第六章 树和二叉树(2)
- 格式:ppt
- 大小:199.50 KB
- 文档页数:26
第六章树和二叉树一.选择题1. 以下说法错误的是。
A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构2. 如图6-2所示的4 棵二叉树中,不是完全二叉树。
图6-2 4 棵二叉树3. 在线索化二叉树中,t 所指结点没有左子树的充要条件是。
A. t->left == NULLB. t->ltag==1C. t->ltag==1 且t->left==NULL D .以上都不对4. 以下说法错误的是。
A.二叉树可以是空集B.二叉树的任一结点最多有两棵子树C.二叉树不是一种树D.二叉树中任一结点的两棵子树有次序之分5. 以下说法错误的是。
A.完全二叉树上结点之间的父子关系可由它们编号之间的关系来表达B.在三叉链表上,二叉树的求双亲运算很容易实现C.在二叉链表上,求根,求左、右孩子等很容易实现D.在二叉链表上,求双亲运算的时间性能很好6. 如图6-3所示的4 棵二叉树,是平衡二叉树。
图6-3 4 棵二叉树7. 如图6-4所示二叉树的中序遍历序列是。
A. abcdgefB. dfebagcC. dbaefcgD. defbagc图6-4 1 棵二叉树8. 已知某二叉树的后序遍历序列是dabec,中序遍历序列是debac,它的前序遍历序列是。
A. acbedB. decabC. deabcD. cedba9. 如果T2 是由有序树T 转换而来的二叉树,那么T 中结点的前序就是T2 中结点的。
A. 前序B.中序C. 后序D. 层次序10. 某二叉树的前序遍历结点访问顺序是abdgcefh,中序遍历的结点访问顺序是dgbaechf,则其后序遍历的结点访问顺序是。
A. bdgcefhaB. gdbecfhaC. bdgaechfD. gdbehfca11. 将含有83个结点的完全二叉树从根结点开始编号,根为1号,后面按从上到下、从左到右的顺序对结点编号,那么编号为41的双亲结点编号为。
第六章 树和二叉树第一次作业6.1试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
分析:一棵度为2的有序树与一棵二叉树的区别是:度为2的树有二个分支,没有左右之分;一棵二叉树也有两个分支,但有左右之分,且左右不能交换.33个结点的二叉树:6.4一个深度为H 的满k 叉树有如下性质:第H 层上的结点都是叶子结点,其余各层上每个结点都有k 棵非空子树。
如果按层次顺序(同层自左至右)从未有过开始对全部结点编号,问:(1) 各层的结点数目是多少?(2) 编号为i 的结点的双亲结点(若存在)的编号是多少?(3)编号为i 的结点的第j 个孩子结点(若存在)的编号是多少?(4) 编号为i 的结点有右兄弟的条件是什么?其右兄弟的编号是多少? 解:(1) K i -1(2) i =1时,该节点为根,无父节点;否则其父节点编号为(2)i k k +-⎢⎥⎢⎥⎣⎦(k ≥2) 分析:编号为p 的孩子结点的范围[(p -1)*k +2, p *k +1] 得出(i -1)/k ≤p ≤(i -2)/k +1(3) K *i +j +1-k(4)(i -1)MOD K <>0,该结点有右兄弟,其右兄弟的编号是i +16.5 已知一棵度为k 的树中有1n 个度为1的结点,2n 个度为2的结点,…,k n 个度为k 的结点,问该树中有多少个叶子结点?解: ∑=-+=k 1i i 0n )1i (1n分析:结点总数:n=n 0+n 1+n 2+……+n k ,n=1+n 1+2n 2+……+kn k所以得n 0 = n 2 + 2n 3 + …… + (k -1)n k + 1 6.6 已知在一棵含有n 个结点的树中,只有度为k 的分支结点和度为0的叶子结点,试求该树的叶子结点数目解:度:一个结点含有的子树的个数称为该节点的度;设有n k 个度为k 的分支结点,n 0个度为0的分支结点各点度数总和为:n=k*n k +1,最后计算得到叶节点个数为n-(n-1)/k 。
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
第6章树和二叉树(2)第六章树和二叉树一、选择题1.算术表达式a+b*(c+d/e)转为后缀表达式后为()A.ab+cde/* B.abcde/+*+ C.abcde/*++ D.abcde*/++2. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定3.若度为m的哈夫曼树中,其叶结点个数为n,则非叶结点的个数为()。
A.n-1 B.⎣n/m⎦-1 C.⎡(n-1)/(m-1)⎤ D.⎡n/(m-1)⎤-1E.⎡(n+1)/(m+1)⎤-14.深度为h的满m叉树的第k层有()个结点。
(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-15. 若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )A.X的双亲B.X的右子树中最左的结点C.X的左子树中最右结点D.X的左子树中最右叶结点6. 引入二叉线索树的目的是()A.加快查找结点的前驱或后继的速度 B.为了能在二叉树中方便的进行插入与删除C.为了能方便的找到双亲 D.使二叉树的遍历结果唯一7.由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.58.下述编码中哪一个不是前缀码()。
