四套因式分解单元测试题(含答案)
- 格式:doc
- 大小:757.00 KB
- 文档页数:17
七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。
八年级数学下册《第四章 因式分解》单元测试卷(附答案)一、单选题(本大题共12小题,每小题3分,共36分)1.多项式32328124a b a bc a b +-中,各项的公因式是( )A .2a bB .224a b -C .24a bD .2a b -2.下列各多项式中,能运用公式法分解因式的有()①2m 4-+②22x y --③22x y 1-④()()22m a m a --+⑤222x 8y -⑥22x 2xy y ---⑦229a b 3ab 1-+A .4个B .5个C .6个D .7个 3.下列四个式子从左到右的变形是因式分解的为( )A .()()22x y x y y x --=--B .23231226a b a b ⋅=C .()()()442281933x y x y x y x y -++-=D .()()()()222222821222812a a a a a a a a +-++++-+=4.下面各式从左到右的变形,属于因式分解的是( )A .21(1)1x x x x --=--B .221(1)x x -=-C .26(3)(2)x x x x --=-+D .2(1)x x x x -=- 5.若多项式28x mx +-因式分解的结果为()()42x x +-,则常数m 的值为( )A .2-B .2C .6-D .66.数学兴趣小组开展活动:把多项式2114x x ++分解因式,组长小明发现小组里有以下四种结果与自己的结果2112x ⎛⎫+ ⎪⎝⎭不同,他认真思考后,发现其中还有一种结果是正确的,你认为正确的是( )A .21(1)2x + B .21(1)4x + C .21(2)2x + D .21(2)4x + 7.已知M =3x 2-x +3,N =2x 2+3x -1,则M 、N 的大小关系是( )A .M ≥NB .M >NC .M ≤ND .M <N8.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘,积为249x -,乙与丙相乘,积为2914x x -+,则甲与丙相加的结果是( )A .25x +B .25x -C .29x +D .29x -9.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-10.关于x y 、的多项式2245815x xy y y -+++的最小值为( )A .1-B .0C .1D .211.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为() A .1 B .-5 C .-6 D .-712.多项式x 2﹣4xy ﹣2y +x +4y 2分解因式后有一个因式是x ﹣2y ,另一个因式是( )A .x +2y +1B .x +2y ﹣1C .x ﹣2y +1D .x ﹣2y ﹣1二、填空题13.分解因式:2m n mn -=_________________.14.因式分解:()()269m n m n +-++=________.15.已知221062m n m n ++=-,则m n -=______.16.已知x y ≠,满足等式222222021,22021x y y x -=-=,则222x xy y ++的值为___.17.已知()()()214b c a b c a -=--且a ≠0,则b c a +=__. 18.分解因式:2(1)(2)(2)xy x y xy x y --+---的结果为___________________________.19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x 4﹣y 4,因式分解的结果是(x ﹣y )(x +y )(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x +y )=18,(x ﹣y )=0,(x 2+y 2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x 3﹣xy 2,取x =10,y =10时,用上述方法产生的密码是_____(写出一个即可).20.多项式2222627a ab b b -+-+的最小值为________.三、解答题(本大题共5小题,每小题8分,共40分)21.分解因式:(1)22352020.a b ab b -+(2)2222(1)(9)x x +--22.分解因式:(1)322363x x y xy -+. (2)221122x y -+.23.阅读材料:利用公式法,可以将一些形如()20ax bx c a ++≠的多项式变形为()2a x m n ++的形式,我们把这样的变形方法叫做多项式()20ax bx c a ++≠的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如()222224445452922x x x x x ⎛⎫⎛⎫+-=++--=+- ⎪ ⎪⎝⎭⎝⎭ ()()()()232351x x x x =+++-=+-根据以上材料,解答下列问题.(1)分解因式:228x x +-;(2)求多项式243+-x x 的最小值;(3)已知a ,b ,c 是ABC 的三边长,且满足222506810a b c a b c +++=++,求ABC 的周长.24.探究题:(1)问题情景:将下列各式因式分解,将结果直接写在横线上:269x x ++=__________;244x x -+=________;242025x x -+=________;(2)探究发现:观察以上三个多项式的系数,我们发现:26419=⨯⨯;2(4)414-=⨯⨯;2(20)4425-=⨯⨯; 归纳猜想:若多项式2(0,0)ax bx c a c ++>>是完全平方式,猜想:系数a ,b ,c 之间存在的关系式为_____________________.(3)验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论.(4)解决问题:若多项式2(1)(26)(6)n x n x n +-+++是一个完全平方式,利用你猜想的结论求出n 的值.25.如图,边长为a 的大正方形有一个边长为b 的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)上述操作能验迁的等式是 (请选择正确的选项)A .a 2-ab =a (a -b )B .a 2-2ab +b 2=(a -b )2C .a 2+ab =a (a +b )D .a 2-b 2=(a +b )(a -b )(2)请利用你从(1)选出的等式,完成下列各题:①已知9a 2-b 2=36,3a +b =9则3a -b = ②计算:22222111111111123452022⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭参考答案:1.C 2.B 3.C 4.C 5.B 6.D7.A 8.A 9.C 10.A 11.A 12.C13.()1mn m -14.()23m n +-15.416.417.218.()()2211x y --19.10402020.18.21.(1)5b (a -2b )2(2)20(x -2)(x +2)22.(1)23()x x y - (2)1()()2y x y x -+23.(1)()()24x x -+ (2)7- (3)12.24.(1)()23x +;()22x -;()225x -(2)24b ac =(3)1(4)3n =25.(1)D(2)①4;②20234044。
