元素特征X射线能谱表
- 格式:pdf
- 大小:672.10 KB
- 文档页数:1
EDS能谱表一、引言随着科技的不断进步,能谱分析技术已成为材料科学、生命科学、环境科学等领域中不可或缺的分析手段。
其中,EDS能谱表作为一种常用的能谱分析技术,具有广泛的应用前景。
本文将对EDS能谱表的基本原理、技术特点、应用领域及未来发展方向进行详细阐述。
二、EDS能谱表基本原理EDS能谱表,即能量色散X射线光谱仪,是一种基于X射线照射样品后产生的特征X射线来进行元素分析的仪器。
当X射线照射到样品上时,样品中的元素会发射出具有特定波长和能量的特征X射线。
通过测量这些特征X射线的能量和强度,可以确定样品中元素的种类和含量。
EDS能谱表的原理基于X射线与物质相互作用时的能量损失和光谱线特征,能够对样品进行定性和定量分析。
三、EDS能谱表技术特点EDS能谱表具有以下技术特点:1.高精度元素分析:EDS能谱表可以对样品中的元素进行高精度分析,检测范围广泛,包括轻元素到重元素。
2.快速分析:EDS能谱表具有较高的分析速度,可以在较短的时间内完成样品的元素分析。
3.空间分辨率高:EDS能谱表的空间分辨率较高,能够提供元素在样品表面分布的信息。
4.无需样品制备:EDS能谱表分析时不需要对样品进行特殊制备,可以直接对样品进行测量。
5.操作简便:EDS能谱表的操作系统较为简单,便于用户快速掌握。
6.适用范围广:EDS能谱表适用于各种材料的分析,如金属、陶瓷、塑料、生物组织等。
四、EDS能谱表应用领域EDS能谱表在多个领域中都有广泛的应用:1.材料科学:在材料科学领域中,EDS能谱表常被用于合金、陶瓷、复合材料等材料的元素分析和成分研究。
通过对材料表面元素的分布进行分析,可以深入了解材料的结构和性能。
2.生物学:在生物学领域中,EDS能谱表常被用于生物组织、细胞、蛋白质等样品的元素分析。
通过对生物样品中元素的种类和含量进行分析,可以揭示生物体内的代谢过程和生理机制。
3.环境科学:在环境科学领域中,EDS能谱表常被用于土壤、水、空气等样品的元素分析。
一、X光电子能谱分析的基本原理X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。
该过程可用下式表示:hn=Ek+Eb+Er (1)其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。
其中Er很小,可以忽略。
对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,式(1)又可表示为:hn=Ek+Eb+Φ(2) Eb=hn-Ek-Φ(3)仪器材料的功函数Φ是一个定值,约为 4 eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。
各种原子,分子的轨道电子结合能是一定的。
因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。
元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。
例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。
因此,利用化学位移值可以分析元素的化合价和存在形式。
二、电子能谱法的特点(1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。
(2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。
它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。
而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。
(3)是一种无损分析。
(4)是一种高灵敏超微量表面分析技术,分析所需试样约10-8g即可,绝对灵敏度高达10-18g,样品分析深度约2nm。
