第三章 焊接技术
- 格式:ppt
- 大小:523.50 KB
- 文档页数:45
第三章TIG焊接方法3.1TIG焊接方法的原理3.1.1前言TIG是英文Tungsten Inert Gas 的缩写,TIG焊接方法是使用钨电极和惰性气体保护的一种弧焊技术,该技术于1930年研究成功,最初阶段保护气体使用氦气,所以曾经使用氦弧焊的名称(Heli Arc),目前广泛使用氩气作为保护气体,所以又把TIG焊接技术称之为氩弧焊技术。
3.1.2TIG焊接方法的原理图3.1表示TIG焊接方法的原理。
在TIG焊接技术中,在不熔化的钨电极与母材之间产生电弧,利用氩气等惰性气体把熔融金属与空气隔开以起保护作用,利用电弧产生的高热量把母材进行熔化从而连结在一起。
在TIG焊接方法中有使用填充材料的填丝TIG和不使用填充材料只熔化母材的TIG焊。
图3.1 TIG焊接方法的原理3.2TIG焊接方法的起弧方式TIG 焊接方法中的起弧方式可分为三类:“高频振荡起弧方式”、“外加直流高压脉冲起弧方式”和“接触起弧方式”。
最近,由于环境保护的要求,限制高频噪音的发生,所以在TIG焊接方法中倾向于不使用“高频振荡起弧方式”。
1.高频振荡起弧方式如图3.2所示,电极与母材不接触,利用高频振荡打破电极与母材之间的绝缘状态,产生电弧。
图3.2 高频振荡起弧方式2.外加直流高压脉冲起弧方式如图3.3所示,电极与母材不接触,利用外加直流高压脉冲产生电弧。
图3.3 外加直流高压脉冲起弧方式3.接触起弧方式如图3.4所示,电极与母材接触的瞬间,把焊枪提升一点距离, 从而产生电弧。
图3.4 接触起弧方式3.3TIG焊接方法的主要特点TIG焊接方法的主要特点如下:①由于有惰性气体保护,对焊缝金属的保护效果好,所以在焊接金属中极少混入杂质,从而能取得高质量的焊接结果。
②能焊接工业中使用的几乎所有的金属(铅、锡等低熔点金属除外)。
③没有飞溅,操作方便。
④能实现任何形式的接头的焊接,而且焊接姿态不受限制。
⑤即使在小电流区域也能得到稳定的电弧,所以能焊接薄板。
第三章:焊接电弧电弧具有两个特性,即它能放出强烈的光和大量的热。
电弧发出的光和热被普遍地应用于工业上,如电弧是所有电弧焊接方式的能源。
到目前为止,电弧焊在焊接方式中其因此仍占据着主腹地位,一个重要的缘故确实是因为电弧能有效而简便地把电能转换成熔化焊接进程所需要的热能和机械能。
为了熟悉和把握电弧焊方式,第一必需弄清电弧的实质,把握电弧的基础知识。
本章确实是从理论上对电弧的性质及作用进行分析,通过学习,使咱们能把焊接电弧的知识应用到电弧焊焊接工作中去,从而达到提高焊接质量的目的。
第一节:焊接电弧的引燃进程一、焊接电弧的概念焊接时,将焊条与焊件接触后专门快拉开,在焊条端部和焊件之间当即会产生敞亮的电弧,电弧是一种气体放电现象。
咱们在日常生活中常常能够看到气体放电现象,例如,每当咱们切断电源的时候,在闸刀方才离开接触处的刹时,往往会产生敞亮的火花,这确实是气体放电的现象。
但它与焊接电弧相较较,焊接电弧不但能量大,而且持续持久。
因此咱们能够说:“由焊接电源供给的,具有必然电压的两电极间或电极与焊件间,在气体介质中产生的强烈而持久的放电现象,称为焊接电弧。
一样情形下,由于气体的分子和原子都是呈中性的,气体中几乎没有带电质点,因此气体不能导电,电流也通只是,电弧就不能自发地产生。
要使气体呈现导电性必需使气体电离,气体电离后,原先气体中的一些中性分子或原子转变成电子、正离子等带电质点,如此电流才能通过气体间隙而形成电弧。
1.气体电离气体和自然界的一切物质一样,电子是按必然的轨道围绕原子核运动,在常态下原子是呈中性的。
但在必然的条件下,气体原子中的电子从外面取得足够的能量,就能够离开原子核的引力而成为自由电子,同时原子由于失去电子而成为正离子。
这种使中性的气体分子或原子释放电子形成正离子的进程称为气体电离。
使气体电离所需要的能量称为电离电位(或电离功)。
不同的气体或元素,由于原子构造不同,其电离电位也不同。
在焊接时,使气体介质电离的种类要紧有热电离、电场作用下的电离、光电离。
