优化电源模块性能的PCB布局技1
- 格式:doc
- 大小:91.00 KB
- 文档页数:3
电源pcb设计指南包括:PCB安规、emc、布局布线、PCB热设计、PCB工艺导读1.安规距离要求部分2.抗干扰、EMC部分3.整体布局及走线部分4.热设计部分5.工艺处理部分1.安规距离要求部分安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。
1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。
2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。
一、爬电距离和电气间隙距离要求,可参考NE61347-1-2-13/GB19510.14.(1)、爬电距离:输入电压50V-250V时,保险丝前L—N≥2.5mm,输入电压250V-500V时,保险丝前L—N≥5.0mm;电气间隙:输入电压50V-250V时,保险丝前L—N≥1.7mm,输入电压250V-500V时,保险丝前L—N≥3.0mm;保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。
(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y 电容等元器零件脚间距≤6.4mm 要开槽。
(5)、变压器两级间≥6.4mm 以上,≥8mm加强绝缘。
2.抗干扰、EMC部分在图二中,PCB 布局时,驱动电阻R3应靠近Q1(MOS管),电流取样电阻R4、C2应靠近IC1的第4 Pin,如图一所说的R应尽量靠近运算放大器缩短高阻抗线路。
因运算放大器输入端阻抗很高,易受干扰。
输出端阻抗较低,不易受干扰。
一条长线相当于一根接收天线,容易引入外界干扰。
在图三的A中排版时,R1、R2要靠近三极管Q1放置,因Q1的输入阻抗很高,基极线路过长,易受干扰,则R1、R2不能远离Q1。
在图三的B中排版时,C2要靠近D2,因为Q2三极管输入阻抗很高,如Q2至D2的线路太长,易受干扰,C2应移至D2附近。
二、小信号走线尽量远离大电流走线,忌平行,D>=2.0mm。
经典DDR3PCB设计指导DDR3 PCB(Printed Circuit Board)设计是一项关键性任务,它直接影响到DDR3内存模块性能和稳定性。
下面是一些经典的DDR3 PCB设计指导。
1.布局设计首先,要确保PCB布局以尽量减小信号传输长度和最小化信号路径的交叉。
为此,可以采用层叠设计,将电源和地线平面放在内层,并尽量将数据和时钟线路与其他信号线路分开。
同时,还要保持清晰的电源和地线分布,以减少电磁干扰。
2.阻抗匹配DDR3接口要求较低的阻抗匹配,一般为50欧姆。
因此,在设计DDR3PCB时,需要使用特殊的阻抗控制技术,包括差分阻抗控制和单端阻抗控制。
通过正确选择PCB板材和线宽/线间距来控制阻抗,确保数据线和时钟线的阻抗匹配。
3.时钟信号时钟信号对DDR3接口的性能和稳定性至关重要。
在PCB设计中,时钟信号应该尽量与其他信号线隔离,并保持尽可能短的信号路径。
此外,要确保时钟信号的最大和最小延迟在规格范围内,并且要避免信号树中出现反向或环形延迟。
4.功耗分析和管理DDR3内存模块在运行时会产生较大的功耗,因此在PCB设计中需要进行功耗分析和管理。
这包括考虑供电线路的宽度和连接方式,设计足够的电源滤波电容,并确保电源线路的稳定性和低噪声。
5.地线规划合理的地线规划对于DDR3PCB设计至关重要。
正确规划地线可以减少信号的噪声干扰和串扰。
建议使用实特性阻抗为0的地线平面,以减少反跳和电磁干扰。
6.差分信号DDR3接口主要使用差分信号传输,如数据线和时钟线。
在PCB设计时,差分信号应该尽可能保持信号的匹配性,并采取差分对的布线方式,减少差分信号之间的串扰。
以上是经典的DDR3PCB设计指导,注意这只是指导性的建议,具体设计仍应根据具体的应用场景和产品要求进行调整。
此外,使用专业的PCB 设计软件进行仿真和分析也是十分重要的,以确保DDR3PCB设计的性能和稳定性。
PCB布线设计详介PCB布线设计是电路设计中非常重要的一个环节,其设计质量直接关系到整个电路的稳定性和性能。
