集合的基本关系(导学案)
- 格式:doc
- 大小:65.50 KB
- 文档页数:3
集合的概念及运算考纲要求(1)集合的含义与表示①了解集合的含义、元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用韦恩(V enn)图表达集合的关系及运算.考情分析1.集合部分主要以考查集合的含义、基本关系与基本运算为主,题目简单、易做,大多都是送分题;2.近几年部分省市也力求创新,创造新情境,尽可能做到灵活多样,甚至进行一些小综合,比如新定义题目,与方程、不等式、函数、数列等内容相联系的题目出现;3.题型以选择题为主,大多都是试卷的第1、2题.教学过程基础梳理1.集合:某些指定的对象集在一起成为集合。
(1)集合中的对象称元素,若a是集合A的元素,记作Aa∈;若b不是集合A的元素,记作Ab∉;(2)集合中的元素必须满足、、。
确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,与顺序无关;(3)表示一个集合可用列举法、描述法或韦恩图法;列举法:把集合中的元素出来,写在大括号内;描述法:把集合中的元素的描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
第一章集合与常用逻辑用语《1.3集合的基本运算》教案【教材分析】集合的基本运算是人教版普通高中课程标准实验教科书,数学必修1第一章第三节的内容.在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础.本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用.本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点.【教学目标与核心素养】课程目标1.理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2.理解全集和补集的含义,能求给定集合的补集;3.能使用Venn图表达集合的基本关系与基本运算.数学学科素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及∅问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
【教学重难点】重点:1.交集、并集定义的三种语言的表达方式及交集、并集的区别与联系;2全集与补集的定义.难点:利用交集并集补集含义和Venn图解决一些与集合的运算有关的问题.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。
【教学过程】一、问题导入:实数有加、减、乘、除等运算.集合是否也有类似的运算.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本10-13页,思考并完成以下问题1.两个集合的并集与交集的含义是什么?它们具有哪些性质?2.怎样用Venn图表示集合的并集和交集?3.全集与补集的含义是什么?如何用Venn图表示给定集合的补集?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究(一)知识整理1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B(读作:“A并B”)即:A∪B={x|x∈A,或x∈B} Venn图表示2交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集,记作:A∩B(读作:“A交B”)即:A∩B={x|∈A,且x∈B}Venn图表示3.全集一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U。
第一章集合与函数的概念第2课时集合间的基本关系【双向目标】能使用利用【课标知识】(),5.,,,则如果集合(或.AA A.D.A≠,=1}-2=0}=基础过关参考答案:3.【解析】因为集合A有且仅有2个子集,所以A仅有一个元素,即方程ax2+2x+a=0(a ∈)仅有一个根或两个相等的根.(1)当a=0时,方程为2x=0,此时A={0},符合题意.(2)当a≠0时,由Δ=22-4·a·a=0,即a2=1,∴a=±1.此时A={-1}或A={1},符合题意.∴a=0或a=±1.4.【解析】选A.因为A,B中的元素显然都是奇数,所以A,B都是由所有奇数构成的集合.故A=B5. 