绝对值难题练习
- 格式:doc
- 大小:21.50 KB
- 文档页数:1
1.4与绝对值有关的十种常见题型与解法(新教材,重难点分层培优提升)类型一、绝对值的有关概念1.(23-24·吉林延边·阶段练习)在下列数中,绝对值最大的数是()A.0B.1-C.2-D.1【答案】C【分析】本题考查的是绝对值与有理数的大小比较,熟练掌握上述知识点是解题的关键.先计算出各选项的绝对值,再进行大小比较即可.=-=-==,【详解】解:∵|0|0,|1|1,|2|2,|1|1而210>>,∴->-=>,|2||1||1|0故选:C.-,那么a=.2.(23-24七年级上·甘肃定西·阶段练习)如果a的相反数是0.74【答案】0.74【分析】本题主要考查了绝对值和相反数的知识,根据“只有符号不相同的两个数互为相反数;互为相反数3.(23-24七年级上·全国·课后作业)化简下列各数:(1)34--;(2)()0.5-+-⎡⎤⎣⎦;(3)6217⎡⎤⎛⎫-++ ⎪⎢⎥⎝⎭⎣⎦;(4)()2-+.4.(2024·辽宁抚顺·三模)下列各数在数轴上表示的点距离原点最远的是()A .2-B .1-C .3D .05.(23-24七年级上·四川宜宾·期中)若有理数m 在数轴上的位置如图所示,则化简3m m ++结果是.6.(23-24七年级上·四川成都·阶段练习)已知|2||1|6a a ++-=,则=a ;7.(23-24七年级下·河南南阳·期末)已知3535x x -=-,则x 的取值范围是.8.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是()A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数9.(23-24·黑龙江哈尔滨·期中)已知a 为有理数,则24a -+的最小值为.10.(24-25七年级上·全国·随堂练习)比较大小:76-65--.11.(24-25七年级上·全国·假期作业)比较下列各对数的大小:①1-与0.01-;②2--与0;③0.3-与13-;12.(23-24七年级上·湖南怀化·期末)已知下列各数,按要求完成各题:4.5+,142--,0, 2.5-,6,5-,()3+-.(1)负数集合:{......};(2)用“<”把它们连接起来是;(3)画出数轴,并把已知各数表示在数轴上.大于负数,两个负数比较大小绝对值越大其值越小进行求解即可;13.(23-24七年级上·海南省直辖县级单位·期末)如果21(2)0a b ++-=,则a b +的值为()A .1B .3C .1-D .3-14.(23-24·黑龙江哈尔滨·开学考试)已知|3||5|0x y -++=,求||x y +的值.15.(21-22七年级上·陕西·期中)已知(a +2)2+|b ﹣3|=0,c 是最大的负整数,求a 3+a 2bc ﹣12a 的值.二、填空题16.(23-24七年级上·四川南充·阶段练习)若12x <<,求代数式2121x x xx x x---+=.17.(23-24·上海杨浦·期末)12345x x x x x -+-+-+-+-的最小值为.18.(2024七年级下·北京·专题练习)已知112x -<<,化简|||2|3x x ---=.三、解答题19.(24-25七年级上·全国·随堂练习)在数轴上,a ,b ,c 对应的数如图所示,b c =.(1)确定符号:a ______0,b ______0,c _____0,b c +_____0,a c -______0;(2)化简:a c b +-;(3)化简:a a c --.20.(23-24·北京海淀·期中)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a b +______0,c a -______0,2b +______0.(2)化简:22a b c a b ++--+.【答案】(1)>,<,>(2)322a c --21.(23-24七年级下·河南周口·阶段练习)求解含绝对值的一元一次方程的方法我们没有学习过,但我们可以采用分类讨论的思想先把绝对值去除,使得方程成为一元一次方程,这样我们就能轻松求解了.比如,求解方程:32x -=.解:当30x -≥时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =,所以原方程的解是5x =或1x =.请你依据上面的方法,求解方程:3270x --=,得到的解为.22.(23-24七年级下·甘肃天水·期中)阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示在数轴上数1x ,2x 对应点之间的距离.例1:解方程6x =.解:∵06x x =-=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±.例2:解不等式12x ->.解:如图,首先在数轴上找出12x -=的解,即到1的距离为2的点对应的数为1-,3,则12x ->的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程53x -=的解为______;(2)解不等式2219x ++<;(3)若123x x -++=,则x 的取值范围是_______;故答案为:8x =或2x =.