电路的频率特性
- 格式:ppt
- 大小:1.27 MB
- 文档页数:41
实验十二--幅频特性和相频特性实验十二 幅频特性和相频特性一、实验目的:研究RC串、并联电路的频率特性。
二、实验原理及电路图 1、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。
当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。
即:()21U H j U ω=&&1)低通电路RCU &2U &10.707()H j ω0ωω图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性简单的RC 滤波电路如图4.3.1所示。
当输入为1U &,输出为2U &时,构成的是低通滤波电路。
因为:112111U U U j C j RC R j C ωωω=⨯=++&&&所以:()()()2111U H j H j U j RC ωωϕωω===∠+&&()()21H j RC ωω=+()H j ω是幅频特性,低通电路的幅频特性如图4.3.2所示,在1RC ω=时,()120.707H j ω==,即210.707U U =,通常2U &降低到10.707U &时的角频率称为截止频率,记为0ω。
2)高通电路CR1&U 2&Uωω00.7071()H j ω图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性12111U j RC U R U j RC R j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭&&&所以:()()()211U j RC H j H j U jRC ωωωϕω===∠+&&其中()H j ω传输特性的幅频特性。
电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H j RC ωω=<<当0ωω>>时,即高频时,()1H j ω=。
实验十二 幅频特性和相频特性一、实验目的:研究RC串、并联电路的频率特性。
二、实验原理及电路图 1、实验原理电路的频域特性反映了电路对于不同的频率输入时,其正弦稳态响应的性质,一般用电路的网络函数()H j ω表示。
当电路的网络函数为输出电压与输入电压之比时,又称为电压传输特性。
即:()21U H j U ω=1)低通电路U 2图1-1 低通滤波电路 图1-2 低通滤波电路幅频特性 简单的RC 滤波电路如图4.3.1所示。
当输入为1U ,输出为2U 时,构成的是低通滤波电路。
因为:112111U U U j C j RCR j Cωωω=⨯=++所以:()()()2111U H j H j U j RC ωωϕωω===∠+()H j ω=()H j ω是幅频特性,低通电路的幅频特性如图4.3.2所示,在1RCω=时,()0.707H j ω==,即210.707U U =,通常2U 降低到10.707U 时的角频率称为截止频率,记为0ω。
2)高通电路2图2-1 高通滤波电路 图2-2 高通滤波电路的幅频特性12111U j RCU R U j RCR j C ωωω=⨯=⨯+⎛⎫+ ⎪⎝⎭所以:()()()211U j RC H j H j U jRC ωωωϕω===∠+其中()H j ω传输特性的幅频特性。
电路的截止频率01RC ω= 高通电路的幅频特性如4.3.4所示 当0ωω<<时,即低频时()1H j RC ωω=<<当0ωω>>时,即高频时,()1H j ω=。
3)研究RC 串、并联电路的频率特性:Aff 31图15-2f0ϕ︒90︒-90iu ou +--+RR CC图 15-1)1j(31)j (ioRC RC UUN ωωω-+==其中幅频特性为:22io)1(31)(RC RC U U A ωωω-+==相频特性为:31arctg)(o RCRC i ωωϕϕωϕ--=-=幅频特性和相频特性曲线如图15-2所示,幅频特性呈带通特性。
RC电路的频率特性RC电路的频率特性:=1/(2πfC),在RC串联的正弦交流电路中,由于电容元件的容抗XC它与电源的频率有关,所以当输入端外加电压保持幅值不变而频率变化时,其容抗将随频率的变化而变化,从而引起整个电路的阻抗发生变化,电路中的电流及在电阻和电容元件上所引起的电压也会随频率而改变。
我们将RC电路中的电流及各部分电压与频率的关系称为RC电路的频率特性。
截止频率是用来说明电路频率特性指标的一个特殊频率。
当保持电路输入信号的幅度不变,改变频率使输出信号降至最大值的0.707倍时,此频率即为截止频率。