浙教版七年级数学下册《因式分解》单元练习检测试卷及答案解析一、选择题1、下列等式从左到右的变形,属于因式分解的是()A.a(x-y)=ax-ay B.(x+1)(x+3)=x2+4x+3C.x3﹣x=x(x+1)(x-1) D.x2+2x+1=x(x+2)+12、下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2﹣2x﹣15=(x+3)(x﹣5)C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+4)3、如果二次三项式可分解为,那么a+b的值为( )A.-2 B.-1 C.1 D.24、边长为a,b的长方形,它的周长为14,面积为10,则a b+ab的值为( )A.35 B.70 C.140 D.2805、把多项式(a﹣2)+m(2﹣a)分解因式等于().A.(a﹣2)(+m)B.(a﹣2)(﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)6、能被下列数整除的是( )A.3 B.5 C.7 D.97、下列多项式中不能用公式进行因式分解的是()A.a2+a+B.a2+b2-2abC.D.8、把分解因式,其结果为( )A.()()B.()C.D.()9、将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+aC.(a+1)2-a-1 D.(a-2)2+2(a-2)+110、一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是( )A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y) D.x2-y2=(x+y)(x-y)二、填空题11、因式分解:-x= .12、分解因式:x2+2(x﹣2)﹣4=______.13、在实数范围内分解因式:a3﹣5a= .14、多项式6x2y-2xy3+4xyz的公因式是__________.15、已知x+y=6,xy=4,则x2y+xy2的值为.16、把多项式ax2+2a2x+a3分解因式的结果是.17、利用整式乘法公式计算104×96时,通常将其变形为__________________时再计算18、若,且,则___.19、分解因:=______________________.20、已知58-1能被20--30之间的两个整数整除,则这两个整数是。
(完整版)初中数学因式分解单元测试试题含答案因式分解单元测试数学考试一、单选题(共12 题;共36 分)1.若(x-3)(x+5)是x2+px+q 的因式,则p 为( )A. -15B. -2C. 8D. 22.在有理数范围内,下列各多项式能用公式法进行因式分解的是()。
A. a2-6aB. a2-ab+b2C. a2-ab+b2D. a2-ab+b23.下列多项式的各项中,公因式是5a2b 的是( )A. 15a2b-20a2b2B. 30a2b3-15ab4-10a3b2C. 10a2b2-20a2b3+50a4b5D. 5a2b4-10a3b3+15a4b24.下列分解因式中,完全正确的是()A. x3-x=x(x2-1)B. 4a2-4a+1=4a(a-1)+1C. x2+y2=(x+y)2D. 6a-9-a2=-(a-3)25.(2017?台湾)若a,b 为两质数且相差2,则ab+1 之值可能为下列何者()A. 392B. 402D. 4226.任何一个正整数n 都可以进行这样的分解:n=s×t(s,t 是正整数,且s≤t),如果p×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p×q 是n 的最佳分解,并规定:F(n)=.例如18 可以分解成1×18,2×9,3×6 这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)= ;(3)F(27)=3;(4)若n 是一个完全平方数,则F(n)=1.其中正确说法的个数是()A. 1 个B. 2 个C. 3 个D. 4 个7.下列分解因式正确的是()A. x3﹣x=x(x2﹣1)B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16D. m2+m+ =(m+ )28.把2x -4x 分解因式,结果正确的是( )A. (x+2)(x-2)B. 2x(x-2)C. 2(x -2x)D. x(2x-4)9.(2017?盘锦)下列等式从左到右的变形,属于因式分解的是()A. x2+2x﹣1=(x﹣1)2B. (a+b)(a﹣b)=a2﹣b2C. x2+4x+4=(x+2)2D. ax2﹣a=a(x2﹣1)10.若x2﹣4x+3 与x2+2x﹣3 的公因式为x﹣c,则c 之值为何?()B. ﹣1C. 1D. 311.多项式x2y2-y2-x2+1 因式分解的结果是()A. (x2+1)(y2+1)B. (x-1)(x+1)(y2+1)C. (x2+1)(y+1)(y-1)D. (x+1)(x-1)(y+1)(y-1)12.已知a,b,c 为△ABC 三边,且满足a2c2-b2c2=a4-b4,则它的形状为()A.等边三角形B. 直角三角形C. 等腰三角形D. 等腰三角形或直角三角形二、填空题(共6 题;共16 分)13.因式分解-x3+2x2y-xy2=14.因式分解:=15.分解因式:a2+ab=.16.因式分解:a2(x﹣y)﹣4b2(x﹣y)= .17.分解因式:﹣2x3+4x2y﹣2xy2=.18.若是完全平方式,那么= .三、计算题(共1 题;共6 分)19.先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.四、解答题(共6 题;共42 分)20.若a+b=﹣3,ab=1.求a3b+a2b2+ ab3的值.21.已知x2+y2+2x﹣6y+10=0,求x+y 的值.22.已知:(2x﹣y﹣1)2+ =0,(1)求的值;(2)求4x3y﹣4x2y2+xy3的值.23.先化简,再求值:(2a+3b)2﹣(2a﹣3b)2,其中a=.24.a4b﹣5a2b+4b.25.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2 可以因式分解为(x﹣1)(x+1)(x+2),当x=29 时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5 时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).答案解析部分一、单选题1.【答案】D【解析】【解答】解:, 左右恒等,故P=- 2,q=15.故答案为:D【分析】根据整式的运算把左式展开,合并同类项,因左右恒等,则x 的同次项系数相等求得P 值。
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
因式分解单元测试题及答案因式分解单元测试题一、选择题(每小题3分,共30分)1.下列各式从左到右的变形中,是因式分解的是()A、(a+3)(a-3)=a2-9B、a2-b2=(a+b)(a-b)C、a2-4a-5=a(a-4)-5D、m2-2m-3=m(m-2)-3m2.下列各式的分解因式:① 100p2-25q2=(10+5q)(10-5q)② -4m-n=-(2m+n)(2m-n)③ x-6=(x+3)(x-2)④ -x-x+42=-x+(x-42)其中正确的个数有()A、0B、1C、2D、33.下列各式中,能用完全平方公式分解因式的是()A、(x+y)(y-x)-4xyB、a2-2ab+4b2C、4m2-m+1D、(a-b)2-2(a+b)+14.当n是整数时,(2n+1)-(2n-1)是()A、2的倍数B、4的倍数C、6的倍数D、8的倍数5.设M=a(a+1)(a+2)。
N=a(a-1)(a+1),那么M-N等于()A、a2+aB、(a+1)(a+2)C、a2-aD、(a-1)(a+2)6.已知正方形的面积是(16-8x+x2) cm2(x>4cm),则正方形的周长是()A、(4-x)cmB、(x-4)cmC、(16-4x)cmD、(4x-16)cm7.若多项式(2x)3-81能分解成4x+9(2x+3)(2x-3),那么n=( )A、2B、4C、6D、88.已知248-1可以被60到70之间的某两个整数整除,则这两个数分别是()A、61,62B、61,63C、63,65D、65,679.如图①,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A、(a+2b)(a-b)=a2+ab-2b2B、(a+b)2=a2+2ab+b22x² + 3xy + y² - 5xy(x - y)的值。
八年级上册第14章同步训练一.解答题1.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.2.计算(1)3﹣9+3﹣4;(2)﹣++;(3)(﹣)(+)+(﹣1)2.3.解答下列问题(1)一正方形的面积是a2+6ab+9b2(a>0,b>0),则表示该正方形的边长的代数式是.(2)求证:当n为正整数时,(2n+1)2﹣(2n﹣1)2能被8整除.4.(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣).5.已知,关于x,y的方程组的解为x、y.(1)x=,y=(用含k的代数式表示);(2)若x、y互为相反数,求k的值;(3)若2y•3m•8x=12m,求m的值.6.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上.BC=DE=a,AC =BD=b,AB=BE=c,且AB⊥BE.(1)在探究长方形ACDF的面积S时,我们可以用两种不同的方法:一种是找到长和宽,然后利用长方形的面积公式,就可得到S;另一种是将长方形ACDF看成是由△ABC,△BDE,△AEF,△ABE组成的,分别求出它们的面积,再相加也可以得到S.请根据以上材料,填空:方法一:S=.方法二,S=S△ABC+S△BDE+S AEF+S△ABE=ab+b2﹣a2+c2.(2)由于(1)中的两种方法表示的都是长方形ACDP的面积,因此它们应该相等,请利用以上的结论求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.7.