X射线能谱仪工作原理及谱图解析1、X射线能谱仪分析原理X射线能谱仪作为扫描电镜的一个重要附件,可被看成是扫描电镜X射线信号检测器。
其主要对扫描电镜的微区成分进行定性、定量分析,可以分析元素周期表中从B-U的所有元素信息。
其原理为:扫描电镜电子枪发出的高能电子进入样品后,受到样品原子的非弹性散射,将能量传递给该原子。
该原子内壳层的电子被电离并脱离,内壳层上出现一个空位,原子处于不稳定的高能激发态。
在激发后的10-12s内原子便恢复到最低能量的基态。
在这个过程中,一系列外层电子向内壳层的空位跃迁,同时产生X射线,释放出多余的能量。
对任一原子而言,各个能级之间的能量差都是确定的,因此各种原子受激发而产生的X射线的能量也都是确定的(图1)。
X射线能谱仪收集X射线,并根据其能量对其记数、分类,从而对元素进行定性、定量分析。
图1. 粒子间相互作用产生特征X射线本所能谱仪型号为:BRUKER X-Flash 5010,有四种检测模式:点扫描,区域扫描,线扫描,面扫描。
2、能谱仪检测模式介绍及参数解读2.1 点扫描及区域扫描模式图2 X射线能谱仪点扫描(A)、选区扫描(B)报告点扫描与选区扫描主要用于对元素进行定性和定量分析,确定选定的点或区域范围内存在的所有元素种类,并对各种元素的相对含量进行计算。
能谱检测对倍数要求不高,不同倍数条件下检测结果差异不大,关键在于选取检测的部位。
一般选择较大的块体在5000倍以下检测,因为X射线出射深度较深,除金属或陶瓷等非常致密的材料外,一般的块体在20kV加速电压下,X射线出射深度2μm左右,且点扫描的范围也在直径2μm左右。
因此块体太小或倍数过大,都会造成背景严重,测量准确度下降。
此外,最好选择比较平整的区域检测,因为电子打在坑坑洼洼的样品表面,X射线出射深度差别较大,定量信息不够准确。
特别低洼的区域,几乎检测不到信号,或信号很弱,得到的结果也便不准确。
第三,电子束与轻元素相会作用区域较大,干扰更强,因此轻元素的定量比重元素更加不准确。
EDS元素分析一、实验目的1.了解能谱仪(EDS)的结构和工作原理。
2.掌握能谱仪(EDS)的分析方法、特点及应用。
二、实验原理在现代的扫描电镜和透射电镜中,能谱仪(EDS)是一个重要的附件,它同主机共用一套光学系统,可对材料中感兴趣部位的化学成分进行点分析、面分析、线分析。
它的主要优点有:(1)分析速度快,效率高,能同时对原子序数在11—92之间的所有元素(甚至C、N、O等超轻元素)进行快速定性、定量分析;(2)稳定性好,重复性好;(3)能用于粗糙表面的成分分析(断口等);(4)能对材料中的成分偏析进行测量,等等。
(一)EDS的工作原理探头接受特征X射线信号→把特征X射线光信号转变成具有不同高度的电脉冲信号→放大器放大信号→多道脉冲分析器把代表不同能量(波长)X射线的脉冲信号按高度编入不同频道→在荧光屏上显示谱线→利用计算机进行定性和定量计算。
(二)EDS的结构1、探测头:把X射线光子信号转换成电脉冲信号,脉冲高度与X射线光子的能量成正比。
2、放大器:放大电脉冲信号。
3、多道脉冲高度分析器:把脉冲按高度不同编入不同频道,也就是说,把不同的特征X射线按能量不同进行区分。
4、信号处理和显示系统:鉴别谱、定性、定量计算;记录分析结果。
(三)EDS的分析技术1、定性分析:EDS的谱图中谱峰代表样品中存在的元素。
定性分析是分析未知样品的第一步,即鉴别所含的元素。
如果不能正确地鉴别元素的种类,最后定量分析的精度就毫无意义。
通常能够可靠地鉴别出一个样品的主要成分,但对于确定次要或微量元素,只有认真地处理谱线干扰、失真和每个元素的谱线系等问题,才能做到准确无误。
定性分析又分为自动定性分析和手动定性分析,其中自动定性分析是根据能量位置来确定峰位,直接单击“操作/定性分析”按钮,即可在谱的每个峰位置显示出相应的元素符号。
自动定性分析识别速度快,但由于谱峰重叠干扰严重,会产生一定的误差。
2、定量分析:定量分析是通过X射线强度来获取组成样品材料的各种元素的浓度。