截止频率公式1f0=RCπ2高通滤波器07.0T f ()(a )实验电路(b )幅频特性曲线图1高通滤波器低通滤波器07.0T f ()(a )实验电路(b )幅频特性曲线图2低通滤波器RC串并联选频电路10(a )实验电路(b )幅频特性曲线图3 选频电路实验目的(1)测量RC电路的频率特性,并画出其频率特性曲线。
(2)掌握测量截止频率的方法。
(3)进一步熟悉相关实验仪器的用途及使用方法。
图1 高通滤波器提示:在测量过程中应注意,在频率改变的同时用电压测试仪监测输入电压幅度,使之保持恒定。
表1 高通滤波器实验数据计算值:f 0= 测量值:f 0=图2低通滤波器表2 低通滤波器实验数据计算值:f 0= 测量值:f 0=图3选频电路1表3选频电路实验数据= 测量值:f0=计算值:f3 注意事项实验中,请同学们注意:(1)信号发生器输出端不可短路(2)测量交流高频信号电压有效值,须使用测试仪SCOPE 功能,不允许使用万用表(3)在测试仪的监测下,始终保持信号发生器输出电压有效值不变。
电路基础原理理解电路中的频率特性电路频率特性是电子学中非常重要的概念之一,它描述了电路对不同频率电信号的响应情况。
在日常生活中,我们经常会遇到各种电子设备,例如手机、电视、音响等,它们的性能优劣往往与电路频率特性有着密切关系。
在这篇文章中,我们将探讨电路频率特性的基本原理和其在实际应用中的意义。
首先,让我们从频率的定义开始。
频率是指单位时间内事件发生的次数,而在电路中,频率则表示单位时间内电信号通过电路的次数。
常见的电信号包括正弦波、方波等,它们可以看作是由不同频率的简单周期信号叠加而成。
电路频率特性即描述了电路对这些不同频率信号的传输、放大、滤波等特性。
在理解电路频率特性的基础上,我们可以将其分为三个主要方面:传输特性、放大特性和滤波特性。
首先,传输特性描述了电路对信号的传输能力。
在电路中,我们通常使用增益(gain)来表示电路对信号的放大程度,而增益直接与信号频率相关。
不同频率的信号在传输过程中会受到不同程度的衰减和相位变化。
电路的传输特性主要通过传递函数来描述,传递函数是输入信号和输出信号之间的关系。
通过分析传递函数,我们可以了解电路对不同频率信号的放大/衰减程度和相位变化情况,从而为电路设计和优化提供指导。
其次,放大特性描述了电路对信号放大的能力。
放大电路是电子设备中极为常见的电路之一,它在信号传输、音频放大等方面起着重要作用。
放大电路的频率特性与电路中的电容、电感以及其他元器件有着密切关系。
在设计放大电路时,我们需要考虑所需放大的频率范围和最大放大倍数等指标,从而选择合适的元器件参数和电路拓扑结构。
最后,滤波特性描述了电路对不同频率信号的滤波效果。
滤波电路是将特定频率的信号通过,而把其他频率的信号屏蔽或衰减的电路。
滤波器在电子设备中广泛应用,例如音频设备中的低通滤波器和高通滤波器,用于去除杂音和调节声音的音质等。
滤波器的频率特性通常通过其频率响应来表示,频率响应可以反映出滤波器对不同频率信号的衰减或放大程度。
电路的幅频特性和相频特性公式幅频特性和相频特性怎么计算幅频特性计算方法:幅频特性=w/(根号下(w平方+1))。
G(jω)称为频率特性,A(ω)是输出信号的幅值与输入信号幅值之比,称为幅频特性。
Φ(ω)是输出信号的相角与输入信号的相角之差,称为相频特性。
相移角度随频率变化的特性叫相频特性。
相频特性=arctan w/0 - arctanw/1=pi/2 - arctanw=arctan 1/w可总结为:相频特性=arctan分子虚部/分子实部-arctan分母虚部/分母实部。
ps:忘了打括号,大家意会就行。
幅频特性计算方法:幅频特性=w/(根号下(w平方+1))可总结为幅频特性=根号下((分子实部平方+分子虚部平方)/(分母实部平方+分母虚部平方))。
频率响应是控制系统对正弦输入信号的稳态正弦响应。
即一个稳定的线性定常系统,在正弦信号的作用下,稳态时输出仍是一个与输入同频率的正弦信号,且稳态输出的幅值与相位是输入正弦信号频率的函数。
在电子技术实践中所遇到的信号往往不是单一频率的, 而是在某一段频率范围内, 在放大电路、滤波电路及谐振电路等几乎所有的电子电路和设备中都含有电抗性元件, 由于它们在各种频率下的电抗值是不相同的, 因而电信号在通过这些电子电路和设备的过程中。
其幅度和相位发生了变化, 亦即是使电信号在传输过程中发生了失真,这种失真有时候是我们需要的, 而有时候是不需要的, 而且必须加以克服。
模电里的幅频特性,和相频特性公式是怎么推导的?通分出来的。
只要会推带电容电导电路的电压比,记住j^2=-1,Z (c)=1/jwc,Z(L)=jwl。
按复数运算规则推就行了。
就是把传递函数的s用jw替掉。
