初一有理数经典试题及答案一Word版
- 格式:doc
- 大小:330.00 KB
- 文档页数:7
七年级数学有理数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √52. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. -3/4 πD. √5 √53. 下列哪个数是整数?A. -3/4B. 2.5C. 3D. √94. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是正有理数?A. -3/4B. 2.5C. -3D. √9二、判断题(每题1分,共5分)1. 所有的整数都是有理数。
()2. 两个有理数相加,结果仍为有理数。
()3. 0是有理数。
()4. 两个正数相乘的结果是负数。
()5. 所有的分数都是有理数。
()三、填空题(每题1分,共5分)1. 3/4 + 1/4 = ______2. -2/3 3/2 = ______3. 4/5 1/5 = ______4. | -3/4 | = ______5. -3/4的倒数是______四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请解释有理数的分类。
3. 请简述有理数的乘法法则。
4. 请解释有理数的加法法则。
5. 请简述有理数的除法法则。
五、应用题(每题2分,共10分)1. 计算下列各式的值:a. 3/4 + 1/4b. -2/3 3/2c. 4/5 1/5d. | -3/4 |e. -3/4的倒数2. 判断下列各数是否为有理数,并解释原因:a. √2b. -3/4c. πd. √5e. 2.53. 计算下列各式的值:a. 2/3 + 1/6b. -3/4 2/3c. 5/8 3/8d. | -5/6 |e. -5/6的倒数4. 判断下列各数是否为整数,并解释原因:a. -3/4b. 2.5c. 3d. √9e. -2/35. 计算下列各式的值:a. 3/5 + 2/5b. -4/5 5/4c. 7/10 3/10d. | -7/8 |e. -7/8的倒数六、分析题(每题5分,共10分)1. 分析有理数的乘法法则,并举例说明。
初一有理数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 计算下列哪个选项的结果是负数?A. 3 + 2B. -3 - 2C. 4 × 2D. -4 ÷ 2答案:B3. 绝对值是5的数是?A. 5B. -5C. 5和-5D. 以上都不是答案:C4. 有理数-2,-1,0,1,2中,最大的数是?A. -2B. -1C. 0D. 2答案:D5. 下列哪个选项表示的是相反数?A. 5和-5B. 3和-3C. 0和-0D. 以上都是答案:D6. 计算下列哪个选项的结果是0?A. 3 - 3B. 4 + (-4)C. 2 × 0D. -2 - (-2)答案:C7. 计算下列哪个选项的结果是正数?A. -3 + 2B. -3 - 2C. -3 × 2D. -3 ÷ 2答案:A8. 计算下列哪个选项的结果是负数?A. -3 × 2B. -3 ÷ 2C. -3 + 2D. -3 - 2答案:D9. 有理数-3,-2,-1,0,1,2,3中,最小的数是?A. -3B. -2C. -1D. 0答案:A10. 下列哪个选项表示的是倒数?A. 5和1/5B. 3和3C. 0和0D. -2和-1/2答案:A二、填空题(每题3分,共30分)1. 有理数-4的相反数是______。
答案:42. 绝对值等于3的数是______。
答案:±33. 计算-2 + 3 = ______。
答案:14. 计算-5 - 3 = ______。
答案:-85. 计算-6 × 2 = ______。
答案:-126. 计算-4 ÷ 2 = ______。
答案:-27. 计算-3 + (-2) = ______。
答案:-58. 计算0 - 5 = ______。
答案:-59. 计算-2 × (-3) = ______。
初一有理数试题及答案大全一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()。
A. -2B. 0C. 3D. -3答案:C2. 绝对值等于它本身的数是()。
A. 0B. -2C. 2D. 任何数答案:A3. 下列各数中,是负数的是()。
A. 0B. 5C. -5D. 2答案:C4. 下列各数中,是整数的是()。
A. 3.5B. 0.5C. 3D. -2.3答案:C5. 下列各数中,是分数的是()。
B. 0.5C. 2D. -1答案:B6. 下列各数中,是无理数的是()。
A. √2B. 0.5C. 3D. 0答案:A7. 下列各数中,是正有理数的是()。
A. 0B. -2D. -3答案:C8. 下列各数中,是负有理数的是()。
A. 0B. 5C. -5D. 2答案:C9. 下列各数中,是正整数的是()。
A. 0B. 3.5C. 3D. -2.3答案:C10. 下列各数中,是负整数的是()。
A. 0B. 5C. -5D. 2答案:C二、填空题(每题3分,共30分)11. 一个数的相反数是-3,这个数是______。
答案:312. 一个数的绝对值是5,这个数可以是______或______。
答案:5,-513. 一个数的倒数是1/2,这个数是______。
答案:214. 一个数的平方是9,这个数可以是______或______。
答案:3,-315. 一个数的立方是-8,这个数是______。
答案:-216. 一个数的绝对值是它本身,这个数是______或______。
答案:正数,017. 一个数的相反数是它本身,这个数是______。
答案:018. 一个数的倒数是它本身,这个数是______或______。
答案:1,-119. 一个数的平方根是它本身,这个数是______或______。