【解析】(1)(2)(3)∴的取值集合为【能力素养】探究一子集与真子集的求法例1:写出集合{a,b,c}的所有不同的子集【分析】根据子集的含义进行求解【解析】不含任何元素子集为,只含1个元素的子集为{a},{b},{c},含有2个元素的子集有{a,b},{a,c},{b,c},含有3个元素的子集为{a,b,c},即含有3个元素的集合共有23=8个不同的子集.如果集合增加第4个元素d,则以上8个子集仍是新集合的子集,再将第4个元素d放入这8个子集中,会得到新的8个子集,即含有4个元素的集合共有24=16个不同子集,由此可推测,含有n个元素的集合共有2n个不同的子集.【点评】要写出一个集合的所有子集,我们可以按子集的元素个数的多少来分别写出.当元素个数相同时,应依次将每个元素考虑完后,再写剩下的子集.如本例中要写出2个元素的子集时,先从a起,a与每个元素搭配有{a,b},{a,c},然后不看a,再看b可与哪些元素搭配即可.同时还要注意两个特殊的子集:和它本身.【变式训练】1.已知,则这样的集合有个.【解析】集合A可以为{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}【答案】7个2.已知集合A={1,2,3},平面内以(x,y)为坐标的点集合B={(x,y)|x∈A,y∈A,x+y ∈A},则B的子集个数为()A.3 B.4 C.7 D.8【解析】∵集合A={1,2,3},平面内以(x,y)为坐标的点集合B={(x,y)|x∈A,y ∈A,x+y∈A},∴B={(1,1),(1,2),(2,1)}∴B的子集个数为:23=8个.【答案】D探究二集合间的关系例2. 集合,集合,那么间的关系是().A. B. C. = D.以上都不对【分析】根据集合间的关系进行判断.【点评】判断两个集合间的关系的关键在于:弄清两个集合的元素的构成,也就是弄清楚集合是由哪些元素组成的.这就需要把较为抽象的集合具体化(如用列举法来表示集合)、形象化(用Venn图,或数形集合表示).【变式训练】1.若集合,则().A. B. C. = D.【解析】因为A,B中的元素显然都是奇数,所以A,B都是由所有奇数构成的集合.故A=B 【答案】C2.设M={x|x=a2+1,a N+},N={x|x=b2-4b+5,b N+},则M与N满足( )A. M=NB. M NC. N MD. M≠ N【解析】当a N+时,元素x=a2+1,表示正整数的平方加1对应的整数,而当b N+时,元素x=b2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N中元素是自然数的平方加1对应的整数,即M中元素都在N中,但N中至少有一个元素x=1不在M中,即M N,故选B. 【答案】B探究三集合间关系具有的性质例3:已知若M=N,则= .A.-200 B.200 C.-100 D.0【分析】解答本题应从集合的概念、表示及关系入手,本题应侧重考虑集合中元素的互异性.由M=N可知必有x2=|x|,即|x|2=|x|,∴|x|=0或|x|=1若|x|=0即x=0,以上讨论知不成立若|x|=1即x=±1当x=1时,M中元素|x|与x相同,破坏了M中元素互异性,故 x≠1当x=-1时,M={-1,1,0},N={0,1,-1}符合题意,综上可知,x=y=-1=-2+2-2+2+…+2=0【答案】0【点评】解答本题易忽视集合的元素具有的“互异性”这一特征,而找不到题目的突破口.因此,集合元素的特征是分析解决某些集合问题的切入点.【变式训练】1.设a,b R,集合,则b-a=( )【答案】22.集合A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1},D={y=x2+1}是否表示同一集合?【解析】集合A={x|y=x2+1}的代表元素为x,故集合A表示的是函数y=x2+1中自变量x的取值范围,即函数的定义域A=;集合B={y|y=x2+1}的代表元素为y,故集合B表示的是函数y=x2+1中函数值y的取值范围,即函数的值域B=;集合C={(x,y)|y=x2+1}的代表元素为点(x,y),故集合C表示的是抛物线y=x2+1上的所有点组成的集合;集合D={y=x2+1}是用列举法表示的集合,该集合中只有一个元素:方程y=x2+1.【答案】都不相同【课时作业】1.已知全集,则正确表示集合和关系的韦恩(Venn)图是()2.已知集合,,则满足条件的集合C的个数为()A.1 B.2 C.3 D.43.设M={x|x=a2+1,a N+},N={x|x=b2-4b+5,b N+},则M与N满足( )A. M=NB. M NC. N MD. M≠ N4.已知集合A={x|x2-1=0},则有( )A.1∉A B.0⊆A C.∅⊆A D.{0}⊆A5.集合的所有真子集个数为( ).A.3 B. 7 C.15 D.316.同时满足:①M⊆{1,2,3,4,5};②a∈M,则6-a∈M的非空集合M有( )A.6个 B.7个 C.15个 D.16个7.