A.(00,01,10,11) B.(0,1,00,11) C.(0,10,110,111)D.(1,01,000,001)二、判断题1. 给定一棵树,可以找到唯一的一棵二叉树与之对应。
2.将一棵树转成二叉树,根结点没有左子树;3. 在中序线索二叉树中,每一非空的线索均指向其祖先结点。
4. 一棵哈夫曼树的带权路径长度等于其中所有分支结点的权值之和。
5.当一棵具有n个叶子结点的二叉树的WPL值为最小时,称其树为Huffman树,且其二叉树的形状必是唯一的。
三、填空题1.一棵树T中,包括一个度为1的结点,两个度为2的结点,三个度为3的结点,四个度为4的结点和若干叶子结点,则T的叶结点数为___ ___。
数据构造习题集含答案目录目录1选择题2第一章绪论2第二章线性表4第三章栈和队列6第四章串7第五章数组和广义表8第六章树和二叉树8第七章图11第八章查找13第九章排序14简答题19第一章绪论19第二章线性表22第三章栈和队列24第四章串26第五章数组和广义表27第六章树和二叉树28第七章图31第八章查找31第九章排序32编程题34第一章绪论34第二章线性表34第三章栈和队列45第四章串45第五章数组和广义表45第六章树和二叉树45第七章图45第八章查找45第九章排序50选择题第一章绪论1.数据构造这门学科是针对什么问题而产生的?〔A 〕A、针对非数值计算的程序设计问题B、针对数值计算的程序设计问题C、数值计算与非数值计算的问题都针对D、两者都不针对2.数据构造这门学科的研究容下面选项最准确的是〔D 〕A、研究数据对象和数据之间的关系B、研究数据对象C、研究数据对象和数据的操作D、研究数据对象、数据之间的关系和操作3.*班级的学生成绩表中查得三同学的各科成绩记录,其中数据构造考了90分,则下面关于数据对象、数据元素、数据项描述正确的选项是〔C 〕A、*班级的学生成绩表是数据元素,90分是数据项B、*班级的学生成绩表是数据对象,90分是数据元素C、*班级的学生成绩表是数据对象,90分是数据项D、*班级的学生成绩表是数据元素,90分是数据元素4.*数据构造是指〔A 〕。
A、数据元素的组织形式B、数据类型C、数据存储构造D、数据定义5.数据在计算机存储器表示时,物理地址与逻辑地址不一样,称之为〔C 〕。
A、存储构造B、逻辑构造C、链式存储构造D、顺序存储构造6.算法分析的目的是〔C 〕A、找出数据的合理性B、研究算法中的输入和输出关系C、分析算法效率以求改良D、分析算法的易懂性和文档型性7.算法分析的主要方法〔A 〕。
A、空间复杂度和时间复杂度B、正确性和简明性C、可读性和文档性D、数据复杂性和程序复杂性8.计算机部处理的根本单元是〔B 〕A、数据B、数据元素C、数据项D、数据库9.数据在计算机有链式和顺序两种存储方式,在存储空间使用的灵活性上,链式存储比顺序存储要〔B 〕。
第6章树和二叉树一、基础知识题1.列出右图所示二叉树的叶结点、分支结点和每个结点的层次。
[解答]二叉树的叶结点有⑥、⑧、⑨。
分支结点有①、②、③、④、⑤、⑦。
结点①的层次为0;结点②、③的层次为1;结点④、⑤、⑥的层次为2;结点⑦、⑧的层次为3;结点⑨的层次为4。
2.使用(1)顺序表示和(2)二叉链表表示法,分别画出右图所示二叉树的存储表示。
[解答](1)顺序表示(2)二叉链表表示3.在结点个数为n(n>1)的各棵树中,高度最小的树的高度是多少?它有多少个叶结点?多少个分支结点?高度最大的树的高度是多少?它有多少个叶结点?多少个分支结点?[解答]结点个数为n时,高度最小的树的高度为1,有2层;它有n-1个叶结点,1个分支结点;高度最大的树的高度为n-1,有n层;它有1个叶结点,n-1个分支结点。
4.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
[解答]具有3个结点的树具有3个结点的二叉树5.如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m的结点,试问有多少个度为0的结点?试推导之。
[解答]总结点数n=n0+n1+n2+…+n m总分支数e=n-1= n0+n1+n2+…+n m-1=m×n m+(m-1)×n m-1+…+2×n2+n1则有 n 0=∑=+-mi i n i 21))1((6.试分别找出满足以下条件的所有二叉树:(1) 二叉树的前序序列与中序序列相同; (2) 二叉树的中序序列与后序序列相同; (3) 二叉树的前序序列与后序序列相同。
[解答](1) 二叉树的前序序列与中序序列相同:空树或缺左子树的单支树;(2) 二叉树的中序序列与后序序列相同:空树或缺右子树的单支树; (3) 二叉树的前序序列与后序序列相同:空树或只有根结点的二叉树。
7.填空题(1)对于一棵具有n 个结点的树,该树中所有结点的度数之和为 n-1 。
数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。