第三章金属连接及切割工艺3.1焊接工艺焊接是“通过将材料加热到焊接温度、加压或不加压,或仅通过加压,使用或不使用填充材料而将金属或非金属在局部接合的过程”,接合即“连接在一起”。
手工电弧焊(SMAW)定义:就是我们通常所说的“手把焊”,它是通过带药皮的焊条和被焊金属间的电弧将被焊金属加热,从而达到焊接的目的。
焊条药皮的不同导致了不同焊条种类,焊条药皮有以下五种作用:(1)保护——药皮分解后产生的气体为熔融金属提供保护。
(2)脱氧——药皮为焊剂去除氧气和其他气体。
(3)合金化——药皮为焊缝提供合金化元素。
(4)电离——药皮改善电特性以增强电弧稳定性。
(5)保温——凝固的焊渣在焊缝金属上的覆盖降低了焊缝金属的冷却速度(次要影响)。
E X X X X: E代表焊条。
前二个数字代表熔敷金属的最小抗拉强度,单位为千磅每平方英寸。
接下来的数字代表焊条的可焊位置。
数字“1”表示焊条可用于任何焊接位置,数字“2”表示熔融金属流动性非常好,只能用于平焊或角焊缝的横焊,数字“4”表示焊条可用于立向下焊,数字“3”不再使用。
最后一个数字表示焊条药皮的组成和性能,药皮决定了可焊性和推荐的电流类别,AC(交流),DCEP(直流反接)或DCEN(直流正接)。
焊条最后一个数字为“5”、“6”和“8”的,表示其为“低氢焊条”。
大多数规范均要求低氢焊条在拆封后放入温度不低于250︒F(120︒C)的烘箱中。
手工电弧焊优缺点:优点:第一,设备简单而便宜,这就使得手工电弧焊很轻便。
第二,携带方便。
第三,焊接工艺被认为是万能的。
缺点:1.局限性是焊接速度2.是影响生产率产生缺陷:未熔合、未焊透、裂纹、咬边、焊瘤、焊缝尺寸不对和不当的焊缝断面。
气体保护电弧焊(GMAW)定义:气体保护电弧焊是通过焊枪连续不断的送丝,由焊丝和工件之间产生的电弧的热量将母材和焊丝熔化,从而达到焊接的目的。
分类:射流过渡、熔滴过渡、脉冲过渡和短路过渡。
ERXXS-X:ER代表焊丝既可用作电极,也可用作填充金属,或仅用作填充金属(对其它焊接工艺而言)。
焊接技术的改进与创新第一章引言焊接技术是一种常见且广泛应用的连接工艺,用于将两个或多个金属零件通过熔化金属或加热压接等方法牢固地连接在一起。
焊接技术在制造业、建筑业等领域起着至关重要的作用。
随着科学技术的进步和工业需求的不断增长,焊接技术也在不断改进和创新,以适应新的材料、结构和应用领域的需求。
第二章焊接技术的分类目前,焊接技术可以分为传统焊接和先进焊接两大类。
传统焊接技术主要包括电弧焊、气体焊等,广泛应用于金属结构的制造。
而先进焊接技术则是在传统焊接技术的基础上进行改进和创新,包括激光焊接、电子束焊接等。
这些新型焊接技术具有高能量密度、高可控性和高效率等特点,被广泛应用于航空航天、汽车制造等高科技领域。
第三章焊接技术的改进1. 材料改进在焊接技术中,材料的选择对焊接质量至关重要。
传统焊接技术在大部分情况下使用相同或相近材料进行焊接,以保证焊缝的强度和稳定性。
然而,在某些情况下,焊接材料与基材之间的热膨胀系数不匹配,可能导致焊接缺陷甚至焊接断裂。
为了解决这一问题,现代焊接技术引入了新型材料,如高温合金和纳米材料,以提高焊接接头的强度和稳定性。
2. 设备改进随着焊接技术的发展,焊接设备也在不断改进和创新。
新型焊接设备具有更高的自动化程度和智能化特点,能够实现精确的焊接过程控制和监测。
例如,激光焊接机器人系统可以通过激光传感器实时检测焊接温度和焊缝质量,实现焊接过程的自适应控制,提高焊接效率和质量。
另外,智能焊接设备还能够通过互联网实现远程控制和数据传输,提供更加便捷和高效的服务。
第四章焊接技术的创新1. 激光焊接技术激光焊接技术是一种高能量密度焊接技术,利用激光束对焊接区域进行能量集中,实现焊接的瞬时加热和快速熔化。
激光焊接技术具有焊缝窄、热影响区小、焊接速度快等优点,被广泛应用于航空航天、汽车制造等领域。
近年来,激光焊接技术在工艺控制、焊接质量评估、设备研发等方面也取得了许多创新成果。