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( )A.1 B.-1C.1或-1 D.0,1或-18.设,,若则的取值范围是()AB C D.9.已知集合A={x|1<x-1≤4},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.10.用适当的符号填空:(1);(2);(3).11.已知集合A={-1,3,2m-1},集合B={3,m2},若B A,则实数m=________.12.设A是非空集合,对于k∈A,如果,那么称集合A为“和谐集”,在集合的所有非空子集中,是和谐集的集合的个数为13.已知A={x|x<3},B={x|x<a}.(1)若B⊆A,求a的取值范围;(2)若A⊆B,求a的取值范围.14.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N M,求实数a的值.15.已知全集,集合R,;若时,存在集合M使得,求出这样的集合M;1.【解析】由,得,则,选B.【答案】B【答案】D3.【解析】当a N+时,元素x=a2+1,表示正整数的平方加1对应的整数,而当b N+时,元素x=b2-4b+5=(b-2)2+1,其中b-2可以是0,所以集合N中元素是自然数的平方加1对应的整数,即M中元素都在N中,但N中至少有一个元素x=1不在M中,即M N,故选B. 【答案】B4.【解析】由已知,A={1,-1},所以选项A,B,D都错误,因为∅是任何非空集合的真子集,所以C正确.【答案】C5.【解析】,所以,真子集的个数为15个【答案】C6.【解析】a=3时,6-a=3;a=1时,6-a=5;a=2时,6-a=4;a=4时,6-a=2;a=5时,6-a=1,∴非空集合M可能是:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5}共7个..故选B【答案】B【答案】510.【解析】(1);(2);(3) .【答案】(1);(2);(3) .11.【解析】,即,当时,,满足【答案】112.【解析】由和谐集的定义知,该集合中可以含有元素-1,1,和3,和2,所以共有和谐集的集合的个数为15个【答案】1513.【解析】(1)因为B⊆A,B是A的子集,由图(1)得a≤3.(1)(2)因为A⊆B,A是B的子集,由图 (2)得a≥3.(2)【答案】(1)a≤3(2)a≥314.【解析】由得或,因此若a=2时,则,此时若a=-3时,则,此时若,则,此时N不是M的子集。
1.1.3《集合的基本运算(1)》导学案姓名: 班级: 组别: 组名:【学习目标】1、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.2、能用韦恩图表达集合的运算,体会直观图示对理解抽象概念的作用.【重点难点】▲重点:集合的交集与并集的概念▲难点:集合的交集与并集运算的综合应用【知识链接】班主任为了了解班级中最近一段时间的学习情况,把班级中在中考中取得数学与英语单科成绩均在全校前200名的同学集合起来开座谈会。
如果把班级中在中考中取得数学或英语单科成绩在全校前200名的同学集合起来开座谈会。
若数学单科成绩列全校前200名的同学构成一个集合A ,英语单科成绩列全校前200名的同学构成一个集合B ,那么前面提到的两个座谈会的召集分别相当于集合间的什么运算?【学习过程】阅读课本第8页到第9页的并集部分的内容,尝试回答以下问题:知识点一 并集问题1、你是怎样理解并集定义中的“或”这个词的?问题2、集合A 与集合B 的并集用什么符号来表示?问题3、根据Venn 图(又称韦恩图),回答A B 与B A 有什么关系?问题4、例4中集合A 与集合B 都含有元素5、8,答案能否写成}{4,5,6,8,3,5,7,8AB =?问题5、根据韦恩图1.1-2,填空:(1)若A B ⊆,则A B =________;(2)A _____A B ;(3)B_____A B ;(4)∅_____A B .问题6、下列关系式成立吗?(1)A A A = (2)AA ∅=问题7、典例解析例1、集合A={06|2=--x x x },B={03|2=-x x x },试求A B .阅读课本第9页到10页交集部分的内容,尝试回答以下问题:知识点二 交集问题1、你是怎样理解交集定义中的“且”和“所有”这两个词的?问题2、集合A 与集合B 的交集用什么符号来表示?问题3、当集合A 与集合B 没有公共元素时,A B =________.问题4、根据韦恩图1.1-4,回答A B 与B A 有什么关系?问题5、根据韦恩图1.1-4,填空:(1)若A B ⊆,则A B =________;(2)A B _____A(3)A B _____ B(4)∅_____A B问题6:在平面直角坐标系中,第二象限内的点构成的集合为(){},x y 问题7、下列关系式成立吗?