八年级数学上册 第12章 整式的乘除 12.1 幂的运算 12.1.2 幂的乘方习题课件 (新版)华
- 格式:ppt
- 大小:955.50 KB
- 文档页数:10
第12章 整式的乘除12.2 整式的乘法第1课时 单项式与单项式相乘教学目标1.让学生通过适当的尝试,获得直接的经验,体验单项式与单项式的乘法运算规律,总结运算法则.2.使学生能正确区别各单项式中的系数,同底数的幂和不同底数幂的因式.3.让学生感知单项式的乘法法则对两个以上的单项式相乘同样成立,知道单项式乘法的结果仍是单项式.4.使学生通过探索理解单项式的乘法中,系数与指数的不同计算方法,正确应用单项式的乘法步骤进行计算,能熟练地进行单项式与单项式相乘和含有加减运算的混合运算.教学重难点重点:对单项式运算法则的理解和应用.难点:尝试与探究单项式与单项式的乘法运算规律.教学过程复习巩固1.口述幂的运算的四个法则.【答案】同底数幂的乘法法则:m n m n a a a +=(m ,n 都是正整数);幂的乘方:()nm m n a a =(m ,n 都是正整数);积的乘方:()n n nb a ab =(n 是正整数);同底数幂的除法法则:n m n m a a a -=÷(m ,n 是正整数,并且>m n ,0≠a ).2.幂的运算的四个法则的联系和区别是什么?3.计算:(1)20032004155⎛⎫⨯ ⎪⎝⎭; (2)()()532532b a b a -+ ; (3)()()32232x x -.【答案】(1)5; (2)0; (3)128x -.导入新课【创设情境,课堂引入】计算(1)3225x x ; (2)3225x x y .教学方式:教师启发引导学生,学生主动探索,逐步认识.分析:运用乘法交换律、结合律,把各因式的系数,相同的字母分别结合,教学反思然后相乘.(1)()()32325252510x x x xx=⨯⨯=;(2)()()32325252510x x y x x y x y =⨯⨯=.探究新知【实践探究,交流新知】通过上面两式的计算,启发引导学生归纳得出: 单项式与单项式相乘的法则: (1)系数相乘作为积的系数;(2)相同的字母,应用同底数幂的乘法法则,底数不变,指数相加; (3)只在一个单项式中出现的字母,连同它的指数作为积的一个因式; (4)单项式与单项式相乘的结果仍然是单项式.【合作探究,解决问题】【小组讨论,师生互学】 例1 计算:(1)()2332x y xy - ; (2)()()23254a b b c --. 解:(1)()2332x y xy - ()()()2332x x y y=⨯-⎡⎤⎣⎦………(乘法的交换律与结合律)436y x -=;(2)()()23254a b b c --()()()23254a b b c =-⨯-⎡⎤⎣⎦………(乘法的交换律与结合律)c b a 5220=.例2 计算:(1)()22332x y xy - ; (2)()()2323254a b b c --;(3)()()23254mna b b c --; (4)()()()3222229ab ab ab --.解:(1)()22322647323412x y xy x y x y x y -==;(2)()()()23232466341235425641600a b b c a b b c a b c --=-=-;(3)()()()()()()232232232545454mnmnmnm mn nm m n na b b c a bb c a bc +--=--=--;教学反思(4)()()()3222236224362989ab ab ab a b ab a b a b --=-=-.方法小结:进行计算时,有乘方先算乘方,再算单项式乘以单项式.【巩固练习】 计算: (1)()()433nnab ab - ; (2)23222332a b ab ⎛⎫- ⎪⎝⎭; (3)()()()()23322122a bc a bc abc abc -----. 【答案】(1)124b a ;(2)6523b a ;(3)0.【总结】(学生总结,老师点评) 单项式乘以单项式的注意事项:(1)计算时,应先进行符号运算,积的系数等于各因式系数的积; (2)按顺序运算;(3)不要丢掉只在一个单项式里出现的字母因式;(4)单项式乘以单项式的法则对于多个单项式相乘仍然成立. 【拓展延伸】例3 已知-2x 3m +1y 2n 与7x n−6y −3−m 的积与x 4y 是同类项,求m 2+n 的值. 【思考】根据-2x 3m +1y 2n 与7x n−6y −3−m 的积与x 4y 是同类项,可以得到什么?怎样求m 2+n 的值?解:因为-2x 3m +1y 2n 与7x n−6y −3−m 的积与x 4y 是同类项,所以3164,231,m n n m ++-=⎧⎨--=⎩ 解得2,3.m n =⎧⎨=⎩所以m 2+n =7.