答案:0,120. 一个数的立方根是它本身,这个数是______或______或______。
答案:0,1,-1三、计算题(每题10分,共40分)21. 计算:(-3) + 5 - (-2)。
一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。
人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。
有理数混合运算1.下列计算①()330-=--;②()()11135=-+-;③()4223=-÷-;④()55154-=⨯---,其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个2.下列各式运算结果为负数的是( )A 、532⨯- B 、()5312⨯- C 、()5132⨯- D 、()1532-⨯-3.判断题(1)()()5152125-=-÷=⨯-÷ ( ) (2)()313125431254-=⨯+-=⨯-- ( )(3)()()()138212733-=---=--⨯- ( )(4)()()()[]842812842812=+-÷-=-÷+-÷- ( ) (5)()()100105222=-=-⨯ ( )4.计算(1)()3316⨯÷-; (2)212--; (3)()325.1-⨯-;(4)2234⨯-; (5)()()48352-⨯+⨯-; (6)()⎪⎭⎫⎝⎛---21435420;(7)()322212÷-⨯-; (8)22388⎪⎭⎫ ⎝⎛⨯-;(9)()()33751-÷--; (10)⎪⎭⎫⎝⎛-⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-9153153;(11)()⎪⎭⎫⎝⎛-⨯--⨯-253112232;5.列式计算 (1)21与31-的和的平方; (2)2-的立方减去3-的倒数的差;(3)已知甲数为23-,乙数比甲数的平方的2倍少21,求乙数。
6.拓展提高(1)已知有理数满足01331=-+++-c b a ,求()2011c b a ⨯⨯的值;(2)已知a 、b 互为相反数,c 、d 互为倒数,x 的平方等于4,试求()()()200920102d c b a x d c x ⨯-+++⨯⨯- 的值。
有理数除法 一. 判断。
1. 如果两数相除,结果为正,则这两个数同正或同负。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.3.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A、B两点间的距离为________;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?【答案】(1)4;7(2)1;2(3)﹣13;9(4)解:一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p 个单位长度,那么请你猜想终点B表示m+n﹣p,A、B两点间的距离为|n﹣p|.【解析】【解答】解:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是﹣13,A、B两点间的距离是9;【分析】(1)根据数轴上的点向右平移加,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(4)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.4.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.5.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。
人教版七年级上册数学第一章《有理数》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个..是正确的).1.下列说法正确的是( )A .所有的整数都是正数B .不是正数的数一定是负数C .0不是最小的有理数D .正有理数包括整数和分数2. 下列说法正确的有( )①0是绝对值最小的数 ②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小.A .1个B .2个C .3个D .4个3.2--的相反数是( )A .2B .21 C .-12 D .-2 4.在2222,(2),(2),2,(2)--------中,负数的个数是( )A. l 个B. 2个 C . 3个 D . 4个5.下列有理数大小关系判断正确的是( )A .11()910-->-- B . 100-> C . 33+<- D. 01.01->- 6. 如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是( )A .﹣π+1B .﹣π﹣1C .π+1D .π﹣17. 若|x |=﹣x ,则x 一定是( )A .负数B .负数或零C .零D .正数 8. 若|2|1x -=则x 的值是( ).A. 3B. 1 C . 1或 D . 3或1-9. 已知:2000199920012000M =-,1999199820001999N =-,那么M +N 的值必定是( )A .正数B .零C .负数D .不能确定10. 如图,数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD .若A ,D 两点所表示的数分别是﹣5和6,且线段BE=2,EF=1则离原点最近的点是( )A .B B .EC .FD .C二、填空题(本大题共10小题,每小题2分,共20分).11.一次考试中,老师采取一种记分制:得120分记为+20分,那么86分应记为 分,李明的成绩记为 ﹣8分,那么他的实际得分为 分. 12.