2. 电子束焊接技术电子束焊接技术是利用电子束对焊接区域进行能量集中,通过电子与金属的相互作用进行瞬时加热和快速熔化,实现焊接的高效、精密和无污染。
焊接技术培训教材第一章焊接技术概述焊接技术是一种重要的金属连接方式,广泛应用于制造业和建筑业等领域。
本章将对焊接技术的定义、分类和应用进行介绍,帮助学员建立起对焊接技术的基本了解。
1.1 焊接技术的定义焊接技术是指通过加热和加压将两个或多个金属工件连接在一起的方法。
焊接可以实现永久性的连接,并具有较高的强度和密封性。
1.2 焊接技术的分类焊接技术按照焊接材料的状态,可以分为固态焊接和熔态焊接两大类。
固态焊接是指在不完全熔化的条件下进行连接,常见的有冷焊、压焊和超声波焊接等。
熔态焊接则是通过将焊接材料熔化,并在凝固后形成连接。
1.3 焊接技术的应用领域焊接技术广泛应用于制造业和建筑业等领域。
在制造业中,焊接技术可用于制造汽车、船舶、机械设备等产品。
在建筑业中,焊接技术可用于大型钢结构的连接和修复。
第二章焊接设备与工具本章将介绍常见的焊接设备与工具,帮助学员了解并正确选择适合的设备与工具,以保证焊接过程的质量与安全。
2.1 焊接设备焊接设备包括焊接机、气瓶和焊接控制系统等。
焊接机根据不同的焊接方式可分为手持电弧焊机、气体保护焊机和激光焊机等。
气瓶主要用于提供焊接过程中所需的保护气体。
焊接控制系统用于控制焊接过程的参数,如焊接电流、电压和速度等。
2.2 焊接工具焊接工具包括焊枪、焊条钳和焊接支架等。
焊枪是进行手持电弧焊接时所使用的工具,其主要包含焊枪把手、电源线和焊枪头等部分。
焊条钳用于夹持和固定焊条,以便焊接过程中的操作。
焊接支架则用于固定焊接工件,以保证焊接的稳定性。
第三章焊接技术与操作本章将介绍不同类型的焊接技术及其相应的操作方法,帮助学员掌握焊接技术的实际应用。
3.1 电弧焊接技术电弧焊接技术是应用最广泛的焊接技术之一。
本节将介绍电弧焊接的原理、设备以及操作步骤,包括焊接电流、电压的选择和焊接接头的准备方法等。
3.2 气体保护焊接技术气体保护焊接技术适用于对焊接接头质量要求较高的情况。
本节将介绍常用的气体保护焊接方法,如氩弧焊和氩弧钨极焊等。
第三章TIG焊接方法3.1TIG焊接方法的原理3.1.1前言TIG是英文Tungsten Inert Gas 的缩写,TIG焊接方法是使用钨电极和惰性气体保护的一种弧焊技术,该技术于1930年研究成功,最初阶段保护气体使用氦气,所以曾经使用氦弧焊的名称(Heli Arc),目前广泛使用氩气作为保护气体,所以又把TIG焊接技术称之为氩弧焊技术。
3.1.2TIG焊接方法的原理图3.1表示TIG焊接方法的原理。
在TIG焊接技术中,在不熔化的钨电极与母材之间产生电弧,利用氩气等惰性气体把熔融金属与空气隔开以起保护作用,利用电弧产生的高热量把母材进行熔化从而连结在一起。
在TIG焊接方法中有使用填充材料的填丝TIG和不使用填充材料只熔化母材的TIG焊。
图3.1 TIG焊接方法的原理3.2TIG焊接方法的起弧方式TIG 焊接方法中的起弧方式可分为三类:“高频振荡起弧方式”、“外加直流高压脉冲起弧方式”和“接触起弧方式”。
最近,由于环境保护的要求,限制高频噪音的发生,所以在TIG焊接方法中倾向于不使用“高频振荡起弧方式”。
1.高频振荡起弧方式如图3.2所示,电极与母材不接触,利用高频振荡打破电极与母材之间的绝缘状态,产生电弧。
图3.2 高频振荡起弧方式2.外加直流高压脉冲起弧方式如图3.3所示,电极与母材不接触,利用外加直流高压脉冲产生电弧。
图3.3 外加直流高压脉冲起弧方式3.接触起弧方式如图3.4所示,电极与母材接触的瞬间,把焊枪提升一点距离, 从而产生电弧。
图3.4 接触起弧方式3.3TIG焊接方法的主要特点TIG焊接方法的主要特点如下:①由于有惰性气体保护,对焊缝金属的保护效果好,所以在焊接金属中极少混入杂质,从而能取得高质量的焊接结果。
②能焊接工业中使用的几乎所有的金属(铅、锡等低熔点金属除外)。
③没有飞溅,操作方便。
④能实现任何形式的接头的焊接,而且焊接姿态不受限制。
⑤即使在小电流区域也能得到稳定的电弧,所以能焊接薄板。