【总结】(学生总结,老师点评)根据单项式乘以单项式的法则,结合同类项,列出关于m ,n 的二元一次方程组,进而求得代数式的值.课堂练习1.计算3a ·2b 2的结果是( )A .3ab 2B .6b 2C .6ab 2D .5ab 2 2.计算-2a 2·3a 的结果是( )A .-6a 2B .-6a 3C .12a 3D .6a 3 3.若长方形的宽是a 2,长是宽的2倍,则长方形的面积为 _____.4.一个三角形的一边长为a ,这条边上的高的长度是它的13,那么这个三角形的面积是_____.5.计算:(1)-3x 2 ·5x 3; (2)4y ·(2xy 2); (3)(-x )3·(x 2y )2.6.若(12m n a b ++)·(21n a b -)=54a b ,求m +n 2的值.教学反思参考答案1.C2.B3.42a4.216a 5. 解:(1)原式=(-3×5)(23x x )=-155 x ; (2)原式=(4×2)(2y y )x =83xy ; (3)原式=(- x 3)·(42x y )=-72x y .6.解:原式=1212154m n n a b a b ++-++=, ∴ 1215214m n n ++-⎧⎨++⎩=,=, 解得31.m n ⎧⎨⎩=,=∴ 2 4.m n +=课堂小结单项式乘以单项式中的“一、二、三”一个不变:单项式与单项式相乘时,对于只在一个单项式里出现的字母, 连同它的指数不变,作为积的因式.二个相乘:把各个单项式中的系数、相同字母的幂分别相乘.三个检验:单项式乘以单项式的结果是否正确,可从以下三个方面来 检验:①结果仍是单项式;②结果中含有单项式中的所有字母;③结果 中每一个字母的指数都等于相乘的单项式中同一字母的指数之和.布置作业请完成本课时对应练习!板书设计单项式与单项式相乘单项式与单项式相乘,只要将它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,连同它的指数一起作为积的因式.注意事项(1)应先进行符号运算; (2)按顺序运算;(3)不要丢掉只在一个单项式里出现的字母因式;(4)单项式乘以单项式的法则对于多个单项式相乘仍然成立.教学反思。
第12章 整式的乘除12.1 幂的运算第2课时 幂的乘方教学目标1.使学生掌握幂的乘方法则,并能够用式子表示;2.通过自主探索,让学生明确幂的乘方法则是根据乘方的意义和同底数幂的乘法法则推导出来的,并能利用幂的乘方的法则熟练地进行幂的乘方运算;3.培养学生在学习上探索与建构的思想.教学重难点重点:幂的乘方法则的应用. 难点:理解幂的乘方的意义.教学过程复习巩固1.同底数幂的乘法法则是什么?用式子怎样表示?【答案】同底数幂的乘法法则:底数不变,指数相加 ,m n m n a a a +=(m ,n 为正整数).2.计算:(1)22000x x ;(2)()()2322--;(3)()()233x x x ---;(4)()()()23a b a b a b ---.【答案】(1)2002x ;(2)5(2)-;(3)8x ;(4)6()a b -.导入新课【创设情境,课堂引入】 根据乘方的意义及同底数幂的乘法填空. (1)()()22223323=⨯=;(2)()()3333322232=⨯⨯=;(3)()()433333a a a a a a ==.探究新知【实践探究,交流新知】【教师引导,解决问题】【提问】同学们通过上述几道题的计算,观察一下这几道题有什么共同特点?【学生活动】先独立思考,再踊跃回答.教学反思两种运算,一种是同底数幂的乘法,另一种是幂的乘方. 【提问】通过计算探究其结果有什么规律? 幂的乘方可以转化为同底数幂的乘法.【学生活动】根据上述探索得到的规律计算()nm a (m ,n 为正整数).引入课题 概括:()n nm m mm m m mmn n a a a a a a +++===个个(m ,n 为正整数).幂的乘方法则: (1)字母表示:()nm mn aa =(m ,n 为正整数).(2)文字叙述:幂的乘方,底数不变,指数相乘. 【注意】a 可以是单独的字母,具体的数或者多项式. 【思考】同底数幂的乘法运算性质与幂的乘方的运算性质有什么相同点和【巩固练习】计算:(1)2432()x x x +; (2)33)(a 43()a ;(3)22()m x y +⎡⎤-⎣⎦; (4)(0.125)17×(216)3.【答案】621241(1)2(2)(3)()(4).8m x a x y +-;;;【合作探究,解决问题】【小组讨论,师生互学】 例1 计算: (1)()5310; (2)()43b; (3)()52a;(4)()()2332a a ⎡⎤--⎣⎦.解:(1)()155353101010==⨯; (2)()124343b b b ==⨯;(3)()105252a a a ==⨯; (4)()()()23362612aa a a a ⎡⎤--=--=-⎣⎦. 【思考】(-a 2)5和(-a 5)2的结果相同吗?