(2)2219x ++<(3)123x x -++=,表示到1的点与到2-的点距离和为3,故答案为:21x -£<.23.(24-25七年级上·全国·假期作业)数学实验室:点A 、B 在数轴上分别表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离||AB a b =-.利用数形结合思想回答下列问题:(1)数轴上表示x 和3-的两点之间的距离表示为.(2)若34x +=,则x =.(3)32x x --+最大值为,最小值为.24.(23-24七年级上·四川南充·阶段练习)我们知道,a 可以理解为0a -,它表示:数轴上表示数a 的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A ,B ,分别用数a ,b 表示,那么A ,B 两点之间的距离为AB a b =-,反过来,式子a b -的几何意义是:数轴上表示数a 的点和表示数b 的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数1-的点和表示数3-的点之间的距离是_________.(2)数轴上点A 用数a 表示,则①若35a -=,那么a 的值是_________.②36a a -++有最小值,最小值是_________;③求123202*********a a a a a a ++++++++++++ 的最小值.25.(23-24·黑龙江哈尔滨·期中)出租车司机李师傅某日上午一直在某市区一条东西方向的公路上营运,共连续运载八批乘客,若按规定向东为正,李师傅营运八批乘客里程数记录如下(单位:千米):8+,6-,3+,4-,8+,4-,5+,3-.(1)将最后一批乘客送到目的地后,李师傅位于第一批乘客出发地多少千米?(2)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元,不超过5千米则收取起步价,求李师傅在这期间一共收入多少元?26.(23-24·黑龙江哈尔滨·阶段练习)刚刚闭幕的第33届“哈洽会”,于2024年5月16日至21日在哈尔滨市举办,中外宾客齐聚冰城.为确保全市道路交通安全有序,哈尔滨市公安交通管理局在开幕式当日对会展中心周边区域,以及部分道路进行交通管制和诱导分流.萧萧作为哈市青年当日也贡献了自己的一份力量.如图是某一条东西方向直线上的公交线路的部分路段,西起A 站,东至L 站,途中共设12个上下车站点,“哈洽会”开幕式当日,萧萧参加该线路上的志愿者服务活动,从C站出发,最后在某站结束服务活动,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):5,3,4,5,8,2,1,3,4,1+-+-+-+--+.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次萧萧志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶,若萧萧开始志愿服务活动时该汽车油量占油箱总量的1170,每行驶1千米耗油0.2升,活动结束时油量恰好能保证汽车安全行驶,则该汽车油箱能存储油多少升?一、单选题1.(22-23七年级上·云南保山·期末)有理数a ,b ,c 在数轴上的位置如图所示,在下列结论中:①0a b ->;②0ab <;③a b a b +=--;④()0b a c ->,正确的个数有()A .4个B .3个C .2个D .1个2.(23-24七年级上·浙江台州·期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是()A .0ab >B .4b a ->C .2a b a b +=D .()()230a b +-<3.(23-24七年级上·山东德州·期末)有理数a 、b 、c 在数轴上的位置如图所示,则b a b c a c --+--的化简结果为()A .2c-B .2a C .2b D .22b c+4.(18-19七年级上·北京海淀·期末)如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A .a b +B .a b -C .abD .a b -5.(23-24七年级上·江西抚州·期末)适合|5||3|8a a ++-=的整数a 的值有()A .5个B .7个C .8个D .9个二、填空题6.(23-24七年级上·浙江绍兴·阶段练习)已知a 、b 为整数,202320a b +--=,且b a <,则a 的最小值为.7.(23-24七年级上·湖北省直辖县级单位·阶段练习)若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;8.(23-24七年级上·河南南阳·阶段练习)已知x a b ,,为互不相等的三个有理数,且a b >,若式子||||x a x b -+-的最小值为2,则2023a b +-的值为.