(1)A A A = (2)A∅=∅问题8、典例解析例2、已知集合A={-4,2a-1,2a },B={a-5,1-a,9},分别试求适合下列条件的a 的值.(1)9B A ∈; (2){9}=B A【基础达标】A1、设}{3,5,6,8A =,}{4,5,7,8B =,求A B ,A B .A2、设}{2450A x x x =--=,}{21B x x ==,求A B ,A B .B4、设}{A x x =是小于9的正整数,}{1,2,3B =,}{3,4,5,6C =,求A B ,A C , ()A B C ,()A B C ,)()(C A B A ,)()(C A B A .思考:从本题的结果你能发现什么规律?C5、已知集合A={1,2},集合B 满足}2,1{=B A ,则集合B 有______个,分别是________.D6、若集合A={1,3,x},B={1,2x },},3,1{x B A = ,则满足条件的实数x 有______个.【小结】A1、已知集合}32|{≤≤-=x x A ,}41|{>-<=x x x B 或,则集合B A 等于( )A 、{x |x ≤3或x >4}B 、{x |-1<x ≤3}C 、{x |3≤x <4}D 、{x |-2≤x <-1}B2、设集合}{24A x x =≤<,}{3782B x x x =-≥-,求AB ,A B .【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。
1.1.1 集合的含义及其表示方法(1)步骤一:自主探究(一)、预习目标:初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法(二)、预习内容:阅读教材填空:1 、元素:一般地,我们把研究对象统称为元素。
集合:把一些元素组成的总体叫做集合。
(简称为集)2、集合与元素的表示:集合通常用 来表示,它们的元素通常用 来表示。
3、元素与集合的关系:如果a 是集合A 的元素,就说 ,记作 ,读作 。
如果a 不是集合A 的元素,就说 ,记作 ,读作 。
4.常用的数集及其记号:(1)自然数集: ,记作 。
(2)正整数集: ,记作 。
(3)整 数 集: ,记作 。
(4)有理数集: ,记作 。
(5)实 数 集: ,记作 。
步骤二:知识整合、能力提升一.考点突破考点一:集合元素的三特性——确定性、互异性、无序性【问题1】①高一(1)班的所有女生能不能构成一个集合吗?②高一(3)班上身高在1.75米以上的男生能构成一个集合吗?③世界上最高的山能不能构成一个集合?④世界上的高山能不能构成一个集合?⑤实数1、2、3、1组成的集合有几个元素?⑥由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?⑦⑧⑨⑩【问题2】下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 变式训练11.下列条件能形成集合的是( )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工考点二:元素与集合的 关系——属于、不属于【问题1】下列结论中,不正确的是( )A.若a ∈N ,则-a ∉NB.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R ,则R a ∈3变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”(1)所有在N 中的元素都在N *中( )(2)所有在N 中的元素都在Z中( )(3)所有不在N *中的数都不在Z 中( )(4)所有不在Q 中的实数都在R 中( )(5)由既在R 中又在N *中的数组成的集合中一定包含数0( )(6)不在N 中的数不能使方程4x =8成立( )二、当堂检测1、你能否确定,你所在班级中,高个子同学构成的集合?并说明理由。