干货丨如何利用X 射线光电子能谱(XPS)表征材料表面信息X射线光电子能谱技术能满足苛刻的表面分析要求,检测信号绝大部分来自材料表面1~10 个原子层深度范围内,对材料的损伤微小,能较好地保存表面的化学结构信息。
同时具备极高的检测灵敏度和分辨率,可以在纳米尺度的范围内对化学状态进行精确表征。
XPS 不仅能够给出材料表面的化学组成及含量,而且可以分析出化学价态、化学键等信息。
角分辨XPS可以在极薄的表层内对化学信息进行表征,利用成像XPS技术,可以提供分析区域内的元素及其化学状态分布的信息图像,并可由图得谱。
此外,配合氩离子刻蚀技术,可以对材料内部进行深度剖析,进一步扩大其检测范围。
工作原理及特点XPS技术的理论基础源于德国物理学家赫兹于1887年发现的光电效应,其结构如下图所示。
XPS结构示意图使用具有特征波长的软X射线(常用射线源Mg Kα-1253.6 eV 或Al Kα-1486.6 eV) 照射样品表面,和表层原子发生作用,当光子能量大于核外电子的结合能时,可将其中内层电子激发出来,这种电子就叫做光电子。
这些光电子的能量具有高度特征性,通过检测器检测光电子的动能和光电子的数量,就可以得出样品表面元素的化学状态及含量。
此过程可以用如下方程表示:E K= hv-E B-φ式中: E K为光电子的动能; hv 为入射光子的能量; E B为样品中电子的结合能; φ为逸出功。
当原子周围的化学环境发生变化时,内层电子的结合能也跟着发生变化,这种内层电子结合能随化学环境变化的现象叫做化学位移。
X射线光电子能谱能测试化学位移,因此也就可以得出表面元素所处的化学状态。
化学位移在谱图上表现为谱峰位置的变化,以谱峰的强度为基础,可以把谱峰面积通过灵敏度因子法与元素含量联系起来,从而对样品做出定量分析。
此外,在光电离过程中,除了发射光电子以外,同时还通过弛豫(去激发)过程,发射俄歇(Auger)电子。
这两类电子的区别在于光电子动能与入射光子的能量有关系,俄歇电子动能与激发光子的能量无关,其值等于初始离子与带双电荷的终态离子之间的能量差值。
EDS元素分析之袁州冬雪创作一、实验目标1.懂得能谱仪(EDS)的布局和工作原理.2.掌握能谱仪(EDS)的分析方法、特点及应用.二、实验原理在现代的扫描电镜和透射电镜中,能谱仪(EDS)是一个重要的附件,它同主机共用一套光学系统,可对资猜中感兴趣部位的化学成分停止点分析、面分析、线分析.它的主要优点有:(1)分析速度快,效率高,能同时对原子序数在11—92之间的所有元素(甚至C、N、O等超轻元素)停止疾速定性、定量分析;(2)稳定性好,重复性好;(3)能用于粗糙概况的成分分析(断口等);(4)能对资猜中的成分偏析停止丈量,等等.(一)EDS的工作原理探头承受特征X射线信号→把特征X射线光信号转变成具有分歧高度的电脉冲信号→放大器放大信号→多道脉冲分析器把代表分歧能量(波长)X射线的脉冲信号按高度编入分歧频道→在荧光屏上显示谱线→操纵计算机停止定性和定量计算.(二)EDS的布局1、探测头:把X射线光子信号转换成电脉冲信号,脉冲高度与X射线光子的能量成正比.2、放大器:放大电脉冲信号.3、多道脉冲高度分析器:评脉冲按高度分歧编入分歧频道,也就是说,把分歧的特征X射线按能量分歧停止区分.4、信号处理和显示系统:鉴别谱、定性、定量计算;记录分析成果.(三)EDS的分析技术1、定性分析:EDS的谱图中谱峰代表样品中存在的元素.定性分析是分析未知样品的第一步,即鉴别所含的元素.如果不克不及正确地鉴别元素的种类,最后定量分析的精度就毫无意义.通常可以靠得住地鉴别出一个样品的主要成分,但对于确定次要或微量元素,只有认真地处理谱线干扰、失真和每个元素的谱线系等问题,才干做到准确无误.定性分析又分为自动定性分析和手动定性分析,其中自动定性分析是根据能量位置来确定峰位,直接单击“操纵/定性分析”按钮,即可在谱的每个峰位置显示出相应的元素符号.自动定性分析识别速度快,但由于谱峰重叠干扰严重,会发生一定的误差.2、定量分析:定量分析是通过X射线强度来获取组成样品资料的各种元素的浓度.根据实际情况,人们寻求并提出了丈量未知样品和标样的强度比方法,再把强度比颠末定量修正换算成浓度比.