三、解答题9.(23-24七年级上·江苏南京·阶段练习)出租车司机小王某天下午营运全是东西走向的玄武大道进行的,如果规定向东为正,向西为负,他这天下午的行驶记录如下:(单位:千米)15+,3-,13+,11-,10+,12-,4+,15-,16+,19-(1)将最后一名乘客送到目的地时,小王距下午出车地点的距离是多少千米?(2)若汽车耗油量为a 升/千米,这天下午汽车共耗油多少升?(3)出租车油箱内原有5升油,请问:当0.05a =时,小王途中是否需要加油?若需要加油,至少需要加多少升油?若不需要加油,说明理由.10.(23-24七年级下·四川资阳·期末)(1)【阅读理解】“a ”的几何意义是:数a 在数轴上对应的点到原点的距离,所以“2a ≥”可理解为:数a 在数轴上对应的点到原点的距离不小于2,则:“2a <”可理解为:;我们定义:形如“x m ≤,≥x m ,x m <,x m >”(m 为非负数)的不等式叫做绝对值不等式,能使一个绝对值不等式成立的所有未知数的值称为绝对值不等式的解集.(2)【理解应用】根据绝对值的几何意义可以解一些绝对值不等式.例如:315x x -≤+我们将x 作为一个整体,整理得:315x x -≤+3x ≤再根据绝对值的几何意义:表示数x 在数轴上的对应点到原点的距离不大于3,可得:解集为33x -≤≤仿照上述方法,解下列绝对值不等式:①254x x -<-②1312313x x -+<-.11.(23-24六年级下·黑龙江绥化·期中)数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|3-=;数轴上表示数3和1-的两点距离为|3(1)|4--=;由此可知|63|+的意义可理解为数轴上表示数6和3-这两点的距离;|4|x +的意义可理解为数轴上表示数x 和4-这两点的距离;(1)如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A 的距离与P 到B 的距离之和最小?(2)如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C ,,三点的距离之和最小?(3)如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在_________时,才能使P 到A B C D ,,,四点的距离之和最小?(4)①|3||4|x x ++-的最小值是_________,此时x 的范围是_________;②|6||3||2|x x x ++++-的最小值是_________,此时x 的值为_________;③|7||4||2||5|x x x x ++++-+-的最小值是_________,此时x 的范围是_________.(3)①根据(1)的结论即可得出答案;②根据(2)的结论即可得出答案;③根据(3)的结论即可得出答案.【详解】(1)解:当点P 在点A 左边时,2PA PB PA PA AB PA AB +=++=+,当点P 在A 、B 之间时,PA PB AB +=,当点P 点点B 的右边时,2PA PB AB PB PB AB PB +=++=+,∴当点P 在A 、B 之间时,才能使P 到A 的距离与P 到B 的距离之和最小;(2)解:当点P 在点A 左边时,2PA PB PC PA PA AC PB PA PB AC ++=+++=++,当点P 在A 、B 之间时,PA PB PC PB AC ++=+,当点P 在B 点时,PA PB PC AC ++=,当点P 在B C 、之间时,PA PB PC PB AC ++=+,当点P 在点C 的右边时,2PA PB PC PC PB AC ++=++,∴当点P 在B 点时,才能使P 到A B C ,,三点的距离之和最小(3)解:当点P 在点A 左边时,42PA PB PC PD PA AB CB AD +++=+++,当点P 在A 、B 之间时,2PA PB PC PD PB CB AD +++=++,当点P 在B C 、之间时,PA PB PC PD BC AD +++=+,当点P 在C D 、之间时,2PA PB PC PD BC AD PC +++=++,当点P 在点D 的右边时,24PA PB PC PD BC AD DC PD +++=+++,∴当点P 在B C 、之间时,才能使P 到A B C D ,,,四点的距离之和最小;(4)解:①由(1)可得:当34x -≤≤时,有最小值,最小值为()437--=,∴|3||4|x x ++-的最小值7,此时x 的范围是34x -≤≤;②由(2)可得:这是在求点x 到6-,3-,2三点的最小距离,∴当3x =-时,有最小值,最小值为|6||3||2||36||33||32|8x x x ++++-=-++-++--=;③由(3)可得:这是在求点x 到7-,4-,2,5四点的最小距离,∴当42x -≤≤时,由最小值,最小值为|7||4||2||5|742518x x x x x x x x ++++-+-=++++-+-=.12.