1.1.3《集合的基本运算(2)》导学案姓名: 班级: 组别: 组名:【学习目标】1、理解全集与补集的定义,会求给定子集的补集.2、熟练掌握集合的交、并、补综合运算及应用.【重点难点】▲重点:准确利用补集定义求解补集,集合的交、并、补综合运算.▲难点:集合的交、并、补综合运算及应用.【知识链接】1、集合与子集2、集合的交、并运算【学习过程】阅读课本第10页到第11页补集部分的内容,尝试回答以下问题:知识点一 补集问题1、结合全集的定义,你认为全集是固定不变的还是依据具体问题来加以选择的?试举例说明.问题2、全集用什么符号来表示?全集U 中子集A 的补集怎么表示?问题3、结合补集的定义填空(1) U C U =__________; (2)U C ∅=__________; (3)A (A C U )=__________;(4)A (A C U )=__________; (5))(A C C U U = __________.问题4、例8中我们是用_______法来表示集合}{9U x x =是小于的正整数的,用_______法来表示集合}{1,2,3,4,5,6,7,8,9U =的.问题5、例9中集合}{U x x =是三角形的元素是什么?三角形可分为哪几类?问题6、你能理解集合U C ()A B 吗?我们是如何来求U C ()A B 的,分几个步骤?知识点二 集合的交、并、补综合运算及应用例1已知集合S={x |1<x ≤7},A={x |2≤x <5},B={x |3≤x <7},求:(1)(A C S ) (B C S );(2))(B A C S ;(3)(A C S ) (B C S );(4))(B A C S .问题1、用不等式表示的集合的交、并、补集的运算,常用什么样的数学工具来解答?问题2、请解答此题,相信你能行!思考:从本题的结果你可以发现什么规律?例2设全集}{323,22-+=a a U , ,{}2,12-=a A ,}{5=A C U ,求实数a 的值。
课题:1.2集合的基本关系自主备课一、学习目标1、理解集合之间包含与相等的含义,能识别给定集合的子集;2、理解子集与真子集的区别与联系;求出给定集合的子集;3、了解空集的含义,能用Venn 图表示集合间的关系;4、能判定给定集合间的关系。
二、教学过程【实例分析】问题1、高一某班50位同学组成集合B ,其中女生组成集合A. 集合A 是集合B 的一部分,因此有,a A a B ∈∈若则 问题2、所有有理数都是实数,因此有,a Q a R ∈∈若则【知识梳理】1、子集的概念:集合A 的 元素都是集合B 的元素,即若a A ∈, 则 a B ∈,我们就说集合A 包含于B ,或者说集合A 包含集合B.记作:A B B A ⊆⊇或 这时就说集合A 是集合B 的子集,这两个集合有包含关系。
可用Venn 图表示为:2、任何集合都是它本身的子集,即 A A ;3、我们常用 的内部表示集合,这种方法称为Venn 图4、集合相等:对于两个集合A,B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任意一个元素都是集合A 的元素,这时我们集合A 与集合B 相等。
即 A B 且B A 。
(或者说集合A,B 的元素完全相同)记作 : 用Venn 图来表示为:5、真子集的概念:如果集合A B,但存在元素x B ∈且x A ∉,则称A 是B 的 。
即A B A B ⊆≠且,记作:用Venn 图来表示:6、常用的几个结论①空集是任何集合的子集:Φ ___ A②空集是任何非空集合的真子集:Φ_____ A , (A ≠ Φ) ③任何一个集合是它本身的子集,即 A ___ A④对于集合A ,B ,C ,如果 A B,且B C ,则A _______C⑤含有n 个元素的集合A ,子集有______个,真子集有______个,非空真子集有______个。
⑥N N Z Q R +⊆⊆⊆⊆⑦集合间的关系有=≠⊆⊄⊂,,,四种;元素与集合的关系有∈∉,,不能混用!【做一做】1、用适当的符号填空{}{}{}{}{}222,,0;10;2,1_320a a b c x x x x x x x =∅+=-+=_;0__2、下列关系正确的是( ){}{}{}{}{}{}{},,;,,;;0;0a b b a b a a b =⊆∅=∅∅=∅⊆【例题讲解】例1、某工厂生产的产品在质量和长度都合格时,才是合格产品。
导学案(设计:朱巧)班别: 姓名:一、学习目标: 1、了解集合之间包含与相等的含义,能识别给定集合的子集。
2、理解子集、真子集的概念。
3、能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。
二、学习过程: 思考:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢? 探究:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1)A={1,2,3},B={1,2,3,4,5} ; (2)设A 为昭平中学高一(6)班全体女生组成的集合,B 为这个班全体学生组成的集合; (3) {}C x x =是两条边相等的三角形,{}D x x =是等腰三角形;(4)C={2,4,6},D={6,4,2} (5)M={}210x +=方程的实数根结论:1、一般的,对于两个集合A,B ,如果集合 中任意一个元素都是集合 中的元素,我们就说这两个集合有 关系,称集作 或 。
读作:或 。