在15,38-,0.15,-30,-12.8,225中,负分数的有 . 13. 绝对值最小的数是 ;一个数的平方是它本身,这个数是 ;绝对值是它本身的数是 .14.有理数a 、b 、c 在数轴上的位置如图所示,试化简:(1)|a |= ;(2)|a +c |+|a +b |﹣|b ﹣c |= .15.若,则的值为 .16.近似数5.3万精确到 位;近似数5.27×610有 个有效数字;将87000保留两个有效数字用科学记数法表示为 .17.在数轴上任取一条长度为120169的线段,则此线段在这条数轴上最多能盖住的整数点的个数是 . 18.已知P 是数轴上的一个点.把点P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离是4个单位,则P 点表示的数是______.19. 有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2 现在已知1⊕1 = 2,那么20122012⊕= .20.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层 多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆 圈的个数为(1)1232n n n +++++=.图1 图2 图3 图4如果图1中的圆圈共有12层,23(2)0m n -++=2m n +第2层 第1层 …… 第n 层⊕ 我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;⊕ 我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,则图4中所有圆圈中各数的绝对值之和为 .三、解答题21.计算:(12分)⊕ 13323(2)5(8)4545+---- ⊕ 7115[45()36]59126--+⨯÷⊕ 322012111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦ ⊕()2431(2)453⎡⎤-+-÷⨯--⎣⎦22.(5分)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求的值.。
一、初一数学有理数解答题压轴题精选(难)1.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。
因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。
(2)求的最小值为________,最大值为________。
备用图:【答案】(1)当x<-3或x>4(2)-3;3【解析】【解答】解:(1)由,在数轴上表示-3和4两点,当x<-3时, >7;当-3≤x≤4时, .当x>4时, .故当x<-3或x>4时 .( 2 )当x<-1,当-1≤x≤2,,此时当x=2时,取得最大值3,当x=-1时,取得最小值-3;当x>2时, .故的最小值为-3,最大值为3.【分析】(1)此题实质就是求表示x的点与-3的对应点的距离及表示x的点与4的对应点的距离和大于7时,x的取值范围,从而分当x<-3时、当-3≤x≤4时、当x>4时三种情况根据绝对值的意义分别去绝对值符号后一一判断即可得出答案;(2)此题实质就是求表示x的点与-1的对应点的距离及表示x的点与2的对应点的距离差最小值与最大值,从而分当x<-1、当-1≤x≤2、当x>2时三种情况根据绝对值的意义分别去绝对值符号考虑即可得出答案.2.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.【答案】(1)解:设动点P在运动过程中距O点的距离为S,当P从A运动到O时,所需时间为:(秒),当0≤t≤5时,S=10﹣2t,当P从O运动到B时,所需时间为:(秒)∴P从A运动到B时,所需时间为:15秒当5<t≤15时,S=t﹣5,即动点P在运动过程中距O点的距离S=;(2)解:设经过a秒,P、Q两点相遇,则点P运动的距离为10+(a-5),点Q运动的距离为a,10+(a-5)+a=28解得,a=,则点M所对应的数是:18﹣=,即点M所对应的数是;(3)解:存在,t=2或t=,理由:当0≤t≤5时,10﹣2t=(18﹣10﹣t)×1,解得,t=2当5<t≤8时,(t﹣10÷2)×1=(18﹣10﹣t)×1,解得,t=,当8<t≤15时,(t﹣10÷2)×1=[t﹣(18﹣10)÷1]×1该方程无解,故存在,t=2或t= .【解析】【分析】(1)分点P在AO上和点P在OB上两种情况,先求出点P在每段时t 的取值范围,再根据题意分别列出代数式可得答案;(2)根据相遇时P,Q运动的时间相等,P,Q运动的距离和等于28可得方程,根据解方程,可得答案;(3)分0≤t≤5,5<t≤8,8<t≤15三种情况,根据PO=BQ,可得方程,分别解出方程,可得答案.3.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.4.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)【答案】(1)D;-1010(2)-2017;-1008.5;1010.5;【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,∴(-3)+(+2)=-1故答案为:D.②∵一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位…∴-1+2-3+4-…+2018-2019=(-1+2)+(-3+4)+…+(-2017+2018)-2019=1+1+…-2019=1009-2019=-1010故答案为:D,-1010.(2)①∵折叠纸条,表示-1的点与表示3的点重合∴对称中心为:,∴2019-1=2018,∴与表示2019的点重合的点在1的左边,∴1-2018=-2017.②∵数轴上A、B两点之间的距离为2019,折痕与①折痕相同∴点B和1,点A和1之间的距离相等,∴点A和1之间的距离为2019÷2=1009.5∵A在B的左侧,∴点A表示的数为1-1009.5=-1008.5点B表示的数为:1009.5+1=1010.5;③根据以上规律可知数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.故答案为:-2017、-1008.5、1010.5、.【分析】(1)点在数轴上平移的规律为:左减右加,列式计算。