最广泛使用的一种定量修正技术是ZAF 修正.3、元素的面分布分析:在多数情况下是将电子束只打到试样的某一点上,得到这一点的X射线谱和成分含量,称为点分析方法.在近代的新型SEM中,大多可以获得样品某一区域的分歧成分分布状态,即:用扫描观察装置,使电子束在试样上做二维扫描,丈量其特征X射线的强度,使与这个强度对应的亮度变更与扫描信号同步在阴极射线管CRT 上显示出来,就得到特征X射线强度的二维分布的像.这种分析方法称为元素的面分布分析方法,它是一种丈量元素二维分布非常方便的方法.三、实验设备和资料四、实验设备:NORAN System SIX五、实验资料:ZnO压敏断面四、实验内容与步调(一)点分析该形式允许在电镜图像上收集多个自定义区域的能谱 .1 、收集参数设置由该形式的目标可知,其收集参数设置包含电镜图像收集参数设置和能谱收集参数设置.对其停止合理设置.2 、收集过程单击收集工具栏中的收集开端按钮,收集一幅电镜图像.可以当即收集独立区的能谱,也可以批量收集多区域的能谱.当即收集独立区域的能谱(1)单击点扫工具栏中的当即收集按钮,使其处于被按下的状态. (2)选择一种区域形状. (3)在电镜图像上指定区域位置. (4)等待收集完成.(5)如想增加一个新区域,单击指定一个新的区域位置.批量收集多区域的能谱 (1)单击点扫工具栏中的当即收集按钮,使其处于抬起的状态. (2)单击点扫工具栏中的批量收集按钮,使其处于被按下的状态. (3)选择一种区域形状. (4)在电镜图像上指定区域位置. (5)重复第(3)、(4 )步,指定多个区域. (6)单击收集工具栏中的按钮,系统将收集每个区域的谱图. 3 、检查信息 (1)单击点扫工具栏中的重新检查按钮.(2)在电镜图像上单击想要检查信息的区域.全谱分析形式分析该形式可以对所采电镜图像的每个像素点收集一组颠末死时间修正的能谱数据.一旦收集并存储后,便可以在脱离电镜支持的条件下,生成能谱停止定性、定量分析,生成面分布图像、生成线扫描图像、输出陈述等.1、收集参数设置该形式下的收集参数设置分为以下两部分:(1)电镜图像收集参数设置该部分参考Averaged Acquisition 平均收集参数设置.(2)面分布图像收集参数设置单击收集工具栏中的收集参数设置按钮,打开收集参数设置对话框,停止设置.2 、收集过程单击收集工具栏中的收集按钮,停止电镜图像的收集和面分布收集.3 、提取所需信息(1)在提取工具栏中选择一种提取工具,在电镜图像上确定提取区域,即可获得提取信息. (2)对于Spot 圆圈和Linescan 线提取方式,可以停止参数设置.方法是:在电镜图像上右击鼠标,在弹出的对话框中选中Image Extract 图像提取选项卡.在这里可以设置圆圈半径、线宽度及线上的取样点数.(二)线扫描(1)在线扫描图像上右击鼠标,在弹出的对话框中,可以改变题目称号、改变布风光、选择线扫描线的显示方式、是否显示光标、是否显示栅格、是否使用粗线条等. (2)如想去除某个元素的线扫描,在元素周期表中右击该元素后选择Inactive. (3)在电镜图像和线扫描图像上都使用图像强度光标.当移动某一个光标时,另外一个光标也随之移动.电镜图像上的光标指示出当前光标所在位置的横、纵坐标及灰度值;线扫描图像上的光标指示出当前光标所在位置的某一元素的计数值. (4)将某一元素的线扫描图像叠加在电镜图像上显示:单击线扫描图像下的该元素标签,即可叠加/不叠加显示该元素的线扫描图像.叠加属性可按如下方式修改:单击菜单“EditProperties”,并选择Linescan Overlay 选项卡,如下图所示.(三)面分布(1)在面分布图像上右击鼠标,在弹出的对话框中,可以改变光标颜色、是否显示光标、是否叠加于电镜图像上,改变面分布颜色、面分布对比度亮度等. (2)如想去除某个元素的面分布,在元素周期表中右击该元素后选择Inactive. (3)在电镜图像和面分布图像上都使用图像强度光标.当移动某一个光标时,另外一个光标也随之移动.电镜图像上的光标指示出当前光标所在位置的横、纵坐标及灰度值;面分布图像上的光标指示出当前光标所在位置的某一元素的计数值.