阅读材料∵(x+3)(x﹣2)=x2+x﹣6,∴(x2+x﹣6)÷(x﹣2)=x+3,这说明多项式x2+x﹣6能被x﹣2整除,同时也说明多项式x2+x﹣6有一个因式为x﹣2;另外,当x=2时,多项式x2+x﹣6的值为零.根据上述信息,解答下列问题(1)根据上面的材料猜想:已知一个多项式有因式x﹣2,则说明该多项式能被整除,当x=2时,该多项式的值为;(2)探索规律:一般地,如果一个关于x的多项式M,当x=k时,M的值为0,试确定M与代数式x﹣k之间的关系;(3)应用:已知x﹣2能整除x2+kx﹣14,利用上面的信息求出k的值.8.已知有理数x,y满足x+y=,xy=﹣3.(1)求(x+1)(y+1)的值;(2)求x2+y2的值.9.阅读下列材料:定义:任意两个实数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为a,b的“如意数”.(1)若a=3,b=﹣2,则a,b的“如意数”c=.(2)若a=﹣m﹣4,b=m,试说明a,b的“如意数”c≤0.(3)已知a=x2(x≠0),且a,b的“如意数”为c=x4+x2﹣1,请用含x的式子表示b.10.因式分解:(1)3a2b2﹣6ab3;(2)﹣27a3b+18a2b2﹣3ab3;(3)x3+5x2﹣x﹣5;(4)(x2﹣4)2﹣9x2.参考答案一.解答题1.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)原式=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).2.解:(1)原式=12﹣3+9﹣=9+8;(2)原式=2+5+2=9;(3)原式=5﹣2+3﹣2+1=7﹣2.3.(1)解:∵a2+6ab+9b2=(a+3b)2,∴表示该正方形的边长的代数式是a+3b.故答案为:a+3b;(2)证明:∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n×2=8n,∴原式能被8整除.4.解:(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1﹣)(1﹣)(1﹣)====.5.解:(1),②﹣①得3y=6﹣9k.∴y=2﹣3k,把y=2﹣3k代入①得x=k﹣4.故答案为:k﹣4,2﹣3k;(2)∵x、y互为相反数,∴k﹣4+2﹣3k=0.∴k=﹣1;(3)∵2y•23x=12m÷3m,∴23x+y=(12÷3)m,∴23x+y=22m,∴2m=3x+y=3(k﹣4)+2﹣3k=3k﹣12+2﹣3k=﹣10,∴m=﹣5.6.解:(1)S=b(a+b)=ab+b2.故答案为S=ab+b2;(2)由题意得:,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2;(3)∵a2+b2=c2,且c=10,a=6,∴62+b2=102,∴b=8,∴S=ab+b2=6×8+64=112.答:S的值为112.7.解:(1)已知一个多项式有因式x﹣2,说明此多项式能被(x﹣2)整除,当x=2时,该多项式的值为0;故答案为:(x﹣2),0;(2)根据(1)得出的关系,得出M能被(x﹣k)整除;(3)∵x﹣2能整除x2+kx﹣14,∴当x﹣2=0时,x2+kx﹣14=0,当x=2时,x2+kx﹣14=4+2k﹣14=0,解得:k=5.8.解:(1)(x+1)(y+1)=xy+(x+y)+1=﹣3++1=﹣1;(2)x2+y2=(x+y)2﹣2xy=+6=6.9.解:(1)∵c=ab+a+b=3×(﹣2)+3+(﹣2)=﹣5.∴a,b的“如意数”c是﹣5.故答案为:﹣5.(2)c=m(﹣m﹣4)﹣m﹣4+m=﹣m2﹣4m﹣4=﹣(m2+4m+4)=﹣(m+2)2∵(m+2)2≥0,∴﹣(m﹣2)2≤0,∴a,b的“如意数“c≤0.(3)∵c=x2×b+x2+b=x4+x2﹣1,∴b(x2+1)=x4﹣1,∵x2+1≠0,∴b===x2﹣1.10.解:(1)3a2b2﹣6ab3=3ab2(a﹣2b);(2)﹣27a3b+18a2b2﹣3ab3=﹣3ab(9a2﹣6ab+b2)=﹣3ab(3a﹣b)2;(3)x3+5x2﹣x﹣5=x2(x+5)﹣(x+5)=(x+5)(x+1)(x﹣1);(4)(x2﹣4)2﹣9x2=(x2﹣4+3x)(x2﹣4﹣3x)=(x+4)(x﹣1)(x﹣4)(x+1).人教版八年级数学上册课时练第十四章整式的乘法与因式分解单元测试题一、选择题(30分)1.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( )A.a2n-1与-b2n-1B.a2n-1与b2n-1C.a2n与b2n D.a n与b n2.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 3.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.84.已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定5.下列计算正确的是 A .224a a a += B .624a a a ÷= C .352()a a =D .222)=a b a b --(6.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( ) A .3B .6C .3±D .6±7.计算(-2)1999+(-2)2000等于( )A .-23999B .-2C .-21999D .21999 8.下列计算正确的是( ) A .a 2•a 3=a 6B .a 6÷a 3=a 2C .4x 2﹣3x 2=1D .(﹣2a 2)3=﹣8a 69.下列计算正确的是( ) A .a 2•a 3=a 6B .a 6÷a 3=a 2C .4x 2﹣3x 2=1D .(﹣2a 2)3=﹣8a 6 10.下列运算正确的是( ) A .633a a a ÷= B .238()a a =C .222()a b a b -=-D .224a a a +=二、填空题(15分) 11.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,na 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nnna a a ,则2018a =___________.12.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128…则算式(2+1) ×(22+1) ×(24+1) ×...×(232+1)+1计算结果的个位数字是_____________. 13.计算4444444444(34)(74)(114)(154) (394)(54)(94)(134)(174) (414)++++++++++ =_____.14.若a m =2,a n =8,则a m+n =_________.15.若代数式210x x b -+可化为2()1x a --,其中a 、b 为实数,则的值是_____.三、解答题(75分)16.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n. 17.我们在解题时,经常会遇到“数的平方”,那么你有简便方法吗?这里,我们以“两位数的平方”为例,请观察下列各式的规律,回答问题:()2227277207729=+⨯+= ()22323223021024=+⨯+= ()22565665063136=+⨯+=⋯()1请根据上述规律填空:238=______=______;()2我们知道,任何一个两位数(个数上数字n 十位上的数字为)m 都可以表示为10m n +,根据上述规律写出:2(10)m n +=______,并用所学知识说明你的结论的正确性. 18.(阅读理解)“若x 满足(80)(60)30x x --=,求22(80)(60)x x -+-的值”解:设(80),(60)x a x b -=-=,则(80)(60)30,(80)(60)20x x ab a b x x --==+=-+-=,所以222222(80)(60)()220230340x x a b a b ab -+-=+=+-=-⨯= (解决问题)(1)若x 满足(30)(20)10x x --=-,求22(30)(20)x x -+-的值.(2)若x 满足22(2017)(2015)4038x x -+-=,求(2017)(2015)x x --的值.(3)如图,正方形ABCD 的边长为x ,10,20AE CG ==,长方形EFGD 的面积是500,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).19.