j是虚数单位(和数学上的i一样,工程中习惯用j),w是正弦信zhi号的角频率。
整个运算的结果是一个复数,这个复数的模就是幅频特性A(w),复数的辐角就是相频特性fai(w)。
幅频特性是输出正弦信号和输入正弦信号的幅值比,相频特性是输出正弦信号和输入正弦信号的相位差,正的话输出相位比输入相位超前,负的话输出比输入滞后。
电路频率特性的研究一、 实验目的1. 掌握低通、带通电路的频率特性;2. 应用Multisim 软件测试低通、带通电路频率特性及有关参数;3. 应用Multisim 软件中的波特仪测试电路的频率特性。
二、 实验原理1. 网络频率特性的定义1) 网络函数——正弦稳态情况下,网络的响应相量与激励相量之比。
2) 一个完整的网络频率特性应包括幅频特性、相频特性两个方面。
3) 截止频率——输出电压降到输入电压的0.707时的频率(f 0);通频带——输出电压从最大降到0.707倍间的频率区间(Bw:0~2πf 0)2. 网络频率特性曲线1) 一阶RC 低通2111()11U jwcH w jwcR U R jwc====++a) 幅频特性2121221()0,;,0;1,0.707U H w U w U U w U w U U CR ===→∞→===||=则有由图像看出,频率越低,信号越容易通过——低通。
b) 相频特性()a r c t a n ()10,0;,45;,90w w c Rw w w CRϕϕϕϕ=-====-→∞=-。
c) 截止频率:012f RCπ= 2) 二阶RLC 带通a)谐振频率0f =(0w =,此时有电路如下图特性:b)品质因数001w L Q R w RC ===(L 、C 一定时,改变R 值就能影响电路的选频特性,R 越小,Q 越大,选频特性越好);c) 幅频特性和相频特性00000,,U w f I I R w f U IU I η======另则有故=,如下图d) 由上图得,通频带"'0022()w f Bw f f Q Qππ=-== 3) 二阶RLC 低通a)谐振频率0f =b) 幅频特性和相频特性0201()(,)1(1)|()|c U w L jQ w jwCH w Q U jQ R w R jwL jwC H w ηηη∙-=====+-++==则有122|()|(|()|)0,00;2m c H w d H w w w w d w f U ηηπ=======令解得即对应的U 极大值为如下图所示:c)m f =3. 测量方法对特征频率点极其上下百倍频程范围内选取频率点进行测量,包括对()H w 及ϕ的测量,并根据测得的数据作出幅频特性曲线及相频特性曲线。
理解电路中的频率响应与频率特性当我们研究电路的设计和性能时,频率响应和频率特性是两个重要的概念。
频率响应是指电路输出信号随输入信号频率变化而产生的变化,而频率特性则是描述了电路在不同频率下的行为和性能。
深入理解电路中的频率响应和频率特性对于电路的分析和设计至关重要。
一个常见的模拟电路是滤波器。
滤波器的功能是选择或拒绝特定频率范围的信号。
频率响应曲线是一种常用的描述滤波器性能的方法。
频率响应曲线通常以对数坐标绘制,横坐标表示频率,纵坐标表示增益或衰减量。
在频率响应曲线中,有两个关键的参数需要关注:截止频率和增益。
截止频率是指在该频率下,滤波器的输出信号衰减到输入信号的一半。
对于低通滤波器来说,截止频率是指输出信号衰减到输入信号的-3dB (分贝)。
增益是指滤波器在特定频率下的输出信号相对于输入信号的放大倍数。
另一个重要的概念是频率特性。
频率特性描述了电路在不同频率下的行为和性能。
常见的频率特性包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
低通滤波器是指能够通过低频信号而抑制高频信号的电路。
典型的低通滤波器包括RC滤波器和LC滤波器。
高通滤波器则正好相反,能够通过高频信号而抑制低频信号。
带通滤波器允许通过某个特定的频率范围的信号,而抑制其他频率范围的信号。
带阻滤波器则正好相反,能够抑制某个特定的频率范围的信号,而允许其他频率范围的信号通过。
在电子设备中,音频放大器是另一个常见的应用。
音频放大器的频率响应和频率特性对于保证音频质量和扬声器保护至关重要。
频率响应不均匀可能导致音频信号失真或丢失细节。
因此,设计音频放大器时需要考虑频率响应和频率特性。
频率响应和频率特性在数字信号处理中也起着重要的作用。
数字信号处理器(DSP)可以通过改变数字滤波器的频率响应来实现不同的滤波效果。
数字滤波器可以对信号进行低通滤波、高通滤波、带通滤波或带阻滤波,以满足不同的应用需求。
总之,理解电路中的频率响应和频率特性对于电路的设计和性能分析非常重要。