二项分布参数p的区间估计 _ F分布法
- 格式:pdf
- 大小:487.93 KB
- 文档页数:4
生物统计学各章题目一填空1.变量按其性质可以分为(连续)变量和(非连续)变量。
2.样本统计数是总体(参数)的估计值。
3.生物统计学是研究生命过程中以样本来推断(总体)的一门学科。
4.生物统计学的基本内容包括(试验设计)和(统计分析)两大部分。
5.生物统计学的发展过程经历了(古典记录统计学)、(近代描述统计学)和(现代推断统计学)3个阶段。
6.生物学研究中,一般将样本容量(n ≥30)称为大样本。
7.试验误差可以分为(随机误差)和(系统误差)两类。
判断1.对于有限总体不必用统计推断方法。
(×)2.资料的精确性高,其准确性也一定高。
(×)3.在试验设计中,随机误差只能减小,而不能完全消除。
(∨)4.统计学上的试验误差,通常指随机误差。
(∨)二填空1.资料按生物的性状特征可分为(数量性状资料)变量和(质量性状资料)变量。
2. 直方图适合于表示(连续变量)资料的次数分布。
3.变量的分布具有两个明显基本特征,即(集中性)和(离散性)。
4.反映变量集中性的特征数是(平均数),反映变量离散性的特征数是(变异数)。
5.样本标准差的计算公式s=( )。
判断题1. 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
(×) 122--∑∑n n x x )(2. 条形图和多边形图均适合于表示计数资料的次数分布。
(×)3. 离均差平方和为最小。
(∨)4. 资料中出现最多的那个观测值或最多一组的中点值,称为众数。
(∨)5. 变异系数是样本变量的绝对变异量。
(×)单项选择1. 下列变量中属于非连续性变量的是( C ).A. 身高B.体重C.血型D.血压2. 对某鱼塘不同年龄鱼的尾数进行统计分析,可做成( A )图来表示.A. 条形B.直方C.多边形D.折线3. 关于平均数,下列说法正确的是( B ).A.正态分布的算术平均数和几何平均数相等. B.正态分布的算术平均数和中位数相等. C.正态分布的中位数和几何平均数相等. D. 正态分布的算术平均数、中位数、几何平均数均相等。
医学统计学二项分布课件xx年xx月xx日•二项分布概述•二项分布数学模型•二项分布的参数估计•二项分布与其它分布的关系目•二项分布的应用实例•二项分布在SPSS和R语言中的应用录01二项分布概述二项分布是一种离散概率分布,描述了在n次独立的是/非试验中成功的次数的概率分布。
其中,每次试验的成功概率为p,失败概率为1-p。
定义B(n, p) = C(n, k) * p^k * (1-p)^(n-k)公式二项分布的定义二项分布的特点二项分布在n次独立的是/非试验中成功的次数。
二项分布的随机变量取值为0,1,2,…,n。
在n次独立的是/非试验中,每次试验的成功概率为p,失败概率为1-p。
描述病情变化在医学领域中,病情变化是一个二项分布的过程。
病情可能变好也可能变坏,每次试验可以看作是医生对病情的观察和评估。
临床试验设计在临床试验中,通常将二项分布应用于设计试验方案和分析数据。
例如,在随机对照试验中,将患者随机分为试验组和对照组,比较两组的有效率或成功率等指标。
诊断和预后在医学诊断和预后评估中,通常将二项分布应用于计算概率和可信区间。
例如,计算某疾病的发病率、某检查手段的阳性率等指标。
二项分布在医学统计学中的应用02二项分布数学模型二项分布概率函数公式:$P(X=k) = C(n, k) p^k (1-p)^{n-k}$其中 $C(n, k)$ 表示组合数,$p$ 表示每次试验成功的概率,$n$ 表示试验次数二项分布概率函数二项分布的均值$E(X) = np$二项分布的方差$D(X) = np(1-p)$二项分布的均值和方差二项分布曲线是一个钟形曲线随着 $n$ 的增大,曲线越来越接近正态分布曲线二项分布曲线的形状03二项分布的参数估计样本大小的选择确定样本量医学研究中,样本量的选择是至关重要的。
通常根据研究目的、研究因素的数量和研究因素的水平数来决定样本量。
考虑变异性和研究因素在选择样本量时,需要考虑研究因素的变异性和水平数。