用图可以表示为:2、在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为 。
思考:你能在生活中举出几个具有包含关系、相等关系的集合实例吗?3、如果集合 是集合 的子集()A B ⊆,且集合 是 集合 的子集()B A ⊆,此时,集合A 与集合B 的元素是一样的,因此,集合A 与集合B , 记作:用Venn 图表示为:思考:与实数中的结论“若a b ≥,且b a ≥,则a b =”相类比,你有什么体会?4、如果集合A B ⊆,但存在元素 ,且 ,我们称集合导学案(设计:朱巧)班别: 姓名:一、学习目标: 1、了解集合之间包含与相等的含义,能识别给定集合的子集。
2、理解子集、真子集的概念。
3、能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。
二、学习过程: 思考:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢? 探究:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1)A={1,2,3},B={1,2,3,4,5} ; (2)设A 为昭平中学高一(6)班全体女生组成的集合,B 为这个班全体学生组成的集合; (3) {}C x x =是两条边相等的三角形,{}D x x =是等腰三角形;(4)C={2,4,6},D={6,4,2} (5)M={}210x +=方程的实数根结论:1、一般的,对于两个集合A,B ,如果集合 中任意一个元素都是集合 中的元素,我们就说这两个集合有 关系,称集作 或 。
2.集合间的基本关系张长印 学习目标1.理解集合之间包含与相等的含义. 2.会求给定集合的子集. 3.了解空集的含义. 一、夯实基础 基础梳理1.子集、集合相等及真子集. (1)子集(2)集合相等如果集合A 是集合B 的__________(A B ⊆),3一集合B 是集合A 的__________()B A ⊆,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与2集合B 相等,记作__________. (3)真子集2.空集(1)定义:不含任何__________的集合叫做空集,记为∅. (2)规定:空集是任何集合的__________,即A ∅⊆.3.题型分析(1)集合间关系的判断;(2)两集合相等;(3)集合间的关系及应用. 基础达标1.以下式子中,正确的个数为( ). ①{}{}1331-=-,,;②{}012∅∈,,;③0∈∅;④{}00Ü;⑤{}0∅Ü. A .1 B .2 C .3 D .42.设{}4M x x =∈<R ,a = ). A .a M ⊆B .a M ∉C .{}a M ∈D .{}a M ⊆3.满足条件{}{}12123445A ⊆,,,,,,Ü的集合A 的个数是__________. 4.(1)设x ,y ∈R ,(){}A x y y x ==,,()1y B x y x ⎧⎫==⎨⎬⎩⎭,,则A 与B 的关系为__________.(2){}2A a a =-≤,{}246B y y x x ==---,则A 与B 的关系为__________. 5.设{}12A x x =<<,{}B x x a =<,若A 真包含于B ,则a 的取值范围是__________. 二、学习指引自主探究1.根据子集的定义,解决下列问题:(1)写出*N ,N ,Z ,Q ,R 的包含关系,并用Venn 图表示; (2)判断正误: ①空集没有子集. ( ) ②空集是任何一个集合的真子集. ( ) ③任一集合必有两个或两个以上子集. ( )④若B A ⊆,那么凡不属于集合A 的元素,则必不属于B . ( )2.符号“∈”与“⊆”有何区别与联系?3.(1)“A 包含于B ”等价于“对于任意x A ∈,都有x B ∈”,那么“A 不包含于B ”的等价条件是什么?若A B ⊆,则A 是由B 中的部分元素所组成的,这种说法对叶绿素? (2)如果要你证明A B =或证明A B Ü,你的思路是什么?(3)若{}21A x x k k ==+∈Z ,,{}41B x x k k ==±∈Z ,,判断A 、B 是否相等并说明理由.4.思维拓展:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理....(简称归纳). 请分别写出下列集合()112A i n =L ,,,的所有子集,写出i A 的子集个数,并归纳推理出n =……结论:{}12n n A a a a =L ,,,的子集个数为__________.你能否说出其中的道理? 案例分析1.