第一章 时间序列分析简介知识讲解
- 格式:ppt
- 大小:282.00 KB
- 文档页数:12
时间序列分析的基础知识时间序列分析是一种用于研究时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的一系列观测值,例如股票价格、气温变化、销售额等。
通过对时间序列数据的分析,我们可以揭示数据的趋势、季节性、周期性以及随机性等特征,从而进行预测和决策。
一、时间序列的基本概念1. 时间序列:时间序列是按照时间顺序排列的一系列观测值。
时间序列可以是连续的,例如每天的股票价格;也可以是离散的,例如每月的销售额。
2. 趋势:趋势是时间序列数据长期变化的方向和幅度。
趋势可以是上升的、下降的或者平稳的。
3. 季节性:季节性是时间序列数据在一年内周期性重复出现的规律。
例如,冬季的销售额通常比夏季的销售额要高。
4. 周期性:周期性是时间序列数据在超过一年的时间范围内周期性重复出现的规律。
周期性可以是几年、几十年甚至几百年。
5. 随机性:随机性是时间序列数据中无法解释的不规律的波动。
随机性是由于各种不可预测的因素引起的,例如自然灾害、政治事件等。
二、时间序列分析的方法1. 描述性分析:描述性分析是对时间序列数据进行可视化和统计描述的过程。
通过绘制时间序列图、计算均值、方差等统计量,我们可以对数据的特征有一个直观的认识。
2. 平稳性检验:平稳性是时间序列分析的基本假设之一。
平稳时间序列的均值、方差和自相关函数不随时间变化。
我们可以通过绘制自相关图、偏自相关图以及进行单位根检验等方法来检验时间序列的平稳性。
3. 分解:分解是将时间序列数据分解为趋势、季节性、周期性和随机性四个部分的过程。
分解可以帮助我们更好地理解时间序列数据的组成部分,并进行更精确的预测。
4. 预测:预测是时间序列分析的重要应用之一。
通过建立合适的模型,我们可以利用历史数据对未来的趋势进行预测。
常用的预测方法包括移动平均法、指数平滑法和ARIMA模型等。
三、常用的时间序列模型1. 移动平均模型(MA):移动平均模型是一种基于过去观测值的加权平均的方法。
时间序列分析基础时间序列分析是一种重要的统计分析方法,用于研究随时间变化的数据序列。
时间序列分析可以帮助我们理解数据的趋势、季节性变化和周期性波动,从而进行预测和决策。
本文将介绍时间序列分析的基础知识,包括时间序列的概念、特征、分解方法和常用模型等内容。
一、时间序列的概念时间序列是按照时间顺序排列的一系列数据点的集合。
在时间序列分析中,时间是一个重要的因素,数据点的取值取决于时间点的顺序。
时间序列可以是连续的,也可以是离散的,常见的时间序列包括股票价格、气温变化、销售额等。
二、时间序列的特征时间序列通常具有以下几种特征:1. 趋势性:时间序列数据在长期内呈现出的总体上升或下降的趋势。
2. 季节性:时间序列数据在短期内呈现出的周期性波动,通常与季节变化相关。
3. 周期性:时间序列数据在长期内呈现出的周期性波动,但不是固定的季节性。
4. 随机性:时间序列数据中除了趋势性、季节性和周期性外的随机波动。
三、时间序列的分解方法为了更好地理解时间序列数据的趋势、季节性和周期性,常常需要对时间序列进行分解。
常用的时间序列分解方法包括加法模型和乘法模型。
1. 加法模型:加法模型假设时间序列数据是由趋势性、季节性、周期性和随机性的总和构成的。
即 Y(t) = T(t) + S(t) + C(t) +ε(t),其中Y(t)为时间t的观测值,T(t)为趋势性分量,S(t)为季节性分量,C(t)为周期性分量,ε(t)为随机性分量。
2. 乘法模型:乘法模型假设时间序列数据是由趋势性、季节性、周期性和随机性的乘积构成的。
即 Y(t) = T(t) * S(t) * C(t) *ε(t)。
四、常用的时间序列模型时间序列分析中常用的模型包括移动平均模型(MA)、自回归模型(AR)、自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
1. 移动平均模型(MA):MA模型假设时间序列数据是由随机误差项的线性组合构成的,表示为Y(t) = μ + ε(t) + θ1*ε(t-1) + θ2*ε(t-2) + ... + θq*ε(t-q)。
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
时间序列分析基础知识简介时间序列分析是研究时间序列的一种统计分析方法,通过对时间序列数据的观测、建模和预测,可以揭示数据中存在的内部规律和趋势变化。
本文将介绍时间序列分析的基础知识,包括时间序列的概念、时间序列数据的特点以及常用的时间序列分析方法。
时间序列的概念时间序列是按照一定的时间间隔进行观测或测量得到的数据集合,其中数据与其对应的时间密切相关。
时间序列可以是离散的,也可以是连续的。
离散时间序列是在固定的时间点上观测到的数据,连续时间序列则是在一段时间内连续观测得到的数据。
时间序列数据的特点时间序列数据具有以下几个特点:趋势性:时间序列中包含着某种趋势的演变规律,例如随着时间的推移,销售额呈现逐渐增长或逐渐下降的趋势。
