax﹣2a.∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<.∴x﹣2<0.x﹣1>0.(x﹣2)(x﹣1)<0.当a>0时.a(x﹣2)(x﹣1)<0.y1<y2;当a<0时.a(x﹣1)(x﹣1)>0.y1>y2.【点评】本题考查了二次函数的综合应用.解题的关键是:(1)结合点的坐标利用待定系数法求出函数系数;(2)①函数y1的顶点坐标代入y2中.找出a、b间的关系;②分a>0或a<0两种情况考虑.本题属于中档题.难度不大.解决该题时.利用配方法找出函数y1的顶点坐标.再代入y2中找出a、b间的关系是关键.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN.若∠MAB 与∠NBA的平分线分别交射线BN.AM于点E.F.AE和BF交于点P.如图.点点同学发现当射线AM.BN交于点C;且∠ACB=60°时.有以下两个结论:①∠APB=120°;②AF+BE=AB.那么.当AM∥BN时:(1)点点发现的结论还成立吗?若成立.请给予证明;若不成立.请求出∠APB的度数.写出AF.BE.AB长度之间的等量关系.并给予证明;(2)设点Q为线段AE上一点.QB=5.若AF+BE=16.四边形ABEF的面积为32.求AQ的长.【分析】(1)由角平分线和平行线整体求出∠MAB+∠NBA.从而得到∠APB=90°.最后用等边对等角.即可.(2)先根据条件求出AF.FG.求出∠FAG=60°.最后分两种情况讨论计算.【解答】解:(1)原命题不成立.新结论为:∠APB=90°.AF+BE=2AB(或AF=BE=AB).理由:∵AM∥BN.∴∠MAB+∠NBA=180°.∵AE.BF分别平分∠MAB.NBA.∴∠EAB=∠MAB.∠FBA=∠NBA.∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°.∴∠APB=90°.∵AE平分∠MAB.∴∠MAE=∠BAE.∵AM∥BN.∴∠MAE=∠BAE.∴∠BAE=∠BEA.∴AB=BE.同理:AF=AB.∴AF=+BE=2AB(或AF=BE=AB);(2)如图1.过点F作FG⊥AB于G.∵AF=BE.AF∥BE.∴四边形ABEF是平行四边形.∵AF+BE=16.∴AB=AF=BE=8.∵32=8×FG.∴FG=4.在Rt△FAG中.AF=8.∴∠FAG=60°.当点G在线段AB上时.∠FAB=60°.当点G在线段BA延长线时.∠FAB=120°.①如图2.当∠FAB=60°时.∠PAB=30°.∴PB=4.PA=4.∵BQ=5.∠BPA=90°.∴PQ=3.∴AQ=4﹣3或AQ=4+3.②如图3.当∠FAB=120°时.∠PAB=60°.∠FBG=30°.∴PB=4.∵PB=4>5.∴线段AE上不存在符合条件的点Q.∴当∠FAB=60°时.AQ=4﹣3或4+3.【点评】此题是四边形综合题.主要考查了平行线的性质.角平分线的性质.直角三角形的性质.勾股定理.解本题的关键是用勾股定理计算线段.参与本试卷答题和审题的老师有:HJJ;gsls;三界无我;sjzx;sd2011;1987483819;曹先生;弯弯的小河;zgm666;lantin;星期八;sks;szl;星月相随(排名不分先后)。
初中中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 3.1416B. πC. √2D. 0.33333答案:C2. 如果一个数的平方等于它本身,那么这个数是:A. 1B. -1C. 0D. 1或-1答案:D3. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. A或C答案:D5. 以下哪个是二次根式?A. √3xB. √x/2C. √x^2D. √x + 1答案:A6. 如果一个多项式的次数是3,那么它至少有几个项?A. 1B. 2C. 3D. 4答案:B7. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:C8. 下列哪个是整式?A. 2x/3B. 3x^2 + 2x + 1C. √xD. x^3 - √x答案:B9. 如果一个数的立方等于它本身,那么这个数是:A. 1B. -1C. 0D. A或C答案:D10. 一个长方体的长、宽、高分别为2、3和4,那么它的体积是:A. 24B. 26C. 28D. 30答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的相反数是-5,这个数是______。
答案:512. 如果一个数的平方根是4,那么这个数是______。
答案:1613. 一个数的绝对值是8,这个数可能是______或______。
答案:8 或 -814. 一个二次方程ax^2 + bx + c = 0的判别式是b^2 - 4ac,当判别式大于0时,方程有______个实数解。
答案:215. 一个数列的前三项是2、5、10,如果这个数列是等差数列,那么第四项是______。
答案:17三、解答题(本题共3小题,每小题10分,共30分)16. 解方程:2x - 5 = 3x + 1。
2019年初中数学中考复习试题(含答案) 学校:
第I卷(选择题)
请点击修改第I卷的文字说明
1. 选择题:若关于x的方程x2+ (k2—1) x + k+ 1 = 0的两根互为相反数,则k的值为---- 一( )