(23-24七年级上·安徽安庆·期中)有数a b c 、、在数轴上的大致位置如图所示:(1)a c +__________0,b c -__________0,a b -__________0(用“>”、“<”、“=”);(2)化简||||||a c b c a b ++---.13.(23-24七年级上·江西上饶·期中)如图所示,数轴上从左到右的三个点A ,B ,C 所对应的数分别为a ,b ,c .其中点A 、点B 两点间的距离AB 的长是2021,点B 、点C 两点间的距离BC 的长是1000.(1)若以点C 为原点,直接写出点A ,B 所对应的数;(2)若原点O 在A ,B 两点之间,求a b b c ++-的值;(3)若O 是原点,且18OB =,求a b c +-的值.【答案】(1)点A 所对应的数a 为3021-,点B 所对应的数b 为1000-(2)3021(3)a b c +-的值为3003-或3039-【分析】本题考查了数轴与绝对值的意义,理解绝对值的意义是解答本题的关键.(1)根据题意先求解AC 的长,结合数轴的定义可求解点A ,B 所对应的数;(2)根据数轴上点的特征可得a<0,0b >,0c >,0b c -<,结合绝对值的性质化简可求解;,14.(22-23七年级上·北京·期中)已知a ,b 在数轴上的位置如图所示:(1)用“>”、“<”或“=”填空:____0a ,____0a b +,____0b a -;(2)化简:||||2||a b a a b +--+;(3)若21a b =-=,,x 为数轴上任意一点所对应的数,则代数式||||x a x b -+-的最小值是______;此时x 的取值范围是______.。
小书童教育连锁机构(通济分校)初一数学姓名绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.)A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。
9、实数a_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba++x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .25.如果a 和 b表示有理数,在什么条件下, a +b 和a -b互为相反数?26、若X的相反数是—5,则X=______;若—X的相反数是—3.7,则X=_______27、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______29、已知|X—4|+|Y+2|=0,求2X—|Y|的值。
绝对值压轴题专题训练一、基础知识点回顾1. 绝对值的定义- 绝对值表示数轴上一个数所对应的点与原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a < 0)。
2. 绝对值的性质- 非负性:| a|≥0。
- | ab|=| a|| b|,<=ft|(a)/(b)right|=(| a|)/(| b|)(b≠0)。
二、典型例题及解析例1:已知| x - 3|+| x+2| = 5,求x的取值范围。
解析:- 当x≥3时,x - 3≥0,x + 2>0,则原方程化为(x - 3)+(x + 2)=5,即x-3+x + 2 = 5,2x-1 = 5,2x=6,解得x = 3。
- 当-2 < x<3时,x - 3<0,x + 2>0,原方程化为-(x - 3)+(x + 2)=5,即-x + 3+x+2 = 5,5 = 5,所以-2 < x<3这个区间内的x都满足方程。
- 当x≤ - 2时,x - 3<0,x+2≤0,原方程化为-(x - 3)-(x + 2)=5,即-x+3 - x - 2 = 5,-2x + 1=5,-2x=4,解得x=-2。
综上,-2≤ x≤3。
例2:若| a| = 3,| b| = 5,且| a - b|=b - a,求a + b的值。
解析:因为| a| = 3,所以a=±3;因为| b| = 5,所以b=±5。
又因为| a - b|=b - a,根据绝对值的性质可知b - a≥0,即b≥ a。
当a = 3,b = 5时,a + b=3 + 5=8;当a=-3,b = 5时,a + b=-3 + 5 = 2。
例3:求y=| x - 1|+| x - 2|+| x - 3|的最小值。
解析:- 当x≤1时,y=(1 - x)+(2 - x)+(3 - x)=6 - 3x,y随x的增大而减小,当x = 1时,y=3。