有理数四则运算一、计算题1. 计算下列各式的值(1)(-10)+(+6);(2)(-12)+(-4);(3)35+(−23);(4)(−279)+(+279);(5)(-10)+0.2. 计算:(1)(-3)-( 6);(2)13−(−12);(3)(−213)−13;(4)0-(-8).3. 计算:(1)(-2)-(-9);(2)0-11;(3)5.6-(-4.8);(4)(−412)−534.4. 计算下列各式的值:(1)(+18)-(-2);(2)(-38)-(-7);(3)(-24)-(30);(4)-3-6-(-15)+(+13).5. 计算:(1)8-22;(2)(−456)−(−513);(3)(-32)-(-12)-2-(-15).6. 计算:(1)(−718)+(−13);(2)(-2.75)+(+1.25);(3)(−213)+(+213);(4)0+(-7);(5)(-39)+28;(6)(−2701)+|−2701|;(7)(-45)+(-55);(8)(-101)+0.7. 计算:(1)(-15)+(-3);(2)213+(−116);(3)0÷(−18725);(4)(−12)+(−112)+(−100).8. 计算:2×(-5)+3.9. 计算:(1)(-3)×(-4);(2)1012×(−213);(3)0×(−17);410. 计算下列各式的值:(1)(-5)×(+3);(2)(-6)×(-8);(3)(−113)×(−323);(4)(−29)×0.3.11. 计算:(1)6÷(-2);(2)(-12)÷(-4).12. 计算下列各式的值:(1)(-18)÷(-3);(2)(-15)÷513. 计算下列各题:(1)(-60)÷(-12);(2)(−36)÷13;(3)(-0.75)÷0.25;614. 计算下列各式的值:(1)(-19)+(+24)+(-41)+(+36);(2)(-12.43)+(+74.07)+(+12.43)+(-74.07)+1.4;(3)(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100).15. 计算下列各式的值:(1)(-1.9)+3.6+(-10.1)+1.4;(2)(+2.3)+(−14)+12+(−10.3)+8;(3)(-78)+(-77)+(-76)+(-75)+…+(-1)+0+1+…+99+100.16. 计算:(1)(-2)+(+3)+(+4)+(-3)+(+5)+(-4);(2)(−213)+(−234)+534+(−423).17. 计算下列各式的值:(1)(-5)-(+3);(2)(-5)-(-3);(3)5-18;(4)0-(-4).18. 求-1-2-3-4-…-99-100.19. 计算:(−14)−(−13)+(−12)+(+23).20. 计算:(−478)−(−512)+(−414)−(+318).21. 计算下列各式的值:(1)23-17-(-7)+(-16)-(-4);(2)(−23)+(−15)−[(−13)−(−35)]+(+15).22. 计算:(1)(-1.2)×(-3);(2)(−113)×(−412);(3)15×(−25);(4)(−178)×0;(5)(−2.5)×213.23. 计算:(-3.1)-(-4.5)+(+4.4)-(+1.3)+(-2.5).24. 计算:−36×(712−49−23).25. 计算下列各式的值:(1)(−213)×(−65)×(+37);(2)5×(−112)−(−6)×(−112)−112;(3)−2998081×(−18).26. 计算下列各式的值:(1)16×(-4)×0.5×(-0.25);(2)(−129)×12015×(−11)×0×(−39);(3)(−313)×(−1114)×(−113)×0.3.27. 计算:(1)|−36|×(−49+56−712);(2)(−92425)×50;(3)(1−12)(1−13)(1−14)⋯(1−1n).28. 计算:(1)(+26)+(-14)+(-16)+(+18);(2)(+17)+(+27)+3+(−37)+(−513)+(−3);(3)(−0.5)+314+2.75+(−313)+(−512)+(−423);(4)(−123)+112+(+712)+(−213)+(−812);(5)113+315+(−5115).29. 简便运算:(1)(-2)×(-8.5)×(-5);(2)(−117)×[(−78)+125+(−213)].30. 计算:(1)(−98)×(−1)×(−3)×(−12);(2)(-2)×(+29)×0×(-37.5).31. 计算求值:(−124)÷(−12+23−14).32. 计算下列各式的值:(1)(-5)÷(-7)÷(-15);(2)(−81)÷214×49×(−16).33. 计算下列各式的值:(1)(−1819)÷(+1119);(2)(−12)÷(−112)÷(−100).34. 计算:(−32)÷54÷(−35)×(−14).35. 计算:(23−14−56)÷(−136).36. 计算:(1)125÷(−3.2);(2)(−114)÷(−123).37. 计算:(1)125÷(−23)÷(−32);(2)1÷(−17)×(−7).38. 