本文将对PCB布线设计的相关内容进行详细的介绍。
一、PCB布线设计的基本原则1.信号传输线要尽量短,减少信号传输时的信号损失,降低噪声干扰。
2.信号线和电源线要分开布线,避免互相干扰,减少互相串扰带来的影响。
3.布线路径尽量简单,避免交叉、弯曲、折返等复杂路径,减少布线电感和电容。
4.布线要避免悬线和盲孔,减少板间电容。
5.时钟信号和高速数据线要特别注意,要尽量短,布垂直于板面,避免与其他线路交叉干扰。
二、PCB布线的技巧1.差分线路的布线差分线路的布线技术是在高速传输系统中广泛应用的一种技术。
差分线路是指将信号线和其镜像线分开布置在PCB板上的一组线路,通过差模信号传输方式来实现。
差分信号与单端信号相比,具有抗噪声干扰、抗串扰、抗EMI(电磁干扰)能力强等特点,因此在高速传输中得到了广泛的应用。
2.布局的作用PCB布局与布线设计相辅相成,布局设计是为了让布线设计得以更好地实现。
优良的布局设计可以减少电路的噪声和信号干扰,提高电路的稳定性。
在PCB布局设计中,需注意尽量采用规则的布局结构,并在PCB布局设计中安排合理的电路模块布局。
同时还要注意小功率电路与大功率电路的分离,以及布局的美观性等。
3.选择合适的信号层在PCB布线设计中,如何选择合适的信号层是选择各层布线的关键之一,正确的选择信号层具有极其重要的作用。
总结各种信号层的特点,选择合适的信号层非常重要,一般可按以下原则进行选择:a.如何选择信号层的数量:在一般的PCB布线设计中,两、四层板较为常见,根据实际需要可选择更多的层数。
b.信号层的放置顺序:一般而言,地层作为底基础层,供电层接在地上方。
地面层主要用来进行接地和铺敷地电位,因此在信号层的选择上要注意尽量使地层尽可能地与其他层隔离开来。
其余层的放置顺序和数量根据实际电路设计需要来决定。
pcb布局紫色框PCB(Printed Circuit Board)布局紫色框是在电路板设计中经常用到的一种技术,通过在布局过程中添加紫色框线,可以实现各种功能,如电路隔离、信号处理和电源分配。
在本文中,我们将探讨PCB布局紫色框的用途、设计原则以及实施步骤。
I. 紫色框的用途PCB布局紫色框主要用于以下几个方面:1. 电路隔离:通过添加紫色框线,可以将电路板的不同功能模块分隔开来,减少信号干扰,并提高电路板的可靠性和稳定性。
2. 信号处理:紫色框线可以用于定义信号处理电路的边界,确保信号传输的精确性和准确性。
同时,它也有助于在多层电路板上管理信号的引导和传输。
3. 电源分配:通过在PCB布局中添加紫色框,可以划定电源分配网络的区域,提高电源线的可追溯性,并有助于解决电源跳线、电源噪声等问题。
II. PCB布局紫色框的设计原则在设计PCB布局紫色框时,需要遵循以下原则:1. 功能分区:根据电路板的功能和模块划分,将紫色框用于划定不同区域。
比如,可以将数字信号处理、模拟信号处理和电源分配分别划分到不同的区域。
2. 信号完整性:确保紫色框线与信号的边界相吻合,避免信号传输时的干扰和损耗。
同时,应合理布置传输线路,减少信号串扰和电磁辐射。
3. 电源管理:合理规划电源网络,避免电源线路交叉干扰。
通过添加紫色框线,可以划定电源区域,降低电源导线的长度和阻抗。
4. 紫色框线宽度:根据实际需求和设计规范,选择适当的紫色框线宽度。
过宽的线框可能会占用过多的空间,而过窄的线框则可能导致信号完整性和电源管理的问题。
III. PCB布局紫色框的实施步骤以下是实施PCB布局紫色框的步骤:1. 设定布局规则:在PCB设计软件中,设定相关的布局规则,包括紫色框线的颜色、宽度和层次等参数。
2. 划定功能区域:根据电路板的功能需求,使用PCB设计软件在适当位置添加紫色框线,划定不同的功能区域。
保持紫色框的连续性并避免重叠。
3. 优化信号传输:通过合理布局传输线路,减少信号串扰和电磁干扰。
PCB设计模拟布局与数字布局技术的要领PCB(Printed Circuit Board)是电子电路所必需的基础部件之一。
它重要的作用在于将电路板上的各种元器件、电子器件、传感器设备连接在一起,实现各种电路功能。
好的PCB设计师需要有一定的电路原理基础知识。
同时,他们必须理解电路设计规范和模拟布局与数字布局技术。
本文旨在探讨PCB设计中的模拟布局与数字布局技术的要领。