初一有理数绝对值题50道一、基础巩固1、绝对值等于 5 的数是()A 5B -5C 5 或-5D 02、绝对值小于 4 的整数有()A 3 个B 5 个C 7 个D 9 个3、若|x|=3,则 x=()A 3B -3C 3 或-3D 04、计算:| 7 |=()A -7B 7C 1/7D 1/75、若|a|= a,则 a 是()A 正数B 负数C 非正数D 非负数6、绝对值最小的数是()A 1B 0C -1D 不存在7、若|x 2|=0,则 x=()A 2B -2C 0D ±28、若|x + 3|=5,则 x=()A 2 或-8B -2 或 8C 2 或 8D -2 或-89、下列说法正确的是()A | 5 |= 5B | 06 |= 06C | 1/3 |= 1/3D | 8 |=810、比较大小:| 3 |()| 4 |A >B <C =D 无法比较二、能力提升11、若|a|=5,|b|=3,且 a>b,则 a + b 的值为()A 8B 2C 8 或 2D ±8 或 ±212、已知|x|=4,|y|=1/2,且 xy<0,则 x/y 的值为()A -8B 8C 1/8D 1/813、若|x 1| +|y + 2| = 0,则 x + y 的值为()A -1B 1C -3D 314、当 a<0 时,化简|a 1| |a 2| =()A -1B 1C 2a 3D 3 2a15、若 0<x<1,则 x,1/x,x²的大小关系是()A x<x²<1/xB x²<x<1/xC 1/x<x<x²D 1/x<x²<x16、有理数 a,b 在数轴上的位置如图所示,则|a b| =()(数轴略)A a bB b aC a + bD a b17、若|x + 1| +|x 2| = 5,则 x 的值为()A 3B -2C 3 或-2D 不存在18、已知 a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,求|a + b|/m cd + m 的值。
绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.()A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=_ __;若|x-3|=1,则x=_______。
9、实数a_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .26、若X的相反数是—5,则X=___;若—X的相反数是—3.7,则X=_______bca127、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________ 28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 29、已知|x —4|+|y+2|=0,求2x —|y|的值。
绝对值练习题及答案绝对值练习题及答案绝对值是数学中一个非常重要的概念,它可以帮助我们解决各种与数值相关的问题。
在这篇文章中,我们将探讨一些绝对值的练习题,并给出相应的答案。
通过这些练习题的训练,我们可以更好地理解和应用绝对值的概念。
一、基础练习题1. 计算以下数的绝对值:-5, 0, 7, -2, 10.答案:5, 0, 7, 2, 10.2. 求解以下方程:|x| =3.答案:x = 3 或 x = -3.3. 如果|x - 2| = 4, 求解x的可能值。
答案:x = 6 或 x = -2.4. 求解以下不等式:|2x - 3| ≤5.答案:-1 ≤ x ≤ 4.二、进阶练习题1. 已知|x - 4| = 2x + 1,求解x的值。
答案:x = -3.解析:将方程两边平方,得到(x - 4)² = (2x + 1)²,展开化简后得到x² - 10x - 15 = 0,解这个方程可以得到x = -3 或 x = 5,但是只有x = -3满足原方程。
2. 若|3x - 2| = 5x + 1,求解x的值。
答案:x = -1 或 x = 1.解析:将方程两边平方,得到(3x - 2)² = (5x + 1)²,展开化简后得到4x² + 14x -3 = 0,解这个方程可以得到x = -1 或 x = 1,均满足原方程。
三、挑战练习题1. 若|2x - 3| < 4x + 1,求解x的值。
答案:-1 < x < 2/3.解析:对于绝对值不等式,我们可以将其转化为两个不等式,即2x - 3 < 4x +1 和 2x - 3 > -(4x + 1),解这两个不等式可以得到-1 < x < 2/3,满足原不等式。
2. 若|3x - 4| > 2x + 1,求解x的值。
答案:x < -1 或 x > 3.解析:同样地,我们将绝对值不等式转化为两个不等式,即3x - 4 > 2x + 1 或3x - 4 < -(2x + 1),解这两个不等式可以得到x < -1 或 x > 3,满足原不等式。
初一第一章的《绝对值》的几个难题(答案)解:根据题意,我们可以列出方程组:a-b = 2008kc-a = 2008(1-k)其中k为整数。
将XXX代入原方程可得:a-b + c-a = 2化XXX:c-b = 2008k+1或c-b = 2008(1-k)-1因为a、b、c为整数,所以k只能为0或1.当k=0时,c-b=1,a-b=2008,b-c=-2007,所以c-a+a-b+b-c=2.当k=1时,c-b=-1,a-b=-2008,b-c=2007,所以c-a+a-b+b-c=2.因此,c-a+a-b+b-c的值为2.3、解方程:x-2+2x-1=8.答:将x-2和2x-1括起来,得到(x-2)+(2x-1)=8,化简得3x-3=8,解得x=11/3.4、已知:关于x的方程x-ax=1,同时有一个正根和一个负根,求整数a的值。
答:设正根为x1,负根为x2,则有x1-x2=2|a|。