(A) 1,或—1 ( B) 1 ( C)— 1 ( D) 0
k
2. 如果双曲线y= 过点A(3,-2),那么下列各点在双曲线上的是()
x
A. (2,3)
B. (6,1)
C. (-1,-6)
D. (-3,2)
3. 三角形三边长分别是-------------------------------- 6、8 10,那么它最短边上的高为
—( )
(A) 6(B) 4.5 ( C) 2.4(D) 8
4.已知菱形ABCD的边长为5,两条对角线交于O 点,且OA、OB
的长分力u疋天于x 方程x2(2 m1)x m2 3 0的根,贝y m等
于
( )
(A) 3(B) 5(C) 5或 3 ( D) 5
或3
2
5.多项式2x xy 15y的一个因式为( )
(A) 2x 5y(B) x3y (C) x 3y(D) x 5y
6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ ABC相似的是【▲】
11. △ ABC 是等腰直角三角形 BC 是斜边,将△ ABP
II 卷
绕点A 逆时针旋转后,J 能与△ ACP'重合。
如果 的文 AP=3,那么PP'的长等于一
12. 如图,在△ ABC 中,AB=AC, AD 平分/ BAC, DE 丄AB , DF 丄AC,垂足分别是 E 、F.现 有
下列结论:(1) DE=DF ( 2) BD=CD ( 3) AD 上任意一点到 AB AC 的距离相等;(4) AD 上任意一点到BC 两端点的距离相等,其中正确结 论的个数有 ________ 个
A.
求证: AF 丄 BF
8 107 104 9.已知
ta n tan 1
2
10.已知不等式 x 2 ax 则请点n 2 击修
^0的解是2 x 3.则a+b =
sin cos 2 = 字说
评卷人
7.如图:DE 是厶ABC 的 ABC 的平分线交DE 于点F.
p '
F
B
D
13. 已知:在菱形ABCD中,分别延长AB、AD到E、F,使得BE= DF,连结EC FC. 求证:EC= FC.
14. 如图,从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,
已知这个圆锥的高为.,3,则这个圆形纸板的半径为▲.
15. 将图中的厶ABC作下列运动,画出相应的图形:
(1)关于y轴对称图形;
(2)以B点为位似中心,将△ ABC放大到2倍。
16. 一个数的算术平方根是8,则这个数的立方根是___________
1
17. 在厶ABC 中,/ C=90°, ta nA -,那么cosA 等于
2
2
18. 在厶ABC中,/ C=90°, BC=2 sinA= 3,则边AC的长是__________________
3
19. 如果sin 2 a+sin 30°=l _______________ 那么锐角a的度数是
20. 文物探测队探测出某建筑物下面有地下文物,为了准确测出文物所在的深度,他们在
文物上方建筑物的一侧地面上相距20米的A、B两处,用仪器测文物C,探测线与地面的夹
角分别是30°和60°,求该文物所在位置的深度
(精确到0.1米).
7
圈12 &
1
21. 有一面积为60的梯形,其上底长是下底长的
―,若下底长为X,咼为y,则y与x的
3
函数关系式是________ 比例系数是________ .
2
22. 求二次函数y 3x 6x 1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.
23. 已知:如图9,在△ ABC中,AB=AC AD丄BC 垂足为点D, AN是厶ABC外角/ CAM的平分线,
CE丄AN,垂足为点E。
(1)求证:四边形ADCE为矩形;
⑵当厶ABC满足什么条件时,四边形ADCE是一个
正方形?并给出证明。
iW
29.小明想把一个三角形拼接成面积与它相等的矩形. 他先进行了如下部分操作,如图
1 所示:
①取△ ABC 的边AB 、AC 的中点 D E ,联结DE
②过点A 作AF 丄DE 于点F ; (1)请你帮小明完成图 1的操作,
把厶ABC 拼接成面积与它相等的矩形.
24.
1 •已知函数 y = x 2,— 2<x w a ,其中a >-2,求该函数的最大值与最小值,并求出函数 取最大值和最小值时所对应的自变量 x 的值。
25.反比例函数y=
与一次函数y=kx+b 的图象的一个交点为 A( — 2, — 1),并且在x=3时,这
x
两个函数的值相等,求这两个函数的解析式
?
26.因式分解:2x 2 xy y 2 4x 5y 6
27. 一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体, 体积为216立方厘米,求这本书的高度。
28.在 Rt A ABC 中,/ A 、/ B 、/ C 的对边分别为 a 、b 、c,若 a=12 ,b=16 ,求 第三边c 的长?
评卷人
得分
三、解答题
(图1)
1
3
(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三 角形的一边与这边上的高之间的数量关系是 ____________________ . (3)
在下面所给的网格中画出符合( 2 )中条件的三角形,
并将其拼接成面积与它相等的 正方形.
30.解方程和不等式组:
2x 1 x
(1 )解方程:XX 3 x 3 0
(2)解不等式组:
1 X
—十
—
— hl
-—。