计算:(1)( 4)×(-5);(2)(−213)×(−37);(3)0×(-2014);(4)(−3.25)×(213). 39. 计算下列各式的值:(1)12+14+18+116+132+164;(2)113×512−(−23)×512+223÷(−225).40. 计算:(1)3.9÷(−43)+8.1×(−0.75);(2)(−38)÷(134−78)−(712−56)×(−12).41. 化简下列分数:(1)−42−7;(2)−2−12;(3)-1 3 5 ;(4)−26−4. 42. 计算:(1)(−313)÷213÷137;(2)(−27)÷214×49÷(−24);(3)(−115)÷(−12)÷(−4).43. 计算:(1)(−5.6)×(−4.2)×217×(−514);(2)(4)×(−5)×(−299)×0×(4.25).44. 计算:(1)(+9)-(+10)+(-2)-(-8)+(+3);(2)(-5.13)+(+4.62)+(-8.47)-(-2.3);(3)(−14)+(+34)+(−16)−(−56)−(+1).参考答案1. 【答案】解: (1)-10+6=-(10-6)=-4.(2)(-12)+(-4)=-(12+4)=-16.(3)35+(−23)=915+(−1015)=−(1015−915)=−115.(4)(−279)+(+279)=0.(5)(-10)+0=-10.2.(1) 【答案】原式= (-3)-( 6)=(-3) (-6)=-9.(2) 【答案】原式=13−(−12)=13(12)=2636=56.(3) 【答案】原式=(−213)−13=(−213)(−13)=−223(4) 【答案】原式=0-(-8)=0 ( 8)=8.3.(1) 【答案】(-2)-(-9)=-2 9=7.(2) 【答案】0-11=0 (-11)=-11.(3) 【答案】5.6-(-4.8)=5.6 4.8=10.4.(4) 【答案】(−412)−534=−424−534=−1014.4.(1) 【答案】(+18)-(-2)=(+18)+(+2)=20.(2) 【答案】(-38)-(-7)=(-38)+(+7)=-31.(3) 【答案】(-24)-(+30)=-24+(-30)=-54.(4) 【答案】原式=[(-3)+(-6)]+[(+15)+(+13)]=(-9)+(+28)=19.5.(1) 【答案】原式=8+(-22)=-14.(2) 【答案】原式=(−456)+513=(−4+5)+(−56+13)=1+(−12)=12.(3) 【答案】原式=(-32)+12+(-2)+15=[(-32)+(-2)]+(12+15)=(-34)+27=-7. 6.(1) 【答案】(−718)+(−13)=−(718+13)=−1318.(2) 【答案】(-2.75)+(+1.25)=-(2.75-1.25)=-1.5.(3) 【答案】(−213)+(+213)=0.(4) 【答案】0+(-7)=-7.(5) 【答案】(-39)+28=-(39-28)=-11.(6) 【答案】(−2701)+|−2701|=(−2701)+2701=0.(7) 【答案】(-45)+(-55)=-(45+55)=-100.(8) 【答案】(-101)+0=-101.7.(1) 【答案】原式= (-15)+(-3)=-(15+3)=-18.(2) 【答案】原式=213+(−116)=73−76=76.(3) 【答案】原式=0÷(−18725)=0.(4) 【答案】原式=(−12)+(−112)+(−100)=-(12+112+100)=-112112.8. 【答案】原式=-10+3=-7. 9.(1) 【答案】原式=3×4=12.(2) 【答案】原式=−(212×73)=−492.(3) 【答案】原式=0.(4) 【答案】原式=−(1×134)=−134.10.(1) 【答案】(-5)×(+3)=-(5×3)=-15.(2) 【答案】(-6)×(-8)=+(6×8)=48.(3) 【答案】(−113)×(−323)=+(43×113)=449.11.(1) 【答案】6÷(-2)=-3.(2) 【答案】(-12)÷(-4)=12÷4=3.12.(1) 【答案】(-18)÷(-3)=+(18÷3)=6.(2) 【答案】(-15)÷5=-(15÷5)=-3.13.(1) 【答案】原式=60÷12=5.(2) 【答案】原式=(-36)×3=-108.(3) 【答案】原式=-(0.75÷0.25)=-3.(4) 【答案】原式=6×6=36.14.(1) 【答案】(-19)+(+24)+(-41)+(+36)=[(-19)+(-41)]+[(+24)+(+36)]=-60+60=0.(2) 【答案】(-12.43)+(+74.07)+(+12.43)+(-74.07)+1.4=[(-12.43)+(+12.43)]+[(+74.07)+(-74.07)]+1.4=0+0+1.4=1.4.(3) 【答案】(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)=[(+1)+(-2)]+[(+3)+(-4)]+…+[(+99)+(-100)]=(−1)+(−1)+⋯+(−1)︸50个(−1)相加=−50.15.(1) 【答案】原式=[(-1.9)+(-10.1)]+(3.6+1.4)=(-12)+5=-(12-5)=-7.(2) 【答案】原式=[(+2.3)+(−10.3)+8]+[(−14)+24]=0+14=14.(3) 【答案】原式=0+[1+(-1)]+[2+(-2)]+…+[78+(-78)]+(79+…+100)=79+80+81+…+100=179×11=1969.16.(1) 【答案】原式=[(-2)+(+5)]+[(+3)+(-3)]+[(+4)+(-4)]=(+3)+0+0=3.(2) 【答案】原式=[(−213)+(−423)]+[(−234)+534]=(−7)+(+3)=−4.17. 