季节性:某些时间序列会受到季节因素的影响,例如每年夏季冰淇淋销量增加,冬季销量减少。
周期性:时间序列中可能存在周期性波动,例如经济周期、股市周期等。
随机性:除趋势、季节和周期外,时间序列中还可能包含无规律性的波动。
这些特点使得时间序列数据在分析和预测时与其他类型数据有所不同。
时间序列分析方法描述性统计分析描述性统计分析是对时间序列数据进行初步分析和总结,以便更好地理解其特点。
常用的描述性统计方法包括:均值:计算一组数据(如一年中销售额)的平均值,用于表示数据的集中趋势。
方差:衡量数据中个体间离散程度,方差越大说明个体间差异越大。
自相关函数:用于判断观测值之间是否存在相关性。
自相关函数图示能够帮助我们发现季节变化或者其他周期性模式。
百分位数:刻画了一组数据中各个子集合所占比例。
平稳性检验平稳性是指时间序列的均值、方差和自相关函数在任意时刻都保持不变。
平稳性检验对于后续模型建立和预测非常重要。
常见的平稳性检验方法包括:观察法:通过绘制时间序列图观察是否具有明显趋势或周期性。
统计检验:使用单位根检验(如ADF检验)来判断时间序列是否平稳。
时间序列预测基于对历史数据进行建模,并利用建模结果进行未来值预测是时间序列分析的核心内容。
1. 什么是时间序列?请收集几个生活中的观察值序列。
按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。
例如我把每天的生活费记录下来;零售商把每个月的销售额记下来,重要的是时间间隔和量纲要相同。
2. 时域方法的特点是什么?时域分析方法具有理论基础扎实、操作步骤规范、分析结果易于解释,是时间序列分析的主流方法等特点。
3、时域方法的发展轨迹是怎样的?1927年,英国统计学家G. U. Yule 提出AR模型(自回归(autoregressive, AR)模型);1931年,英国统计学家、天文学家G. T. Walker提出MA模型(移动平均(moving average, MA)模型);1931年,英国统计学家、天文学家G. T. Walker提出ARMA模型(自回归移动平均(autoregressive moving average, AR MA)模型)1970年,美国统计学家G.E.P.Box和英国统计学家G.M.Jenkins 提出ARIMA模型(求和自回归移动平均(autoregressive integrated moving average, ARIMA)模型,又称(Box—Jenkins 模型))出版了《Time Series Analysis Forecasting and Control》;美国统计学家,计量经济学家Robert F.Engle在1982年提出了自回归条件异方差(ARCH)模型,用以研究英国通货膨胀率的建模问题;Bollerslov在1985年提出了广义自回归条件异方差(GARCH)模型;Nelson等人指数广义自回归条件异方差(EGARCH)模型,方差无穷广义自回归条件异方差(IEGARCH)模型,依均值广义自回归条件异方差(EGARCH-M)模型。
在非线性场合,Granger和Andersen在1978年提出了双线性模型;Howell Ttong在1978年提出了门限自回归模型(分段线性化构造)等等。
时间序列分析基础知识时间序列分析是统计学和数据科学中一项重要的内容,广泛应用于经济、金融、气候、医学等各个领域。
通过时间序列数据,可以发现数据随时间变化的趋势和规律,并用于模型预测。
以下是关于时间序列分析的一些基本知识。
一、时间序列的定义时间序列是按照时间顺序排列的数据。
这些数据可以是一个变量在不同时间点的观测值,也可以是多个变量在同一时间点的观测值。
时间序列通常由时间索引(如年、月、日、小时等)和数值组成。
例如,某个公司的月销售额、每日气温变化等都属于时间序列数据。
二、时间序列的特征趋势(Trend)趋势是描述整个时间序列中长期变化的一种成分。
它表明了数据随着时间推移所表现出的整体运动方向。
例如,一个科技公司在其成立后的几年内可能表现出清晰的销售增长趋势。
季节性(Seasonality)季节性指的是在一定周期内(如每年、每季度等)重复出现的波动现象。
例如,冰淇淋的销售在夏季通常会显著上升,而在冬季则会下降,这种规律性的波动体现为季节性。
周期性(Cyclicality)周期性与季节性相似,但不同之处在于周期性并非固定时间间隔。
周期性的变化通常跟经济周期或其他长期因素有关,如经济衰退与繁荣交替。
不规则成分(Irregular component)不规则成分是指一种随机的波动,通常是由突发事件引起的,比如自然灾害、政策变动等。
这些成分较难预测和建模。
三、时间序列分析的方法时间序列分析有多种方法,以下是几种常用的方法:移动平均法移动平均法通过计算某些滑动时间窗口内的数据均值来平滑数据,从而识别长期趋势。
常用的有简单移动平均和加权移动平均。
指数平滑法指数平滑法给予最近的数据更多权重,可以快速响应数据变化。
最常用的是单一指数平滑和霍尔特-温特模型。
自回归模型(AR)自回归模型假设当前值与之前若干个时刻的数据值有关。
通过这些过去的数据,我们可以预测未来的数值。
移动平均模型(MA)移动平均模型假设当前值由过去随机误差项影响。