观察下列等式:12×231=132×21, 14×451=154×41, 32×253=352×23, 34×473=374×43,45×594=495×54,…… 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①35× = ×53; ② ×682=286× .(2)设数字对称式左边的两位数的十位数字为m ,个位数字为n ,且2≤m +n ≤9.用含m ,n的代数式表示数字对称式左边的两位数与三位数的乘积P ,并求出P 能被110整除时mn 的值.(其中乘法公式()()()()a b p q a p q b p q ap aq bp bq ++=+++=+++)) 20.阅读题:因式分解:1+x+x (x+1)+x (x+1)2 解:原式=(1+x )+x (x+1)+x (x+1)2 =(1+x )[1+x+x (x+1)] =(1+x )[(1+x )+x (1+x )] =(1+x )2(1+x ) =(1+x )3.(1)本题提取公因式几次?(2)若将题目改为1+x+x (x+1)+…+x (x+1)n ,需提公因式多少次?结果是什么? 21.阅读下列材料:正整数的正整数次幂的个位数字是有规律的,以“3”为例.∵133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,9319683=,∴指数以1到4为一个周期,幂的个位数字就重复出现,一般来说,若k a 的个位数字是b ,则4m k a + 的末位数字也是b (k 为正整数,m 为非负整数). 请你根据上面提供的信息,求出下式的计算结果:2432(31)(31)(31)(31)(31)1-+++++,并说出该结果的个位数字是几.22.任意一个正整数都可以进行这样的分解:n p q =⨯(p q 、是正整数,且p q ≤),正整数的所有这种分解中,如果p q 、两因数之差的绝对值最小,我们就称p q ⨯是正整数的最佳分解.并规定:()pF n q=.例如24可以分解成1×24,2×12,3×8或4×6,因为2411228364->->->-,所以4×6是24的最佳分解,所以()2243F =.(1)求()18F 的值;(2)如果一个两位正整数,10t x y =+(19,x y x y ≤≤≤、为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为m ,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为n ,若mn 为4752,那么我们称这个数为“最美数”,求所有“最美数”;(3)在(2)所得“最美数”中,求()F t 的最大值. 23.先阅读第(1)题的解答过程,然后再解第(2)题. (1)已知多项式2x 3﹣x 2+m 有一个因式是2x +1,求m 的值.解法一:设2x 3﹣x 2+m =(2x +1)(x 2+ax +b ),则:2x 3﹣x 2+m =2x 3+(2a +1)x 2+(a +2b )x +b 比较系数得: 211{20?a a b b m +=-+== ,解得: 11{?212a b m =-==,∴12m =. 解法二:设2x 3﹣x 2+m =A •(2x +1)(A 为整式)由于上式为恒等式,为方便计算了取12x =-, 32112022m ⎛⎫⎛⎫⨯---+= ⎪ ⎪⎝⎭⎝⎭,故12m =.(2)已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.【参考答案】1.B 2.D 3.C 4.C 5.B 6.D 7.D 8.D 9.D 10.A 11.4035 12.613.135314.16 15.19, 16.(1)23;(2) 1n. 17.(1)()2388308+⨯+,1444;(2)()21010m n n m n ++⨯+. 18.(1)120;(2)2017;(3)210019.(1)①583,385;②26,62;(2)P=1100mn+110m 2+110n 2+11mn ;mn=10或mn=20. 20.(1)共提取了两次公因式;(2)将题目改为1+x+x (x+1)+…+x (x+1)n ,需提公因式n 次,结果是(x+1)n+1. 21.643的个位数字为1.22.(1)12;(2)“最美数”为48和17;(3)34. 23.m =﹣5,n =20.第十四章:整式的乘法与因式分解试题学校: 姓名: 班级: 考号:一、选择题(每小题3分,共30分)(1-6;7-8;9-10) 1. 已知28a 2b m÷4a n b 2=7b 2,那么m ,n 的值为( )A. m =4,n =2B. m =4,n =1C. m =1,n =2D. m =2,n =2 2. 计算(a -2)2的结果是( )A. a 2-4 B. a 2-2a +4 C. a 2-4a +4 D. a 2+4 3. 下列计算正确的是( )A. a3+a2=a5B. (a-b)2=a2-b2C. a6b÷a2=a3bD. (-ab3)2=a2b64. 下列运算中正确的是( )A. B. · C. D.5. 下列各数中,与的积为有理数的是( )A. B. C. D.6. 如果x+y=4,那么代数式的值是( )A. ﹣2B. 2C.D.7. [2017·北京中考]如果a2+2a-1=0,那么代数式·的值是()A. -3B. -1C. 1D.38. 下列运算正确的是( )A. B. C. D.9. 从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩余部分裁成四个相同的等腰梯形(如图(1)),然后把它们拼成一个平行四边形(如图(2)).那么通过计算两个图形阴影部分的面积,可以验证下列等式成立的是( )A. B.C. D.10. [2016·厦门中考]设681×2 019-681×2 018=a,2 015×2 016-2 013×2 018=b,=c,则a,b,c的大小关系是 ()A. b<c<aB. a<c<bC. b<a<cD. c<b<a二、填空题(每小题4分,共32分)(11-15;16-17;18)11. 把多项式2x2y﹣4xy2+2y3分解因式的结果是______.12. 分解因式x3+6x2+9x的结果是_________.13. 因式分解:=__________.14. 分解因式:.15. 因式分解:=_________.16. 已知,记,,…,,则通过计算推测出的表达式=_______.(用含n的代数式表示)17. 已知,则=____.18. [2016·四川绵阳中考]如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.现用Ai表示第三行开始,从左往右,从上往下,依次出现的第i个数,例如:A1=1,A2=2,A3=1,A4=1,A5=3,A6=3,A7=1,则A2016=.三、计算题(每题6分,共24分)19. 若|x-2|+(y+1)2=0,求代数式(x-y)2-(x+2y)(x-2y)的值.20.[2017·河南中考] (8分)先化简,再求值:(2x+y)2+(x-y)(x+y)-5x(x-y),其中x=+1,y=-1.21.已知,求代数式的值.22.计算:×××…××.四、解答题(第23题7分;第24题8分;第25题9分;第26题10分,共34分)(23-24;25;26)23. 在解题目“先化简代数式,再求值,其中x=2 012,y=2 013”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗,如果他说的有道理,请求出这个结果,并说明理由.24.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中最后一项是“-3x2y”和中间的“÷”,污染后的习题形式如下:小明翻看了书后的答案是“”,你能够复原这个算式吗?25.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43.62×286=682×26,……以上每个等式两边的数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×____=____×25,②____×396=693×____;(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明.26.已知,且,能否求出的值?若能,请求出其值;若不能,请说明理由.参考答案一、选择题1. 【答案】A【解析】∵28a2b m÷4a n b2=7a2-n b m-2=7b2,∴2-n=0,m-2=2,解得m=4,n=2.故选A.2. 【答案】C【解析】完全平方公式为,则(a-2)2=.故选C.3. 【答案】D【解析】A:a3与a2不能合并,A错误;B:(a-b)2=a2-2ab+b2≠a2-b2,B错误; C:a6b÷a2= a4b≠a3b,C错误;D:(-ab3)2=a2b6,D正确.故选D.4. 【答案】C【解析】A ,A错误;B:·,B错误;C: ,C 正确;D:,D错误.故选C.5. 【答案】A【解析】,积为有理数.,积为无理数.,积为无理数.,积为无理数.故选A.6. 【答案】C【解析】原式=∵x+y=4,∴原式= .故选C.7. 