判断下列关系是否正确:(1){}{}112∈,;(2){}{}1212⊆,,;(3)已知{}M x x x =∈R ≥,则πM ∈.【答案】(2)(3)正确,(1)错误.2.下列四个集合中,是空集的是( ). A .{}33x x += B .(){}22x y y x x y =-∈R ,,, C .{}20x x ≤D .{}210x x x x -+=∈R ,【答案】D .【解析】选项A 的集合{}0=;选项B 的集合(){}00=,;选项C 的集合{}0=;选项D 集合中的方程210x x -+=无实数根,所以为空集.3.已知{}12A =,,{}10B x ax =-=,若B A ⊆,求实数a 的值. 【解析】当0a =时,B =∅,满足B A ⊆.当0a ≠时,1B a ⎧⎫=⎨⎬⎩⎭,由B A ⊆得11a =或12a =,即1a =或12a =.综上所述,0a =或1或12.说明:对于B A ⊆,不可忘记B 可能为空集. 4.已知集合{}14A x x =<≤,{}B x x a =<, (1)若A B ⊆不成立,求实数a 的取值集合;(2)设{}4U x x =<,若集合B U ⊆,且B 与A 有公共元素.求实数a 的取值集合. 【解析】(1)若A B ⊆成立,则4a ≥,所以若A B ⊆不成立,则实数4a <,故实数a 的取值集合{}4a a <.(2)因为B U ⊆,所以4a ≤,又因为B 与A 有公共元素,所以1a >. 故实数a 的取取值集合为{}14a a <≤, 说明:可在数轴上画出这些集合并观察. 三、能力提升 能力闯关1.设{}35P x x =<≤,{}12Q x m x m =-+≤≤,若P Q ⊆,则实数m 的取值范围是__________.2.(1)已知{}01234B =,,,,,{}0248C =,,,,A B ⊆,A C ⊆,写出所有满足条件的集合A .3.集合{}2320A x x x =-+=,{}220B x x mx =-+=,若A B ⊆,讨论实数m 取值情况. 拓展迁移4.设P ,Q 是两个集合,定义集合{}P Q x x P x Q -=∈∉,且,如果{}02P x x =<<,{}13Q x x =<<,那么P Q -等于( ).A .{}01x x <<B .{}01x x <≤C .{}12x x <≤D .{}23x x <≤5.集合{}25A x x =-≤≤,{}121B x m x m =+-≤≤, (1)若B A ⊆,求实数m 的取值范围.(2)当x ∈Z 时,求A 的非空真子集个数.(3)当x ∈R 时,没有元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围. 挑战极限6.已知{}1436S x x m n m n ==+∈Z ,,,{}2T x x k k ==∈Z ,,求证: (1)2S ∈;(2)S T =.课程小结1.集合分类:有限集,无限集,空集.2.子集的概念及有关符号和性质是本节课学习的重点. 3.对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任.何.一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A B =. 4.n 元集合的子集数为2n ;非空子集数为21n -;真子集数为21n -,非空真子集数为22n -. 想一想1.若A B =,则A B ⊆,反之,成立吗?若A B Ü,则A B ⊆,反之成立吗? 2.正整数集*N 是自然数集N 的子集吗? 3.{}0与∂相同吗?2.集合间的基本关系基础梳理1.(1).(2)子集、子集、.(3)子集、至少2.元素、子集基础达标1..【解析】①⑤正确.说明:空集是任何非空集合的真子集.是含有一个元素的集合,是不含任何元素的集合,所以,不能写成.2..【解析】∵,∴,所以成立.3..【解析】设去掉元素后形成的集合为,则问题等价于:求满足条件的集合的个数,即求的非空子集数,显然是个.4.(1).(2).【解析】(1)在中,,而,故.(2),所以,故.5..【解析】将集合在数轴上表示出来,不难知道,这里尤其要注意这种极端情况.自主探究1.(1)(如右图);(2)只有④是正确的,其余全错.对于①、②来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于③来讲,可举反例,空集这一个集合就只有自身一个子集.对于④来讲,当时必有,则时也必有.2.元素与集合之间用属于关系,用符号“”表达;集合与集合之间用包含关系,用符号“”表达.在判断包含关系时,要考察其中一个集合的元素与另一个集合的属于关系.3.【解析】(1)“不包含于”等价于“存在,但”.“若,则是由中的部分元素所组成的”这种说法是不正确的,因为可能是空集,也可能是.(2)证明,就是证明且.