【答案】(1)(-5)-(+3)=(-5)+(-3)=-8.(2)(-5)-(-3)=(-5)+(+3)=-2.(3)5-18=5+(-18)=-13.(4)0-(-4)=0+(+4)=4.18. 【答案】原式=(−1)+(−2)+(−3)+⋯+(−99)+(−100)=(−1)+(−100)2×100=−5050.19. 【答案】原式=(−14)+(+13)+(−12)+(+23)=−14+13−12+23=−14−12+13+23=−34+1=14.20. 【答案】(−478)−(−512)+(−414)−(+318)=−478+512−414−318=(−478−318−414)+512=−1214+512=−634.21.(1) 【答案】原式=23-17+7-16+4=1.(2) 【答案】原式=−23−15−(−13+35)+15=−23−15+13−35+15=−23+13+15−15−3 5=−13−35=−1415.22.(1) 【答案】 (-1.2)×(-3)= (1.2×3)=3.6.(2) 【答案】(−113)×(−412)=(−43)×(−92)=43×92=6.(3) 【答案】15×(−25)=−(15×25)=−6.(4) 【答案】(−178)×0=0.(5) 【答案】(−2.5)×213=(−212)×213=−(52×73)=−356.23. 【答案】原式=(-3.1)+(+4.5)+(+4.4)+(-1.3)+(-2.5)=-3.1+4.5+4.4-1.3-2.5=(-3.1-1.3+4.4)+(4.5-2.5)=0+2=2.24. 【答案】原式=(−36)×712+(−36)×(−49)+(−36)×(−23)=−21+16+24=19.25.(1) 【答案】原式=[(−73)×(+37)]×(−65)=(−1)×(−65)=65.(2) 【答案】原式=(−112)×[5−(−6)+1]=(−32)×12=−18.(3) 【答案】原式=+(2998081×18)=(300−181)×18=5400−29=539979.26.(1) 【答案】原式=+(16×4×0.5×0.25)=8.(2) 【答案】原式=0.(3) 【答案】原式=−(313×1114×113×0.3)=−(103×454×43×310)=−15.27.(1) 【答案】原式=36×(−49+56−712)=−16+30−21=−7.(2) 【答案】原式=−(10−125)×50=−500+2=−498.(3) 【答案】原式=12×23×34×⋯×n−1n=1n.28.(1) 【答案】原式=[(+26)+(+18)]+[(-14)+(-16)]=44+(-30)=14.(2) 【答案】原式=[(+17)+(+27)+(−37)]+[3+(−3)+(−513)]=0+0+(−513)=−513.(3) 【答案】原式=[(−12)+(−512)]+(314+234)+[(−313)+(−423)]=−6+6+(−8)=0+(−8)=−8.(4) 【答案】原式=[(−123)+(−213)]+[112++712+(−812)]=(−4)+12=−312.(5) 【答案】原式=1+13+3+15+[(−5)+(−115)]=[1+3+(−5)]+[13+15+(−115)]=(−1)+7 15=−(1−715)=−815.29.(1) 【答案】原式=[(-2)×(-5)]×(-8.5)=10×(-8.5)=-85.(2) 【答案】原式=(−87)×(−78)+(−87)×75+(−87)×(−73)=1−85+83=3115.30.(1) 【答案】原式=98×1×3×12=147.(2) 【答案】原式=0.31. 【答案】原式=(−124)÷(−612+812−312)=(−124)÷(−112)=(−124)×(−12)=12.32.(1) 【答案】原式=(−5)×(−17)×(−115)=−(5×115×17)=−121.(2) 【答案】原式=(−81)×49×49×(−16)=81×49×49×16=256.33.(1) 【答案】原式=(−1819)÷(+2019)=(−1819)×1920=−910.(2) 【答案】原式=−(12÷112÷100)=−(12×12×1100)=−1.44.34. 【答案】原式=−32×45×(−53)×(−14)=−12.35. 【答案】原式=(23−14−56)×(−36)=23×(−36)−14×(−36)−56×(−36)=−24+9+30=15.36.(1) 【答案】原式=75÷(−165)=75×(−516)=−716.(2) 【答案】原式=(−54)÷(−53)=+(54×35)=34.37.(1) 【答案】原式=125×(−32)×(−23)=125.(2) 【答案】原式=1×(-7)×(-7)=49.38.(1) 【答案】原式= ( 4)×(-5)=-(4×5)=-20.(2) 【答案】原式=(−213)×(−37)=213×37=73×37=1.(3) 【答案】原式=0×(-2014)=0.(4) 【答案】原式=(−3.25)×(213)=(−3.25×213)=−(134×213)=−12.39.(1) 【答案】原式=12+14+18+116+132+(164+164)−164=12+14+18+116+(132+132)−164=12+14+18+(116+116)−164=12+14+(18+18)−164=12+(14+14)−164=(12+12)−164=1−1 64=6364.(2) 【答案】原式=43×512+23×512+83×(−512)=(43+23−83)×512=(−23)×512=−518.40.(1) 【答案】原式=3.9×(−34)+8.1×(−34)=(3.9+8.1)×(−34)=12×(−34)=−9.(2) 【答案】原式=(−38)÷78−(−312)×(−12)=−38×87−3=−37−3=−247.41.(1) 【答案】−42−7=(-42)÷(-7)=6.