因为x1和x2都是根,所以x1-ax1=1,x2-ax2=1.将两式相减得到x1-x2=a(x1-x2),因为x1和x2不相等,所以a=1或a=-1.当a=1时,方程化为x-x=1无解;当a=-1时,方程化为x+x=1,解得x=-1/2,符合要求。
因此,a=-1.5、已知:a、b、c是非零有理数,且a+b+c=0,求:abc/(abc)的值。
答:由a+b+c=0可得abc=-(ab+bc+ca),因此abc/(abc)=-1.6、设abcde是一个五位数,其中a、b、c、d、e是阿拉伯数字,且a<b<c<d,试求y=a-b+b-c+c-d+d-e的最大值。
答:因为a<b<c<d,所以b-a≥1,c-b≥1,d-c≥1,e-d≥1,将y拆开得到y=(b-a)+(c-b)+(d-c)+(e-d),因此y≥4.当a=1,b=2,c=3,d=4,e=5时,y=4,所以y的最大值为4.7、求关于x的方程x-2-1=a(0<a<1)所有解的和。
绝密★董老师初一绝对值(难)一.填空题(共50小题)1.若|a|=a,则a为数;若|a|=﹣a,则a为数.2.已知a,b,c都是有理数,且满足=1,那么6﹣=.3.如果一个零件的实际长度为a,测量结果是b,则称|b﹣a|为绝对误差,为相对误差.现有一零件实际长度为,测量结果是,则本次测量的相对误差是.4.若实数m,n,p满足m<n<p(mp<0)且|p|<|n|<|m|,则|x﹣m|+|x+n|+|x+p|的最小值是.5.若|﹣m|=2018,则m=.6.如图,x是0到4之间(包括0,4)的一个实数,那么|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的最小值等于.7.若|m|=3,|n|=2且m>n,则2m﹣n=.8.化简|π﹣4|+|3﹣π|=.9.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=.10.已知有理数a,b,c满足+,则=.11.已知a,b,c,d为有理数,且|2a+b+c+2d+1|=2a+b﹣c﹣2d﹣2,则(2a+b﹣)(2c+4d+3)=.12.已知abc≠0,且+++的最大值为m,最小值为n,则m+n=.13.若|a|=﹣a,则a的取值范围是.14.若abc>0,化简+++结果是.15.已知|a﹣1|=5,|b|=4,且a+b=|a|+|b|,则a﹣b=.16.求绝对值不大于4的所有的整数有个,它们的和是.17.绝对值小于4的整数有个,它们是.18.若?|m|=,则m=.19.已知x>3,化简:|3﹣x|=.20.如果a?b<0,那么=.21.如果|2x+5|=3,则x=.22.当y满足时,|y﹣3|=3﹣y成立.23.若有理数m,n,p满足,则=.24.已知整数x1,x2,x3,x4,…满足下列条件,x1=0,x2=﹣|x1+1|,x3=﹣|x2+2|,x4=﹣|x3+3|,x5=﹣|x4+4|,依此类推,则x2017的值为.25.若﹣2<a<3,则化简|2+a|﹣|a﹣3|的结果为.26.|x﹣2|+|x+4|=6,则x的取值范围是.27.若|x﹣1|=4,则x=.28.如图所示,化简|a﹣c|+|a﹣b|+|c|=.29.若x<0,化简=.30.若1<x<3,则|x﹣1|+|x﹣3|=.31.已知|x|=3,|y|=4,且x>y,则3x﹣4y的值是.32.x为有理数,则表达式|x+2|+|x﹣1|的最小值为.33.|x+1|+|x﹣3|的最小值是.34.若,则=.35.已知|a|=3,|b|=5,且a<0,b>0,则a﹣b=.36.若a,b,c为整数,且|a﹣b|2013+|c﹣a|2013=1,则|c﹣a|+|a﹣b|+|c﹣b|的值为.37.当a是大于1而不大于2的有理数时,化简|a﹣2|+|1﹣a|=.38.若有理数a,b,c满足abc>0,则++=.39.若a<1,|3﹣a|﹣|a﹣1|的化简结果为.40.当有理数a满足条件时,|a+4|+|a﹣5|的值最小.41.已知:|x|=|﹣y|,x=﹣3,则y=.42.已知:|m﹣5|=5﹣m,则m5(填“≤”或“≥”).43.(﹣1)2016的绝对值是.44.已知|a﹣1|=5,则a的值为.45.若a<b,ab<0:则﹣a+b=(用含|a|和|b|的式子表示)46.已知:|a﹣b|的几何意义为数轴上表示a,b两点之间的距离,你能由此得到方程|x﹣1|=3的解吗x=.47.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).48.若|a﹣3|=a﹣3,则a=.(请写一个符合条件a的值)49.已知|x|=2,|y|=3,且xy<0,x+y>0,则x﹣y=.50.若|x﹣3|+x﹣3=0,则|x﹣4|+x的值为.初一绝对值(难)参考答案与试题解析一.填空题(共50小题)1.【解答】解:∵|a|=a,∴a为非负数,∵|a|=﹣a,∴a为非正数.故答案为:非负,非正.2.【解答】解:根据绝对值的意义,知:一个非零数的绝对值除以这个数,等于1或﹣1.又=1,则其中必有两个1和一个﹣1,即a,b,c中两正一负.则=﹣1,则6﹣=6﹣(﹣1)=7.故答案为:7.3.