要证明“”,就是证明“,且存在,但”(3),下面证明.任取,则,当时.;当时,.∴.任取,则或,均有∴.综上可知,.4.思维拓展:【答案】.【解析】共有个子集:;共有个子集:;共有个子集:.猜想:的子集个数为.理由:集合中每增加一个元素,其子集数恰好增加一倍,这是因为将原有的每一个子集添加新元素,恰好得到所有新增加的子集,子集数正好增加一倍.结论:元集合的子集个数为.能力闯关1..【解析】设,则∴∴.2.【解析】(1)由题,.由知集合为非空集合,且其元素全属于,即有满足条件的集合为:.(2)因为,,且,所以,即满足条件的集合为:.说明:将问题等价转化为求的公共元素组成集合的子集.3.【解析】,∵,∴或或或.①若,则;②若,则有两个相等的根,∴;③若,则有等根,∴;④若,则有两个根,∴;综上:或.拓展迁移4..【解析】在数轴上画出集合所表示的数集范围和集合表示的数集范围,由定义,容易知道.5.【解析】(1)当即。
§2 集合的基本关系
一 学习目标:
1.知识与技能
理解集合之间的包含与相等的含义,理解子集、真子集的概念,能用Venn 图表达集合间的关系,体会直观图对抽象概念的理解
2.过程与方法
通过概念学习,提高学生逻辑思维能力,渗透等价转化的思想
3.情感、态度与价值观
培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,培养学生学习数学的兴趣
二 学习重点:集合间的“包含”与“相等”关系,子集与真子集的概念及关系
三 学习难点:元素与集合的属于关系与集合间的包含关系之间的区别
预习案
1、复习元素与集合的关系——属于与不属于的关系
2、 集合与集合之间的“包含”关系;
A={1,2,3},B={1,2,3,4}
集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;
如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集。
记作:
读作:A 包含于B ,或B 包含A
当集合A 不包含于集合B 时,记作:
用Venn 图表示两个集合间的“包含”关系 )(A B B A ⊇⊆或
3、集合与集合之间的 “相等”关系;
A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =
即
⎩⎨⎧⊆⊆⇔=A B B A B A 4、结论:任何一个集合是它本身的子集 A A ⊆
A(B)
5、真子集的概念
若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集
记作:
6、 规定:
空集是任何集合的子集,是任何非空集合的真子集。
7、结论:B A ⊆,且C B ⊆,那么A 与C 的关系是
自主学习:
(1)集合A 是集合B 的真子集的含义是什么?什么叫空集?
(2)集合A 是集合B 的真子集与集合A 是集合B 的子集之间有什么区别?
(3)0,{0}与∅三者之间有什么关系?
(4)包含关系{}a A ⊆与属于关系a A ∈有什么区别?试结合实例作出解释.
(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?
(6)能否说任何集合是它本身的子集,即A A ⊆?
(7)对于集合A ,B ,C ,D ,如果A ⊆B ,B ⊆C ,那么集合A 与C 有什么关系?
探究案
例1 某工厂生产的产品在质量和长度上都合格时,该产品才合格。
若用A 表示合格产品集合,B 表示质量合格的产品的集合,C 表示长度合格的产品的集合.则下列包含关系哪些成立?
,,,A B B A A C C A ⊆⊆⊆⊆
试用Venn 图表示这三个集合的关系。
例2 写出集合{a、b}的所有子集,并指出哪些是它的真子集.
方法指导:根据子集的定义写,先写零个元素构成的集合,即∅,然后写出一个元素构成的集合,再写两个元素构成的集合,依此类推.
变式:写出集合{0,1,2}的所有的子集,并指出其中哪些是它的真子集。
结论:一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个,特别地,空集的子集个数为1,真子集个数为0。
例3已知集合
}5
|
{<
<
=x
a
x
A,x
x
B|
{
=≥}2,且满足B
A⊆,求实数a的取值范围。
方法指导:对参数a进行讨论,要注意空集是任何集合的子集
变式:已知集合A={x|1<ax<}2,B={x|-2<x<2},且a>0,求出a的范围
训练案
1、下列各式正确的是()
(1){0}∈{0,1,2}(2){0,1,2}⊆{1,0,2}(3)∅⊆{0,1,2}
(4)∅={0}(5){0,1}={(0,1)}(6)0={0}
2、满足{a}⊆M⊂{,,,
a b c d}的集合M共有 ( ) 个。