(2) 【答案】−2−12=(−2)÷(−12)=2×112=16.(3) 【答案】-135=(−13)÷5=−13×15=−115.(4) 【答案】−26−4=26÷4=132.42.(1) 【答案】原式=(−313)÷213÷137=−103×37×710=−1.(2) 【答案】原式=(−27)×49×49×(−124)=27×49×49×124=29.(3) 【答案】原式=(−65)×(−112)×(−14)=−65×112×14=−140.43.(1) 【答案】原式=−535×415×217×514=−285×215×157×514=−18.(2) 【答案】根据有理数乘法法则进行计算,0乘以任何数都为零,原式=0.44.(1) 【答案】原式=(+9)+(-10)+(--2)+(+8)+(+3)=[(+9)+(+8)+(+3)]+[(-10)+(-2)]=(+20)+(-12)=8.(2) 【答案】原式=(-5.13)+(+4.62)+(-8.47)+(+2.3)=[(-5.13)+(-8.47)]+[(+4.62)+(+2.3)]=(-13.6)+(+6.92)=-6.68.(3) 【答案】原式=(−14)+(+34)+(−16)+(+56)+(−1)=[(−14)+(+34)]+[(−16)+(+56)]+(−1)=12+23+(−1)=16。
初一有理数经典试题及答案一1.一个数的相反数是它的符号取反,因此2的相反数为-2.2.绝对值表示一个数与0的距离,因此|-2|=2.3.题目中未给出比较的数,无法回答。
4.科学记数法表示为3.6x10^4平方公里。
5.(-4)÷2=-2.6.360万用科学计数法表示为3.6x10^6.7.由|a+1|+8-b=0得|a+1|=-8+b,因为绝对值不可能为负数,所以-8+b>=0,解得b>=8,因此a-b<=a+1-8<=-7.8.亿元用科学记数法表示为4x10^13元。
9.xxxxxxxx元用科学记数法表示为2.4x10^7元。
10.1/2+=.5.11.等式不完整,无法回答。
12.-1/3的相反数是1/3,立方等于-8的数是-2.13.739.3亿元用科学记数法表示为7.393x10^10元。
14.-2>-3.15.现售价为120x0.8=96元。
16.-(-5)=5,因此5是-5的绝对值。
17.人用科学计数法表示为2.124x10^4人。
18.-2009的绝对值是2009,因此答案为2009.19.km^2用科学记数法表示为1.026x10^5km^2.20.(-3)^2=9.21.1622元用科学记数法表示为1.622x10^3元。
22.自2005年以来,太原市城市绿化快速发展,目前总面积已达到1.622×10^4万平方米。
23.据报道,今年“五一”期间,长沙市旅游总收入同比增长超过20%,达到5.63×10^8元。
24.-(-6)=625.7-(-5)=1226.-3-(2-1)=-227.据统计,去年我国粮食产量达到1.057×10^12斤。
28.3的倒数为1/3;(-5)的倒数为-1/5;-的相反数是正数。
29.7的倒数为1/7.30.XXX发布报告称:2008年全球可持续投资达到历史新高,达到1550亿美元。
31.-2的绝对值为2.33.山西拥有丰富的旅游资源,如五台山、平遥古城、乔家大院等著名景点,吸引了众多的海内外游客。
一、初一数学有理数解答题压轴题精选(难)1.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.2.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.若有理数在数轴上的点位置如图所示:(1)判断代数式的符号;(2)化简:【答案】(1)解:因为所以(2)解:因为所以原式.【解析】【分析】(1)根据有理数的加减法,可得答案;(2)根据绝对值的性质,可化简去掉绝对值,根据合并同类项,可得答案.5.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。
初一有理数经典试题及答案一
1. (2009年梅州市)梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同
胞超过360万人,360万用科学计数法表示为 ; 万。
答案:63.610⨯ ;3.6× 102
【解析】本题考查了科学记数法。
科学记数法的一
般形式是)101(10<≤⨯a a n ,其中指数n 等于该数的整数位数减1。
2. (2009年,安徽芜湖中考)已知|a+1|+b -8=0,则a-b=
【答案】-9 【解析】由非负数性质,9
81,8,1.
08,
01-=--=-∴=-=⎩
⎨⎧=-=+b a b a b a
3. (2009)三江源实业公司为治理环境污染,8年来共投入23940000元,那么
23940000元用科学记数法表示为 元(保留两个有效数字).
答案:7
2.410⨯
4. (2009青海)计算:3
120092-0⎛⎫
+= ⎪⎝⎭ ;
答案:9 【解析】3
120092-0⎛⎫
+= ⎪⎝⎭
8+1=9
5. (2009年湖南长沙)(6)--= .
答案: 6 【解析】本题考查了相反数的定义。
根据定义我们知道只有符号不同的两个数,我们就说其中一个是另一个的相反数。
本题就是求(-6)的相反数,和(-6)只有符号不同的数是(+6),其中的(+)可以省略,所以本题答案为6。
本题还可以这样考虑:互为相反数的两个数在数轴上表示这两个数的点,分别在原点的两旁,且与原点的距离相等,在数轴上与(-6)距离相等的点是6。
6. (2009年黄冈市)7.13-
=_________
;0
(=_________;14
-的相反数是_________. 答案:
31,1,4
1
7. (2009年陕西省) 0)12(3---=______ . 答案:2
8. (09湖南怀化)
若()2
240a c --=,则=+-c b a .