一、模拟布局技术模拟电路和数字电路的差异在于,前者的信号是连续变化的模拟信号,而后者的信号是离散数值的数字信号。
因此,模拟布局需要关注信号的连续性以及器件产生的噪声和交叉干扰。
下面介绍一些模拟布局技术的要领:1. 电源和地线的布局每个电路板都必须有一个电源,而电源的地线是所有电路板的共同接地点。
在布局时,电源的线路应该尽可能短,并且要放在每个板的边缘处。
地线应该是尽可能粗的线路,并且应该交错地排列。
这样可以减少电源线对其他线路的干扰。
2. 分类布局模拟电路通常按其使用的频率等级进行分类,每个功能块分别进行布局,以减少信号交叉干扰。
例如,低频放大器与高频振荡器必须分别进行布局,以减少噪声和交叉干扰。
3. 线路布局线路的长度和宽度影响电路板上的信号速度和抗干扰能力。
因此,在布局时应该缩短信号线路的长度并使其尽可能宽。
同时,必须避免信号线路与电源线路和地线共线。
这种布局模式可以有效减少电磁干扰引起的信号串音和其他问题。
4. 组件安排模拟电路中使用的基本电路元件是电阻、电容和电感。
这些元件的放置位置和方向对线路的性能和稳定性有直接影响。
在安排元件时,应优先考虑干扰源和受干扰元件之间的距离,并优先安排相互干扰较小的元件。
二、数字布局技术数字布局是以数字信号为基础,以信号延迟、滤波和误差修正等为目标的布局技术。
它主要解决的问题是抗干扰和提高电路速度。
下面介绍一些数字布局技术的要领:1. 信号线的选择数字信号线具有短脉冲宽度和低电平峰值等特征,而噪声和交叉干扰容易影响数字信号的传输。
一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻:51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。
开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。
布板时须遵循高频电路布线原则。
1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。
脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。
输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。
Y电容应放置在机壳接地端子或FG连接端。
共摸电感应与变压器保持一定距离,以避免磁偶合。
如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。
输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。
发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率 MOSFET高直流阻抗电压驱动特性有关。
下面谈一谈印制板布线的一些原则。
线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。
考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。
PCB模块化布局---电容设计电容在高速PCB设计中扮演着重要的作用,通常也是PCB板上用得最多的器件。
电容在不同的应用场合下,扮演着不同的作用,在PCB板中,通常分为滤波电容、去耦电容、储能电容等滤波电容简单理解就是用在滤波电路中,保证输入、输出的电源稳定,我们通常把电源模块输入、输出回路的电容成为滤波电容。
在电源模块中,滤波电容摆放的原则是“先大后小”:如下图,滤波电容按箭头方向:先大后小摆放;电源设计时,要注意线宽、铜皮要足够宽、VIA个数要足够,保证过流能力。
宽度和VIA 个数结合电流大小来评估。
去耦电容高速IC的电源管脚,需要足够多的去耦电容,最好能保证每个管脚有一个。
实际的设计中,如果没有空间摆放,可以酌情删减。
IC电源管脚的去耦电容的容值通常都会比较小,如0.1uF、0.01uF等。