【答案】C【解析】因为a2+2a-1=0,所以a2+2a=1,又···=a2+2a,所以·=1,故选C.8. 【答案】B【解析】,故A选项错误;,故B选项正确;,故C选项错误;,故D选项错误.故选B.9. 【答案】D【解析】因为阴影部分的面积既可以用“大正方形的面积-小正方形的面积”来表示,也可以用所拼成的平行四边形的面积来表示,所以有,故选D.10. 【答案】A【解析】a=681×2019-681×2018 =681×(2019-2018)=681=,b=2015×( 2015+1)-(2015-2) ×(2015+3)=20152+2015-20152-3×2015+2×2015+6=2015×(1-3+2)+6=6,c=,∴b <c <a ,故选A. 二、填空题11. 【答案】2y (x ﹣y )2【解析】2x 2y -4xy 2+2y 3=2y (x 2-2xy +y 2)=2y (x -y )212. 【答案】x (x +3)2【解析】原式= x (x ²+6x +9)= x (x +3)2. 13. 【答案】【解析】原式=5(x ²-2x +1)=5(x -1) ².14. 【答案】【解析】原式=15. 【答案】【解析】=.16. 【答案】【解析】根据题意按规律求解:b 1=2(1-a 1)=2×(1)==,b 2=2(1-a 1)(1-a 2)=×(1)==,….分析可得:b n 的表达式b n =.17. 【答案】【解析】原式.18. 【答案】1 953【解析】本题考查寻找数的规律.设第2 016个数在第n行,则=2 016,解得n = 63,由于本题中是从第3行开始,需往后推3项,即第2 016个数是64行第3个数,通过规律计算,这个数是1 953.三、计算题19. 【答案】原式=x2-2xy+y2-(x2-4y2)=.若|x-2|+(y+1)2=0,可求得,,∴原式.20. 【答案】原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.当x=+1,y=-1时,原式=9xy=9(+1)·(-1)=9.21. 【答案】原式==.∴.22. 【答案】=××××××…××××= ××××××…××××=×=.四、解答题23. 【答案】聪聪说的有道理.原式.代数式化简后与x的取值无关,因此任取一个使原式有意义的x ,都有相同的结果.当y =2 013时,原式=-2 013.24. 【答案】由于是被除式中的最后一项,商的最后一项是6x ,故除式为,被除式为,所以这个算式为.25.(1) 【答案】①275;572 ②63;36.(2) 【答案】(10a +b )·[100b +10(a +b )+a ]=(10b +a )·[100a +10(a +b )+b ]. 证明:∵左边=(10a +b )·[100b +10(a +b )+a ]=11(10a +b )·(10b +a ), 右边=(10b +a )·[100a +10(a +b )+b ]=11(10a +b ) ·(10b +a ), ∴左边=右边,原等式成立.26. 【答案】能.因为,,所以x +y =5,x +5+5-y =9,解得x +y =5,x -y =-1,则(.第十四章 整式的乘法与因式分解 单元检测1一、选择题(每题3分,共30分) 1.下列计算,正确的是( )A.326a a a ⋅=B.33a a a ÷=C.224a a a +=D.()224a a =2.计算()32ab的结果是( )A.23abB.6abC.35a bD.36a b 3.下列运算不正确的是( )A.235a a a +=B.()()21343x x x x --=-+C.()222244x y x xy y +=++ D.()()22336a b a b a b +-=-4.多项式()221a x x -+与多项式()()11x x +-的公因式是( )A.1x -B.1x +C.2+1xD.2x 5.已知24436x mx ++是完全平方式,则m 的值为( )A.2B.±2C.-6D.±6 6.将下列多项式因式分解,结果中不含因式1a +的是( )A.21a - B.2a a + C.221a a -+ D.()()22221a a +-++7.若x m +与3x +的乘积中不含x 的一次项,则m 的值为( ) A.-3 B.3 C.O D. 1 8.已知21ab =-,则()253ab a b ab b ---的值等于( )A.-1B.OC.1D.无法确定9.已知537x y 与一个多项式之积是756555289821x y x y x y +-,则这个多项式是( )A.2243x y -B.2243x y xy -C.2224314x y xy -+ D.223437x y xy --+10.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:2222,,,,,,a b x y x y a b x y a b --++--分别对应下列六个字:昌、爱、我、宜、游、美,现将()()222222x ya xy b ---因式分解,结果呈现的密码信息可能是( )A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌 二、填空题(每题3分,共18分) 11.计算:()()10822x x -÷=_________. 12.当x _________时,()0241x -=.13.若229,60a b a b +=+=,则()2a b -=_________.14.若代数式()()211x m x n ++++可以化简为223x x +-,则m n +=_________.15.利用乘法公式计算:2210199+=_________.16.已知实数,a b 满足:22111,1a b a b+=+=,则2017a b-的值为_________. 三、解答题(共72分) 17.(8分)计算: (1)()2332x y xy ⋅-; (2)()22235a ab -;(3)()()2323a b c a b c ---+; (4)()()()()432682321x xx x x -÷--+-.18.(8分)分解因式:(l)33624ab a b -; (2)42816x x -+;(3)()()2294a x y b y x -+-; (4)()222224m n m n-+.19.(8分)先化简,再求值:(l)()()()()23233a a a a -+-+-,其中2a =-;(2)()()()2141224xy xy xy xy ⎡⎤--+-÷⎣⎦,其中2,0.5x y =-=-.20.(6分)设y kx =是否有实数k ,得代数式()()()2222222434x yxy x x y --+-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.21.(10分)如图,在一块长为a cm 、宽为b cm 的长方形纸板四角各剪去一个边长为x cm(2bx <)的正方形,再把四周沿虚线折起,制成一个无盖的长方体盒子. (1)求这个长方体盒子的底面积;(用含,,a b x 的代数式表示)(2)小明想做一个容积为162cm 3的长方体盒子,且长:宽:髙=3: 2: 1,请帮助小明计算需要长方形纸板的长和宽各是多少.22.(10分)规定三角“”表示abc ,方框“”表示m n x y +.例如:()141193233=⨯⨯+=.请根据这个规定解答下列问题:(1)计算: _________;(2)代数式为完全平方式,则k =_________.(3)解方程:267x +.23.(10分)观察下列各式的变形过程:①()()25623x x x x ++=++,其中235,236+=⨯=; ②()()271234x x x x ++=++,其中347,3412+=⨯=;③()()24313x x x x -+=--,其中()()()()134,133-+-=--⨯-=; …从以上各式中,你发现了什么规律?请用你发现的规律分解因式:(l)268x x ++; (2)228x x --.24.(12分)阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到()()22232a b a b a ab b ++=++.请解答下列问题:(1)写出图2中所表示的数学等式__________________;(2)利用(1)中所得到的结论,解决下面的问题:已知11,ab bc ac 38a b c ++=++=,求222a b c ++的值; (3)图3中给出了若干个边长为a 和边长为b 的小正方形纸片及若干个边长分别为,a b 的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框中,要求所拼出的几何图形的面积为22252a ab b ++; ②再利用另一种计算面积的方法,可将多项式22252a ab b ++分解因式.即22252a ab b ++=_________.答案:1. D 【解析】因为32325a a aa +⋅==,所以A 错误;因为3312a a a a -÷==,所以B 错误;因为2222a a a +=,所以C 错误;因为()224a a =,所以D 正确.