【解答】解:若实际长度为,测量结果是,则本次测量的相对误差为=,故答案为:.4.【解答】解:∵mp<0,∴m、p异号,∵m<p,∴p>0,m<0,∵m<n<p且|p|<|n|<|m|,∴n<0,如图所示:∴当x=﹣p时,|x﹣m|+|x+n|+|x+p|有最小值,其最小值是:|x﹣m|+|x+n|+|x+p|=|﹣p﹣m|+|﹣p+n|+|﹣p+p|=﹣p﹣m﹣n+p=﹣m﹣n,则|x﹣m|+|x+n|+|x+p|的最小值是﹣m﹣n,故答案为:﹣m﹣n.5.【解答】解:因为|﹣m|=|m|,又因为|±2018|=2018,所以m=±2018故答案为:±20186.【解答】解:根据|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|的几何意义,可得|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|表示x到数轴上1,2,3,4四个数的距离之和,∴当x在2和3之间的任意位置时,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|有最小值,最小值为4.故答案为:4.7.【解答】解:∵|m|=3,|n|=2且m>n,∴m=3,n=±2,(1)m=3,n=2时,2m﹣n=2×3﹣2=4(2)m=3,n=﹣2时,2m﹣n=2×3﹣(﹣2)=8故答案为:4或8.8.【解答】解:∵π≈,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.9.【解答】解:因为m,n,p都是整数,|m﹣n|+|p﹣m|=1,则有:①|m﹣n|=1,p﹣m=0;解得p﹣n=±1;②|p﹣m|=1,m﹣n=0;解得p﹣n=±1.综合上述两种情况可得:p﹣n=±1.故答案为:±1.10.【解答】解:根据绝对值的意义,知:一个非零数的绝对值除以这个数,等于1或﹣1.又+,则其中必有两个1和一个﹣1,即a,b,c中两正一负.则=﹣1.11.【解答】解:∵|2a+b+c+2d+1|=2a+b﹣c﹣2d﹣2,∴2a+b+c+2d+1=2a+b﹣c﹣2d﹣2或﹣2a﹣b﹣c﹣2d﹣1=2a+b﹣c﹣2d﹣2,∴2c+4d=﹣3或2a+b=,∴(2a+b﹣)(2c+4d+3)=0,故答案为0.12.【解答】解:∵a,b,c都不等于0,∴有以下情况:①a,b,c都大于0,原式=1+1+1+1=4;②a,b,c都小于0,原式=﹣1﹣1﹣1﹣1=﹣4;③a,b,c,一负两正,不妨设a<0,b>0,c>0,原式=﹣1+1+1﹣1=0;④a,b,c,一正两负,不妨设a>0,b<0,c<0,原式=1﹣1﹣1+1=0;∴m=4,n=﹣4,∴m+n=4﹣4=0.故答案为:0.13.【解答】解:若|a|=﹣a,则a的取值范围是a≤0.故答案为:a≤0.14.【解答】解:∵abc>0,∴①a,b,c均大于0,原式=1+1+1+1=4,②a,b,c中只有一个大于0,不妨设a>0,则b<0,c<0,原式=1﹣1﹣1+1=0.故答案为:4或0.15.【解答】解:∵|a﹣1|=5,|b|=4,∴a=﹣4或6,b=±4,∵a+b=|a|+|b|,∴a>0,b>0,∴a=6,b=4,∴a﹣b=2,故答案为:2.16.【解答】解:绝对值不大于4的所有的整数是:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,即绝对值不大于4的所有的整数有9个,(﹣4)+(﹣3)+(﹣2)+(﹣1)+0+1+2+3+4=0,故答案为:9,0.17.【解答】解:绝对值小于4的整数有±3,±2,±1,0,共有7个.故答案为:7;±3,±2,±1,0.18.【解答】解:由题意得,m﹣1≠0,则m≠1,(m﹣3)?|m|=m﹣3,∴(m﹣3)?(|m|﹣1)=0,∴m=3或m=±1,∵m≠1,∴m=3或m=﹣1,故答案为:3或﹣1.19.【解答】解:∵x>3,∴3﹣x<0,∴|3﹣x|=x﹣3,故答案为:x﹣3.20.【解答】解:∵a?b<0,∴|a|和|b|必有一个是它本身,一个是它的相反数,|ab|是它的相反数,∴=1﹣1﹣1=﹣1;或=﹣1+1﹣1=﹣1.故答案为:﹣1.21.【解答】解:∵|2x+5|=3,∴2x+5=±3,解得:x=﹣4或﹣1.故答案为:﹣4或﹣1.22.【解答】解:∵|y﹣3|=3﹣y,∴y﹣3≤0,∴y≤3,故答案为y≤3.23.【解答】解:有理数m,n,p满足,所以m、n、p≠0;根据绝对值的性质:①当m>0,n>0,p<0时,原式=1+1﹣1=1,则=;②当m>0,n<0,p>0时,原式=1﹣1+1=1,则=;③当m<0,n>0,p>0时,原式=﹣1+1+1=1,则=;故答案为24.【解答】解:∵x1=0,x2=﹣|x1+1|,x2=﹣1.同理:x3=﹣1;x4=﹣2,x5=﹣2,x6=﹣3,x7=﹣3…∴(2017﹣1)÷2=1008.∴x2017=﹣1008.25.【解答】解:∵﹣2<a<3,∴2+a>0,a﹣3<0,∴|2+a|﹣|a﹣3|=2+a+a﹣3=2a﹣1故答案为:2a﹣1.26.【解答】解:由绝对值的意义可知:|x﹣2|+|x+4|=6表示数轴上某点到表示2与﹣4的点的距离等于6的点的集合.