对应的封装也都比较小,如0402封装、0603封装等;在去耦电容摆放时,扇孔、扇线应该注意:1.尽可能靠近电源管脚放置,否则可能起不到去耦的作用;理论上讲,电容有一定的去耦半径范围,毕竟我们用的电容、器件不是理想的,所以还是严格执行就近原则;2.去耦电容到电源管脚引线尽量短(第1条也是这个目的),而且引线要加粗,通常线宽为8~15mil;加粗目的在于减小引线电感,保证电源性能;3.去耦电容的电源、地管脚,从焊盘引出线后,就近打孔,连接接到电源、地平面上。
这个引线同样要加粗,过孔尽量用打孔,比如能用孔径10mil的孔,就不用8mil孔;4.保证去耦环路尽量小;常见的摆放实例如下图:12去耦电容和IC 在同一面 去耦电容和IC 不在同一层面去耦电容和IC 不在同一层面上图示例为SOP 封装的IC 去耦电容的摆放方式,QFP 等封装的也类似;常见的BGA 封装,其去耦电容通常放在BGA 下面,即背面。
由于BGA 封装管脚密度大,一般放的不是很多,力争多摆放一些;BGA 封装下面的去耦电容如上图示例,有时为了摆放去耦电容,可能需要移动BGA 的fanout,或者两个电源、3地管脚共用一个VIA ;储能电容它的作用就是保证IC 在用电时,能在最短的时间提供电能。
pcb布板时应注意的事项及总结作为PCB工程师,在Lay PCB,应重点注意那些事项?1、电源进来之后,先到滤波电容,从滤波电容出来之后,才送给后面的设备。
因为PCB上面的走线,不是理想的导线,存在着电阻以及分布电感,如果从滤波电容前面取电,纹波就会比较大,滤波效果就不好了。
2、线条有讲究:有条件做宽的线决不做细,不得有尖锐的倒角,拐弯也不得采用直角。
地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。
3、电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。
4.Y 电容通用脚距10mm,留出焊盘,中间空隙是8mm,中间最好不要走线,中间不走线,放置的地方当然是板子的上下,左为强电,右为弱电。
强电端的GND最好为功率地,右边的弱电最好是靠近变压器的GND引脚。
5.再往大功率的,遵循的是两点:(1)主回路最好不要使用跳线,若一定要用就需加套管,跳线的上面若有元器件的话,还需点胶。
(2)在有限的平面积里及安全间距内尽可能的加粗,若不能加粗,就需要加铺焊层。
Lay PCB(电源板)时,结合安规要求,重点注意那些事项?1、交流电源进线,保险丝之前两线最小安全距离不小于6MM,两线与机壳或机内接地最小安全距离不小于8MM。
2、保险丝后的走线要求:零、火线最小爬电距离不小于3MM。
3、高压区与低压区的最小爬电距离不小于8MM,不足8MM或等于8MM的。
须开2MM的安全槽。
4、高压区须有高压示警标识的丝印,即有感叹号在内的三角形符号;高压区须用丝印框住,框条丝印须不小于3MM5、高压整流滤波的正负之间的最小安全距离不小于2MM6.按照先大后小,先难后易的原则,即重要的单元电路,核心元件应当优先布局。
7.布局应参考原理图,根据主板的主信号流向规律安排主要元器件。
8.布局尽量满足总的连线尽可能短,关键信号线最短,高电压,大电流信号与小电流,低电压的弱信号完全分开,模拟信号与数字信号分开,高频和低频信号分开,高频元器件间隔要充分。
优化电源模块性能的PCB布局技术全球出现的能源短缺问题使各国政府都开始大力推行节能新政。
电子产品的能耗标准越来越严格,对于电源设计工程师,如何设计更高效率、更高性能的电源是一个永恒的挑战。
本文从电源PCB的布局出发,介绍了优化SIMPLE SWITCHER电源模块性能的最佳PCB 布局方法、实例及技术。
在规划电源布局时,首先要考虑的是两个开关电流环路的物理环路区域。
虽然在电源模块中这些环路区域基本看不见,但是了解这两个环路各自的电流路径仍很重要,因为它们会延至模块以外。
在图1所示的环路1中,电流自导通的输入旁路电容器(Cin1),在高端MOSFET的持续导通时间内经该MOSFET,到达内部电感器和输出旁路电容器(CO1),最后返回输入旁路电容器。
图1 电源模块中环路示意图
环路2是在内部高端MOSFET的关断时间以及低端MOSFET的导通时间内形成的。
内部电感器中存储的能量流经输出旁路电容器和低端MOSFET,最后返回GND(如图1
所示)。
两个环路互不重叠的区域(包括环路间的边界),即为高di/dt电流区域。