故选D.2. D 【解析】()()3323236.ab a b a b ==故选 D. 3. D 【解析】选项D 应为()()22339a b a b a b +-=-.故选D.4. A 【解析】()()22211,a x x a x -+=-所以多项式()221a x x -+与多项式()()11x x +-的公因式是1x -.故选A.5. D 【解析】24436x mx ++是完全平方式,则()22443626x mx x ++=±,所以424m =±,所以m 的值为6±.故选D.6. C 【解析】()()2111,a a a -=+-()21,a a a a +=+()22211,a a a -+=-()()()()2222221211,a a a a +-++=+-=+所以A,B,D 的结果中都含因式1a +,C 的结果中不含因式1a +.故选C.7. A 【解析】()()()2333x m x x m x m ++=+++,因为其不含x 的一次项,所以30m +=,所以3m =-.故选A.8. C 【解析】()()()322253362622221,111 1.ab ab a b ab b a b a b ab ab ab ab =-∴---=-++=-++=+-=故选 C.9. C 【解析】由537x y 与一个多项式之积是756555289821x y x y x y +-,得这个多项式是()7565555322228982174143.x y x y x y x y x xy y +-÷=+-.故选C.10. C 【解析】()()()()()()()()2222222222.x y a x y b x y a b x y x y a b a b ---=--=-+-+故选 C.11. 24x 【解析】()()()()()10810822222224x x x x x x -÷=÷==.12.2≠【解析】因为任何不为0的数的0次幂都等于1,所以只要240x -≠即可,,解得2x ≠.13.39【解析】 因为 9,a b +=所以()281,a b +=,即22281,a b ab ++=2260a b +=又,所以()2222602139.a b a b ab -=+-=-=14.4-【解析】()()()222112121,x m x n x x mx m n x m x m n ++++=+++++=+++++ ()22222123,,13m x m x m n x x m n +=⎧∴+++++=+-∴⎨++=-⎩解得0.4m n =⎧⎨=-⎩故 4.m n +=- 15.20002【解析】()()()22221019910199210199200210011001+=+-⨯⨯=-⨯+-4000029999400001999820002.=-⨯=-=16.1【解析】22111,1a b a b+=+=两式相减可得 ()()()()2211,,10.b a a b a b a b ab a b a b a b ab --=-∴+-=∴++-=⎡⎤⎣⎦22111,1,0,0,a b a b a b+=+=∴>> 从而010,0,20172017 1.a b aba b a b -++>∴-=∴== 17.【解析】(l)()2334326.x y xy x y ⋅-=- (2)()2242235610.aa b a a b -=-.(3) ()()()()22222232323449.a b c a b c a b c a ab b c ---+=--=-+-(4)()()()()()()43222226823213433223433223 2.x x x x x x x x x x x x x x xx -÷--+-=-+--+-=-+-+-+=- 18.【解析】(l)()()()332262464622.ab a bab b a ab b a b a -=-=+-(2)()()()422222816422.x x x x x -+=-=-+ (3)()()()()()()()()()2222229494943232.a x yb y x a x y b x y x y a b x y a b a b -+-=---=--=-+-(4) ()()()()()22222222222422.m n m n mn m n mn m n m n m n -+=++--=-+- 19.【解析】(l)()()()()()()2222223233269221293221,a a a a a a a a a a a a -+-+-=----=---+=--当2a =-时,原式()()2322221 5.=⨯--⨯--=-(2)()()()()222222222141224148444148444xy xy xy xy x y xy x y xy x y xy x y xy⎡⎤--+-÷⎣⎦⎡⎤=-+--÷⎣⎦⎡⎤=-+-+÷⎣⎦()2215842032,x y xy xy xy =-÷=-当2,0.5x y =-=-时,1xy =,原式203212-=-.20.【解析】能.因为()()()()()()()()222222222222222222222443443444,x y x y x xy x y x y x x y x k x k x --+-=--+=-=-=-⋅所以只需要()2241k -=,原代数式就能化简为4x ,所以224141,k k -=-=-或解得k k ==21.【解析】(1)长方体盒子的底面积为()()()222224a x b x ab ax bx x --=--+(cm 2). (2)由长:宽:髙=3:2:1,可设长方形纸板的长为3x cm,宽为2x cm,高为cm,所以3:2:162,x x x =所以 3.x =所以长方形纸板的长为3255315x x x +==⨯=(cm),长方形纸板的宽为2244312x x x +==⨯=(cm).答:需要长方形纸板的长和宽分别是15cm,12cm.22.【解析】(1)32-()()4132311364.2⎡⎤=⨯-⨯÷-+=-÷=-⎡⎤⎣⎦⎣⎦ (2)3±()22223292,x y x k y x y kxy ⎡⎤=++⋅⋅=++⎣⎦代数式为完全平方式,26, 3.k k ∴=±=±解得(3)267,x =+()()()()223232232367,x x x x x ⎡⎤∴-+-+-+=+⎣⎦()22294344967,x x x x ∴--+-+=+2229434567,x x x x ∴---+=+解得 4.x =-23.【解析】(1)()()26824.x x x x ++=++(2)()()22842.x x x x --=-+24.【解析】(1)()2222222a b c a b c ab ac bc ++=+++++ (2)由(1)得()2222222a b c a b c ab ac bc ++=++--- ()()2221123845.a b c ab ac bc =++-++=-⨯=(3)①如图所示.②()()22a b a b ++。
第一章 因式分解单元测试题一、选择题:(每小题3分,共18分) 1、下列运算中,正确的是( ) A 、x 2·x 3=x 6B 、(a b)3=a 3b 3C 、3a +2a =5a 2D 、(x³)²= x 52、下列从左边到右边的变形,是因式分解的是( )A 、29)3)(3(x x x -=+- B 、))((2233n mn m n m n m ++-=- C 、)1)(3()3)(1(+--=-+y y y y D 、z yz z y z z y yz +-=+-)2(22423、下列各式是完全平方式的是()A 、412+-x x B 、241x +C 、22b ab a ++D 、122-+x x4、下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+ B 、mn m 2052- C 、22y x -- D 、92+-x5、如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、–3B 、3C 、0D 、16、一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( ) A 、6cm B 、5cm C 、8cm D 、7cm 二、填空题:(每小题3分,共18分)7、 在实数范围内分解因式=-62a 。
8、当x ___________时,()04-x 等于1;9、()200820092 1.53⎛⎫-⨯= ⎪⎝⎭___________。
10、若3x =21,3y =32,则3x -y 等于 。
11、若22916x mxy y ++是一个完全平方式,那么m 的值是__________。
12、绕地球运动的是7.9×10³米/秒,则卫星绕地球运行8×105秒走过的路程是 。