答案:3
9. (2009年宁德市)实数a b ,在
数轴上对应点的位置如图所示,则a
b
10. (2009年广州市)绝对值是6的数是________ 答案:±6
11. (2009年清远)如果a 与5互为相反数,那么a = . 答案:5-
12. (2009年烟台市)若523m x y +与3n x y 的和是单项式,则m n = .
答案:
1
4
13. (2009年孝感)若m n n m -=-,且4m =,3n =,则2()m n += . 答案:49或1;
14. (2009年吉林省)若a 5,2,0,b ab a b ==->+=且则 答案:7-
15. (2009年滨州)大家知道|5||50|=-,它在数轴上的意义是表示5的点与原
点(即表示0的点)之间的距离.又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|5|a +在数轴上的意义是 .
答案:表示a 的点与表示-5的点之间的距离.
16. (2009眉山)2009年第一季度,眉山市完成全社会固定资产投资82.7亿元,
用科学记数法表示这个数,结果为
元。
答案:98.2710⨯
三、解答题
17. 已知a, b 互为相反数,c, d 互为倒数,e 是非零实数,求
0221
)(2e cd b a -+
+的
值。
18. (2009年湖南长沙)计算:1
21(2)2(3)3-⎛⎫
-+⨯-+ ⎪⎝⎭.
答案:解:1
2
1(2)2(3)3-⎛⎫
-+⨯-+ ⎪⎝⎭
463=-+1=.
19. (2009重庆綦江)计算:1
021*******-⎛⎫
-+-+ ⎪⎝⎭
.
答案:原式=1942-++=2-.
20. (2009年达州)(-1)3+(2009-2)0-2
1- 答案:原式1112=-++
12
=
21. (2009年漳州)1
0123-⎛⎫
-+- ⎪⎝⎭
答案:原式=213+-=0
初一有理数中考真题二
第1章有理数
一、选择题
1. (2011宁波市,1,3分)下列各数是正整数的是
A.-1 B.2 C.0.5 D.2
【答案】B
7. (2011浙江省,1,3分)如图,在数轴上点A表示的数可能是()
A. 1.5
B.-1.5
C.-2.6
D. 2.6
【答案】C
8. (2011浙江省,3,3分)中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们为中国节水,为世界节水.若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为()
A.3.2×107L
B. 3.2×106L
C. 3.2×105L
D. 3.2×104L
【答案】C
13. (2011浙江省嘉兴,9,4分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()
(A)2011 (B)2011 (C)2012 (D)2013
【答案】D
16. (2011台湾台北,12)已知世运会、亚运会、奥运会分别于公元2009年、2011年、2012年举办。
若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办?
A .公元2070年
B .公元2071年
C .公元2072年
D .公元2073年 【答案】B
23. (2011台湾台北,1) 图(一)数在线的O 是原点,
A 、
B 、
C 三点所表示的数分别为a 、b 、c 。
根据图中各点的位置, 下列各数的絶对值的比较何者正确?
A .|b|<|c|
B .|b|>|c|
C .|a|<|b|
D .|a|>|c| 【答案】A
30. (2011安徽,1,4分)-2,0,2,-3这四个数中最大的是( ) A .2
B .0
C .-2
D .-2
【答案】A
37. (2011广东广州市,6,3分)若a < c < 0 < b ,则abc 与0的大小关系是( ). A .abc < 0
B .abc = 0
C .abc > 0
D .无法确定
(第9题)
… …
红 黄 绿 蓝 紫 红 黄 绿 黄 绿
蓝 紫
41. (2011山东菏泽,1,3分)-3
2的倒数是
A .32
B .23
C .32-
D .2
3-
【答案】D
47. (2011山东烟台,1,4分)(-2)0
的相反数等于( ) A.1 B.-1 C.2 D.-2 【答案】B
48. (2011浙江杭州,3,3)
63
(210)⨯=( ) A .9610⨯ B .9810⨯ C .18210⨯ D .18
810⨯ 【答案】B
80. (2011江苏南通,1,3分) 如果60m 表示“向北走60m ”,那么“向南走40m ”可以表示为
A. -20m
B. -40m
C. 20m
D. 40m
【答案】B
91. (2011贵州贵阳,1,3分)如果“盈利10%”记为+10%,那么“亏损6%”记为 (A )-16% (B )-6% (C )+6% (D )+4% 【答案】B
104. (2011贵州安顺,1,3分)-4的倒数的相反数是( )
A .-4
B .4
C .-41
D .4
1
二、填空题
19. (2011四川乐山13,3分)数轴上点A、B的位置如图(7)所示,若点B关于点A的对称点为C,则点C表示的数为
【答案】-5
(注:可编辑下载,若有不当之处,请指正,谢谢!)。