在向转换器提供高频电流以及使高频电流返回其源路径的过程中,输入旁路电容器(Cin1)起着关键作用。
输出旁路电容器(Co1)虽然不会带来较大交流电流,但却会充当开关噪声的高频滤波器。
鉴于上述原因,在模块上输入和输出电容器应该尽量靠近各自的VIN和VOUT引脚放置。
如图2所示,若使旁路电容器与其各自的VIN和VOUT引脚之间的走线尽量缩短并扩宽,即可将这些连接产生的电感降至最低。
图2 SIMPLE SWITCHER环路
将PCB布局中的电感降至最低,有以下两大好处。
第一,通过促进能量在Cin1与CO1之间的传输来提高元件性能。
这将确保模块具有良好的高频旁路,将高di/dt电流产生的电感式电压峰值降至最低。
同时还能将器件噪声和电压应力降至最低,确保其正常操作。
第二,最大化降低EMI。
连接更少寄生电感的电容器,就会表现出对高频率的低阻抗特性,从而减少传导辐射。
建议使用陶瓷电容器(X7R或X5R)或其他低ESR型电容器。
只有将额外的电容放在靠近GND和VIN端时,添加的更多的输入电容才能发挥作用。
SIMPLE SWITCHER电源模块经过独特设计,本身即具有低辐射和传导EMI,而遵循本文介绍的PCB布局指导方针,将获得更高性能。
回路电流的路径规划常被忽视,但它对于优化电源设计却起着关键作用。
此外,应该尽量缩短且扩宽与Cin1和CO1之间的接地走线,并直接连接裸焊盘,这对于具有较大交流电流的输入电容(Cin1)接地连接尤为重要。
模块中接地的引脚(包括裸焊盘)、输入和输出电容器、软启动电容以及反馈电阻,都应连至PCB上的回路层。
此回路层可作为电感电流极低的返回路径以及下文将谈及的散热装置使用。
图3 模块及作为热阻抗的PCB示意图
反馈电阻也应放置在尽可能靠近模块FB(反馈)引脚的位置上。
要将此高阻抗节点上的潜在噪声提取值降至最低,令FB引脚与反馈电阻中间抽头之间的走线尽可能短是至关重要的。
可用的补偿组件或前馈电容器应该放置在尽可能靠近上层反馈电阻的位置上。
散热设计建议
模块的紧凑布局在电气方面带来好处的同时,对散热设计造成了负面影响,等值的功率要从更小的空间耗散掉。
考虑到这一问题,SIMPLE SWITCHER电源模块封装的背面设计了一个单独的大的裸焊盘,并以电气方式接地。
该焊盘有助于从内部MOSFET(通常产生大部分热量)到PCB间提供极低的热阻抗。
从半导体结到这些器件外封装的热阻抗(θJC)为1.9℃/W。
虽然达到行业领先的θJC 值就很理想,但当外封装到空气的热阻抗(θCA)太大时,低θJC值也毫无意义!如果没有提供与周围空气相通的低阻抗散热路径,则热量就会聚集在裸焊盘上无法消散。
那么,究竟是什么决定了θCA值呢?从裸焊盘到空气的热阻完全受PCB设计以及相关的散热片的控制。
现在来快速了解一下如何进行不含散热片的简单PCB散热设计,图3示意了模块及作为热阻抗的PCB。
与从结到裸片焊盘的热阻抗相比,由于结与外封装顶部间的热阻抗相对较高,因此在第一次估计从结到周围空气的热阻(θJT)时,我们可以忽略θJA散热路径。
散热设计的第一步是确定要耗散的功率。
利用数据表中公布的效率图(η)即可轻松计算出模块消耗的功率(PD)。
然后,我们使用设计中的最高温度TAmbient和额定结温TJunction(125℃)这两个温度约束来确定PCB上封装的模块所需的热阻。
最后,我们使用PCB表面(顶层和底层上均具有未损坏的一盎司铜散热片和无数个散热孔)的对流热传递的最大简化的近似值来确定散热所需的板面积。
所需的PCB板面积近似值未考虑到散热孔所发挥的作用,这些散热孔将热量从顶部金属层(封装连接至PCB)向底部金属层传递。
底层用作第二表面层,对流可以从这里将板上的热量传送出去。
为了使板面积近似值有效,需使用至少8~10个散热孔。
散热孔的热阻近似于下列方程式值。
此近似值适用于直径为12密尔、铜侧壁为0.5盎司的典型直通孔。
在裸焊盘下方的整个区域内要尽可能多地设计一些散热孔,并使这些散热孔以1~1.5mm的间距形成阵列。
结论
SIMPLE SWITCHER电源模块为应对复杂的电源设计,以及与直流/直流转换器相关的典型的PCB布局提供了替代方案。
虽然布局难题已被消除,但仍需完成一些工程设计工作,以便利用良好的旁路和散热设计来优化模块性能。