三、因式分解:(每小题5分,共20分) 13、)(3)(2x y b y x a --- 14、y xy y x 3522+--15、2x 2y -8xy +8y 16、a 2(x -y)-4b 2(x -y)四、因式分解:(每小题7分,共14分)17、)5)(1()1(222+---x x x 18、9)52(6)52(2+-+-x x五、解答题:(第19~21小题各7分,第22小题9分,共30分) 19、若01222=+-++b b a ,求22ab b a +的值。
20、如图:大正方形的边长为a, 小正方形的边长为b 利用此图证明平方差公式。
21、如图,某市有一块长为()b a +3米,宽为()b a +2米的长方形地块,•规划部门计划将ba阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当3=a ,2=b 时的绿化面积.22、察下列各式(x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)分解因式:=-15x(2)根据规律可得(x -1)(x n -1+……+x +1)= (其中n 为正整数) (3)计算:)133333)(13(2484950++++++-(4)计算:1)2()2()2()2()2()2(23199719981999+-+-+-++-+-+-参考答案一、DBADAD二、7、6(+a ))6(-a 8. 4≠x 9、23. 10、 4311、24±=x 12.7.02x109三、13、)32)((b a y x +- 14. )5)(7(-+-x x y 15. 2)2(2-x y16. )4)(4)((b a b a y x -+-四、17、)3)(2)(1)(1(-+-+x x x x 18. 2)1(4-x 五、19、依题意得:1,2=-=b a 原式=(-2)x1x(-2+1) =2. 20、21、22略因式分解单元测试题及答案一、精心选一选1、下列从左边到右边的变形,是因式分解的是( )A.29)3)(3(x x x -=+- ;B.))((23n m n m m mn m -+=-;C.)1)(3()3)(1(+--=-+y y y y ;D.z yz z y z z y yz +-=+-)2(2242; 2、下列多项式中能用平方差公式分解因式的是( )A.22)(b a -+;B.mn m 2052-;C.22y x --;D.92+-x ; 3、多项式3222315520m n m n m n +-的公因式是( )A.5mn ;B.225m n ;C.25m n ;D.25mn ; 4、如果2592++kx x 是一个完全平方式,那么k 的值是( )A. 15 ;B. ±5;C. 30;D. ±30; 5、下列多项式能分解因式的是 ( )A.a 2-b ; B.a 2+1; C.a 2+ab+b 2; D.a 2-4a+4; 6、若E p q p q q p ⋅-=---232)()()(,则E 是( )A.p q --1;B.p q -;C.q p -+1;D.p q -+1; 7、下列各式中不是完全平方式的是( )A.21664m m -+;B.2242025m mn n ++;C.2224m n mn -+;D.221124964mn m n ++;8、把多项式)2()2(2a m a m -+-分解因式等于()A.))(2(2m m a +-;B.))(2(2m m a --;C.m(a-2)(m-1);D.m(a-2)(m+1); 9、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为()A.1,3-==c b ;B.2,6=-=c b ;C.4,6-=-=c b ;D.6,4-=-=c b 10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A.))((22b a b a b a -+=-B.2222)(b ab a b a ++=+C.2222)(b ab a b a +-=-D.)(2b a a ab a -=-二、细心填一填11、24m 2n +18n 的公因式是________________; 12、若22210b a b b a -+-+==,则。
13、分解因式(1)22)()(y x x y -=-; (2)x (2-x )+6(x -2)=_________________;(3)(x 2+y 2)2-4x 2y 2=________________; 14、x 2-254y 2=(x +52y )·( ____ ); 15、甲、乙两个同学分解因式2x ax b ++时,甲看错了b ,分解结果为()()24x x ++;乙看错了a ,分解结果为()()19x x ++,则a b +=________, 16、223x xy y -+加上 可以得到2()x y -; 17、如果22220,5,a b ab a b ab a b +==-+=+=则,;()()=-+-10010122__________。
18、在过去的学习中,我们已经接触了很多代数恒等式,其实这些代数恒等式可以用一些硬纸片拼成的图形的面积来解释这些代数式。
例如,图2.1-1可以用来解释22)2(4a a =。
图2.1-1图2.1-2请问可以用图2.1-2来解释的恒等式是: 。
19.计算220082007*2008-=____________.20、甲、乙、丙三家房地产公司相同的商品房售价都是20.15万元,为盘活资金,甲、乙分别让利7%、13%,丙的让利是甲、乙两家公司让利之和。
则丙共让利___________万元。
三、耐心做一做: 21、分解因式①9632a ab a -+ ②121x 2-144y 2③()()x y y y x x --- ④()()7422a x yb y x ---22、水压机内有4根相同的圆柱形空心圆钢立柱,每根的高度为18h m =,外径1D m =,内径0.4d m =,每立方米钢的质量为7.8吨,求这4根钢立柱的总质量(π取3.14,结果保留两个有效数字)。
(6分)23、观察下列各式:(8分))1)(1(12+-=-x x x)1)(1(123++-=-x x x x )1)(1(1234+++-=-x x x x x(1)根据前面的规律可得)1(1-=-x x n 。
(2)请按以上规律分解因式:20081x - 。
分解因式单元练习(1)答案一、精心选一选(每小题4分,共40分)1、B ;2、D ;3、C ;4、D ;5、D ;6、C ;7、C ;8、C ;9、D ;10、A 二、细心填一填(每空3分,满分30分)11、6n 12、2 13、(1)+,(2)(x -2)(6-x );(3)(x -y )2(x +y )2;14、25x y - 15、15 16、xy 17、 0,10,1002- 18、2222()a ab b a b ++=+( ) 19、2008 20、4.03三、耐心做一做:(本大题共3题,共40分)21、3(321)a a b -+;(1112)(1112)x y x y -+;()()x y x y -+;2()(74)x y a b -- 2、2005,—102005;22、四根钢立柱的总质量为()22227.847.8 3.140.50.21847.822D d h π⎡⎤⎛⎫⎛⎫-⨯⨯=⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦23.140.21184 3.710⨯⨯⨯⨯≈⨯(吨)222()2a b a ab b +=++也可23、(1)123(1)n n n x n n n ---+++++ (2) 200720062005(22221)+++++《因式分解》中考试题集锦(一)第1题. (2006 北京课标A)把代数式29xy x -分解因式,结果正确的是( ) A.2(9)x y -B.2(3)x y +C.(3)(3)x y y +-D.(9)(9)x y y +-答案:C第2题. (2006 梅州课改)因式分解:2222(1)2(1)(1)x y x y y -+-+-.答案:解:原式22(1)(21)y x x =-++ 22(1)(1)y x =-+ 2(1)(1)(1)y y x =+-+第3题. (2006 陕西非课改)分解因式:233a -= .答案:3(1)(1)a a +-第4题. (2006 重庆课改)分解因式:24x -= . 答案:()()22x x +-第5题. (2006 成都课改)把3222a ab a b +-分解因式的结果是 . 答案:()2a ab -第6题. (2006 荆门大纲)在边长为a 的正方形中挖去一个边长为b 的小正方形()a b >,再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2).根据这两个图形的面积关系,表明下列式子成立的是( )A.22()()a b a b a b -=+- B.222()2a b a ab b +=++ C.222()2a b a ab b -=-+ D.222()a b a b -=- 答案:A第7题. (2006 临沂非课改)分解因式:339_______a b ab -=. 答案:()()33ab a b a b +-第8题. (2006 临沂课改)分解因式:24(3)x --= . 