为什么?【学生活动】先独立思考,再与同伴交流. 不相同.理由如下:(-a 2)5表示5个(-a 2)相乘,其结果是负的;教学反思(-a 5)2表示2个(-a 5)相乘,其结果是正的. 【思考总结】(学生总结,老师点评)(−a n )m ={a mn (m 为偶数),−a mn(m 为奇数).例2 计算: (1)()()3422aa ; (2)()()4234244a a a aa+-;(3)()()()2433362x y x y x y ⎡⎤⎡⎤⎡⎤----⎣⎦⎣⎦⎣⎦.解:(1)()()34226814a a a a a ==; (2)()()4234248888442a a a a aa a a a +-=+-=-;(3)()()()()()()24333618181822x y x y x y x y x y x y ⎡⎤⎡⎤⎡⎤----=---=--⎣⎦⎣⎦⎣⎦.例3 如果292164n =,求3n 的值. 解:∵292164n =, ∴2418222n =, ∴1842=+n , ∴4=n .课堂练习1.下列各式中,与51m x +相等的是( ) A . 51()m x + B . 15()m x + C . 5()m x x D . 5m x x x2. 14x 不可以写成( )A . 533()x xB . 238()()()()x x x x ----C . 77()xD . 3452x x x x 3.若 28()m x x =,则m = . 4.若 3212[()]m x x =,则m = .5.若 22m m x x =,求9m x 的值.6.若 33n a =,求34()n a 的值.7.已知 2,3m n a a ==,求23m n a +的值.参考答案1. C2.C3.44.25.解: 2393332()28m m m m m x x x x x ==,===.6.解:344()381.n a ==教学反思7.解:23m na+=(a m)2·(a n)3=22×33=4×27=108.课堂小结幂的乘方法则()().()]().m n mnm n p mnpa a m na a m n p⎧⎪=⎨⎪=⎩内容:幂的乘方,底数不变,指数相乘.字母表示:,都是正整数推广:[,,都是正整数【注意】幂的底数,可以是数,可以是字母,也可以是多项式.幂的乘方法则与同底数幂的乘法法则的区别在于:同底数幂的乘法是指数相加,而幂的乘方则是指数相乘.布置作业请完成本课时对应练习!板书设计幂的乘方1. 幂的乘方的运算法则:(a m)n=a mn(m,n都是正整数),语言表述:幂的乘方,底数不变,指数相乘.2.【注意】(1)运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.(2)在幂的乘方中,底数可以是单项式,也可以是多项式.(3)(−a n)m={a mn(m为偶数),−a mn(m为奇数).3.[(a m)n]p=a mnp(m,n,p都是正整数).教学反思。
********** 精心制作仅供参照 鼎尚出品 *********幂的乘方教课目的 知识与技术过程与方法感情态度与价值观会说出幂的乘方的性质, 写出它的字母表达式 ;知道幂的乘方性质是依据乘方的意义和同底数幂的乘法性质推导得出的。
会差别幂的乘方与同底数幂 乘法中指数不变的计算方法, 娴熟地进行幂的乘方运算 ;会双向应用幂的乘方公式。
经过幂的乘方性质推导,培育学生思想和推理能力。
在幂的乘方化归成几个指数同样的同底数幂相乘的过程中,让学生感悟把未知化归成已知是解决新问题的重要方法 ;在双向应用幂的乘方运算公式的过程中,培育学生思维的灵巧性。
鼓舞学生踊跃参加各个数学环节,并从中获取成就感,获取学习数学的经验。
培育学生勇于探究的精神。
教课要点 会说出幂的乘方的性质,写出它的字母表达式 ;知道幂的乘方。
教课难点会差别幂的乘方与同底数幂乘法中指数不变的计算方法。
教课内容与过程教法学法设计一 .复习发问,回首知识,请看下边的问题; 1. 同底数的幂的乘法法例 ?2. 同底 数的幂的乘法法例表达式?2323 3. 计算: ①(33);②2 22;4. 请同学们看一看: (2 3 )2 , (32 )3, (a 3)4 这几个式子, 可作以下变形: (2 3 )2 =( 2×2×2 )( 2×2×2)6=23 2=26∴ (23)2 =2面向全体学生提出有关的问题。
明确要研究,探究的问题是什么,如何去研究和议论。
.留给学生必定的思虑和回首知识的时间。
为学生创建表现才干的平台。
二 .导入 课题,研究知识请你将此外两个式子进行近似的变形,你能行吗? 本解我们就来研究这类问题 ------------ 幂的乘方知识鼎尚图文**********精心制作仅供参照鼎尚出品*********三.概括知识,培育能力:1.幂的乘方法例:幂的乘方,底数不变,指数相乘2.幂的乘方表达式:(a m )n=amn可推行:。