(4)将某一面分布图像叠加在电镜图像上显示:单击面分布图像上的元素标签,即可叠加/不叠加显示该面分布图像.实验完成后,将所需的扫描图像保管.五、实验成果及讨论分别对ZnO压敏断面停止点分析,线分析,面分析.首先截取所选的分析图样,如下图所示(1)点分析首先对样品停止全谱分析:从图中可以读取到该样品中含有Zn、O等元素,其中Zn的含量最高,其它依次是O及其他元素.对应误差从表格中读取Live Time: 50.0 sec.Detector: PioneerQuantitative Results BaseO KAl KZn KSb LBi LTotal实验中我们选取了如图3个点停止点分析,如下图所示Image Name: Base(1)Accelerating Voltage: 20.0 kVMagnification: 2000(其中,图像称号为ZnO(1),加速电压为20kV,放大倍数为2000)以下详细列出了3个点分析:从此图可以看出选取的点1附近富含Zn元素,同时含有少量O和C元素.说明在大晶粒中ZnO占主要成分,即ZnO富集区,而其它掺杂含量很少.从此图可以看出选取的点2附近富含Sb元素,同时含有少量C、O、Zn、Bi、Mn、Co、Ni等元素.说明在晶界区域掺杂的杂质占主要成分,即杂质富集区,而主项含量很少.从此图可以看出选取的点3附近富含Zn、Bi元素,同时含有少量O、Zn等元素.说明在小晶粒中Bi已经掺杂进入主晶相,同时一些其他杂质也已经掺入其中.下面给出了点1、2、3处各元素含量比和误差:Weight %Base(1)_pt1Base(1)_pt2Base(1)_pt3Weight % ErrorBase(1)_pt1 +/-0.30 +/-1.58Base(1)_pt2 +/-0.37 +/-0.18 +/-0.21 +/-0.41 +/-1.28 +/-0.38Base(1)_pt3 +/-0.16 +/-0.97 +/-5.66Atom %Base(1)_pt1Base(1)_pt2Base(1)_pt3Atom % ErrorBase(1)_pt1 +/-1.04 +/-1.35Base(1)_pt2 +/-1.21 +/-0.17 +/-0.19 +/-0.37 +/-1.02 +/-0.16Base(1)_pt3 +/-1.21 +/-1.76 +/-3.20 (2)对样品停止线分析Accelerating Voltage: 20.0kVMagnification: 5000注:加速电压20kV,放大倍数为5000.如图所示,我们选取颠末大晶粒、晶界、和小晶粒的一条线段停止线分析.通过连系上下两个图分析,可以得到如下结论:(1)该ZnO陶瓷主要的元素为Zn,而且其富集区在大晶粒中,其次是小晶粒中,晶界中含量最少;(2)掺入的Sb元素主要富集在小晶粒中,且比较平均,说明掺杂效果较好;(3)晶界处富集较多的Bi;(4)元素Mn含量很少而且比较平均.这也验证了前面点分析的正确性.(3)对样品停止面分析选取如下图所示的样品区域及其灰度图,工作时加速电压为15kV,放大倍数为2000以下为所研究的元素在样品中的分布(用分歧标记和颜色区分)Data Type: Counts Mag: 5000 Acc. Voltage: 20 kV连系面分析中各元素的含量分布,并与所选图各区域对比,可得出如下结论:(1)Zn元素含量最多,其次是氧,这也验证了其ZnO为主要成分,但在一些晶界上分明含量较少;(2)Co、Mn元素含量最少,应该是少量的掺杂,且三者的分布较为平均,但是在小晶粒和晶界中含量较多;(3)Sb元素含量较少,但在小晶粒中含量较多;(4)Bi 元素含量较少,但是在晶界中分布较多.这与前面点分析和线分析相吻合.根据晶体生长实际及固体物理知识,以上的现象可以诠释为:主要成分ZnO晶粒的生长所需能量较少,因此形成的晶粒较大;而重金属元素如Sb在小晶粒中取代Zn的位置,使得晶粒在生长时需要较多的能量,因此晶粒的尺寸相对较小;而晶界处常常是空位,畸变和位错的富集区,因此一些元素如Bi常常在晶界处富集.。