答案:(5)(1)x x --第9题. (2006 北京非课改)分解因式:2244a a b -+-.a (1)aa(2)解:答案:解:2244a a b -+-22(44)a a b =-+-22(2)a b =--(2)(2)a b a b =+---.第10题. (2006 常德课改)多项式24ax a -与多项式244x x -+的公因式是 . 答案:2x -第11题. (2006 广东课改)分解因式22242x xy y -+= .答案:22()x y -第12题. (2006 河北非课改)分解因式:3_________a a -=.答案:(1)(1)a a a +-第13题. (2006 河北课改)分解因式:3_________a a -=.答案:(1)(1)a a a +-第14题. (2006 济南非课改)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解. 2224()19a x y b +, , , .答案:本题存在12种不同的作差结果,不同选择的评分标准分述如下:241a -;291b -;2249a b -;214a -;219b -;2294b a -这6种选择的评分范例如下:例1:2249a b -(23)(23)a b a b =+-.2()1x y +-;22()4x y a +-;22()9x y b +-;21()x y -+;224()a x y -+;229()b x y -+这6种选择的评分范例如下:例2:21()x y -+[][]1()1()x y x y =++-+(1)(1)x y x y =++--.第15题. (2006 青岛课改)分解因式:3244a a a -+= .答案:2(21)a a -第16题. (2006 上海非课改)分解因式:2x xy +=__________.答案:()x x y +第17题. (2006 烟台非课改)如图,有三种卡片,其中边长为a 的正方形卡片1张,边长分别为a ,b 的矩形卡片6张,边长为b 的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为__________.答案:3a b +第18题. (2006 湛江非课改)分解因式:24x x -= .答案:(4)x x -第19题. (2006 茂名课改)分解因式:269ax ax a ++= .答案:2(3)a x +第20题. (2006 安徽课改)因式分解:22ab ab a -+= .答案:2(1)a b -《因式分解》提高测试(100分钟,100分)姓名 班级 学号一 选择题(每小题4分,共20分):1.下列等式从左到右的变形是因式分解的是………………………………………( )(A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x(C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-42.分解多项式 bc c b a 2222+--时,分组正确的是……………………………( )(A )()2()222bc c b a --- (B )bc c b a 2)(222+--(C ))2()(222bc b c a --- (D ))2(222bc c b a -+-3.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………………( )(A )20 (B ) 10 (C )-20 (D )绝对值是20的数4.二项式15++-n n x x 作因式分解的结果,合于要求的选项是………………………( )(A ))(4n n x x x -+ (B )n x )(5x x -(C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n5.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( )(A )总是2 (B )总是0 (C )总是1 (D )是不确定的值二 把下列各式分解因式(每小题8分,共48分):1.x n +4-169x n +2 (n 是自然数); 2.(a +2b )2-10(a +2b )+25;解: 解:3.2xy +9-x 2-y 2; 4.322)2()2(x a a a x a -+-; 解: 解:5.16)3(8)3(222++-+m m m m ; 6.2222224)(y x z y x --+. 解: 解:三 下列整式是否能作因式分解?如果能,请完成因式分解(每小题10分,共20分):1.xy y x 4)1)(1(22---; 2.13322)132(222-+-+-x x x x . 解: 解:四 (本题12 分)作乘法:))((22y xy x y x +-+,))((22y xy x y x ++-1.这两个乘法的结果是什么?所得的这两个等式是否可以作为因式分解的公式使用?用它可以分解有怎样特点的多项式?2.用这两个公式把下列各式分解因式:(1)338b a +; (2)16-m .选作题(本题20分):证明:比4个连续正整数的乘积大1的数一定是某整数的平方.证明:《因式分解》提高测试 答案一 选择题(每小题4分,共20分):答案:1.C;2.D;3.D;4.D;5.A.二 把下列各式分解因式(每小题8分,共48分):1.x n +4-169x n +2 (n 是自然数);解:x n +4-169x n +2 =x n +2(x 2-169) =x n +2(x +13)(x -13);2.(a +2b )2-10(a +2b )+25;解:(a +2b )2-10(a +2b )+25 =(a +2b -5)2;3.2xy +9-x 2-y 2;解:2xy +9-x 2-y 2=9-x 2+2xy -y 2=9-(x 2-2xy +y 2)=32-(x -y )2=(3 +x -y )(3-x +y );4.322)2()2(x a a a x a -+-;解:322)2()2(x a a a x a -+-=322)2()2(a x a a x a ---=[])2()2(2a x a a x a ---=)2()2(2a x a a x a +--=)3()2(2x a a x a --;5.16)3(8)3(222++-+m m m m ;解:16)3(8)3(222++-+m m m m=222244)3(2)3(+⨯+-+m m m m=16)3(8)3(222++-+m m m m=[]224)3(-+m m =[]2)1)(4(-+m m=22)1()4(-+m m ;6.2222224)(y x z y x --+.解:2222224)(y x z y x --+=[]xy z y x 2)(222+-+[]xy z y x 2)(222--+=[][]2222)()(z y x z y x ---+=))()()((z y x z y x z y x z y x --+--+++.三 下列整式是否能作因式分解?如果能,请完成因式分解(每小题10分,共20分):1.xy y x 4)1)(1(22---;解:展开、整理后能因式分解.xy y x 4)1)(1(22---=xy y x y x 4)1(2222-+--=)2()12(2222y xy x xy y x ++-+-=22)()1(y x xy +--=)1(y x xy ++-)1(y x xy ---;2.13322)132(222-+-+-x x x x .解:能,用换元法.13322)132(222-+-+-x x x x=10)132(11)132(222++--+-x x x x=)932)(32(22---x x x x=)3)(32)(32(-+-x x x x .四 (本题12 分)作乘法:))((22y xy x y x +-+,))((22y xy x y x ++-1.这两个乘法的结果是什么?所得的这两个等式是否可以作为因式分解的公式使用?用它可以分解有怎样特点的多项式?2.用这两个公式把下列各式分解因式:(1)338b a +; (2)16-m .解:1.结果为3322))((y x y xy x y x +=+-+;3322))((y x y xy x y x -=++-.利用它们从右到左的变形,就可以对立方和或立方差的多项式作因式分解;2.(1)))(2()2(8223333b ab a b a b a b a +-+=+=+;(2)1)(1326-=-m m]1))[(1(2222++-=m m m)1)(1)(1(24++-+=m m m m .选作题(本题20分):证明:比4个连续正整数的乘积大1的数一定是某整数的平方.证明:设n 为一个正整数,据题意,比4个连续正整数的乘积大1的数可以表示为A =n (n +1)(n +2)(n +3)+1,于是,有A = n (n +1)(n +2)(n +3)+1=(n 2+3n +2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=[(n 2+3n )+1]2=(n 2+3n +1)2,。