故此x的取值范围是:﹣4≤x≤2.故答案为:﹣4≤x≤2.27.【解答】解:∵|x﹣1|=4,∴x﹣1=±4,解得x=5或﹣3.故答案为:5或﹣3.28.【解答】解:|a﹣c|+|a﹣b|+|c|=a﹣c+(﹣a+b)+(﹣c)=a﹣c﹣a+b﹣c=b﹣2c,故答案为:b﹣2c.29.【解答】解:∵x<0,∴==﹣2x.故答案为:﹣2x.30.【解答】解:∵1<x<3,∴x﹣1>0,x﹣3<0,则|x﹣1|+|x﹣3|=x﹣1+[﹣(x﹣3)]=x﹣1﹣x+3=2.故答案为:2.31.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵x>y,∴x=3,y=﹣4或x=﹣3,y=﹣4,当x=3,y=﹣4时,3x﹣4y=3×3﹣4×(﹣4)=25,当x=﹣3,y=﹣4时,3x﹣4y=3×(﹣3)﹣4×(﹣4)=7.故答案为:25或7.32.【解答】解:因为x为有理数,就是说x可以为正数,也可以为负数,也可以为0,所以要分情况讨论.(1)当x<﹣2时,x﹣1<0,x+2<0,所以|x﹣1|+|x+2|=﹣(x﹣1)﹣(x+2)=﹣2x﹣1>3;(2)当﹣2≤x<1时,x﹣1<0,x+2≥0,所以|x﹣1|+|x+2|=﹣(x﹣1)+(x+2)=3;(3)当x≥1时,x﹣1≥0,x+2>0,所以|x﹣1|+|x+2|=(x﹣1)+(x+2)=2x+1≥3;综上所述,所以|x﹣1|+|x+2|的最小值是3.故答案为:3.33.【解答】解:当x≤﹣1时,|x+1|+|x﹣3|=﹣x﹣1﹣x+3=﹣2x+2,则﹣2x+2≥4;当﹣1<x≤3时,|x+1|+|x﹣3|=x+1﹣x+3=4;当x>3时,|x+1|+|x﹣3|=x+1+x﹣3=2x﹣2,则2x﹣2>4.综上所述|x+1|+|x﹣3|的最小值为4.故答案为:4.34.【解答】解:由++=1,得a、b、c有两个是正数,一个是负数.当a>0,b>0,c<0时,=1﹣1﹣1﹣1=﹣2,当a<0,b>0,c>0时,=﹣1+1﹣1﹣1=﹣2,当a>0,b<0,c>0时,=﹣1﹣1+1﹣1=﹣2.综上所述:=﹣2.故答案为:﹣2.35.【解答】解:∵|a|=3,|b|=5且a<0,b>0,∴a=﹣3,b=5,则原式=﹣3﹣5=﹣8.故答案为:﹣8.36.【解答】解:∵a、b、c为整数,且|a﹣b|2013+|c﹣a|2013=1,∴或,∴c﹣b=1,∴|c﹣a|+|a﹣b|+|c﹣b|=0+1+1=2或|c﹣a|+|a﹣b|+|c﹣b|=1+0+1=2,故答案为:2.37.【解答】解:∵1<a≤2,∴|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故答案为:1.38.【解答】解:∵abc>0,∴①三个数都是正数,则++=1+1+1=3,②两个负数,一个正数,则++=﹣1+(﹣1)+1=﹣1,故答案为:3或﹣1.39.【解答】解:∵a<1,∴3﹣a>0、a﹣1<0,则原式=3﹣a﹣(1﹣a)=3﹣a﹣1+a=2,故答案为:240.【解答】解:当a<﹣4时,|a+4|+|a﹣5|=﹣a﹣4+5﹣a=1﹣2a>9;当﹣4≤a≤5时,|a+4|+|a﹣5|=a+4+5﹣a=9;当a>5时,|a+4|+|a﹣5|=a+4+a﹣5=2a﹣1>9;故当﹣4≤a≤5时,|a+4|+|a﹣5|的值最小.故答案为:﹣4≤a≤5.41.【解答】解:∵x=﹣3,∴|x|=3,∴|﹣y|=3,∴﹣y=±3,∴y=±3,故答案为:±3.42.【解答】解:∵|m﹣5|=5﹣m,∴m﹣5≤0,则m≤5,故答案为:≤.43.【解答】解:由题意得:|(﹣1)2016|=|1|=1故答案为:144.【解答】解:∵|a﹣1|=5,∴a﹣1=5或a﹣1=﹣5,解得:a=6或a=﹣4,故答案为:6或﹣4.45.【解答】解:∵ab<0,∴a、b为异号,∵a<b,∴a<0,b>0,∴﹣a>0,∴﹣a+b=|a|+|b|.故答案为:|a|+|b|.46.【解答】解:∵|x﹣1|=3,∴x﹣1=±3,解得x=4或﹣2.所以x的值为4或﹣2.故答案为:4或﹣2.47.【解答】解:由数轴知b<0<a<c,|a|<|b|<|c|,①b+a+(﹣c)<0,故原式错误;②(﹣a)﹣b+c>0,故正确;③,故正确;④bc﹣a<0,故原式错误;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b,故正确;其中正确的有②③⑤.48.【解答】解:∵|a﹣3|=a﹣3,∴a﹣3≥0,解得a≥3,故a可以取4.故答案为:4(不唯一).49.【解答】解:因为|x|=2,|y|=3,所以x=±2,y=±3,又因为xy<0,x+y>0,所以x=﹣2,y=3,所以x﹣y=﹣5.故答案为:﹣5.50.【解答】解:∵|x﹣3|+x﹣3=0,∴|x﹣3|=3﹣x.∴x﹣3≤0.∴x﹣4<0.∴|x﹣4|+x=4﹣x+x=4.故答案为:4.。
七年级绝对值压轴题一、绝对值压轴题。
1. 已知| a - 2|+| b + 3| = 0,求a + b的值。
- 解析:因为绝对值一定是非负的,要使两个非负的数相加等于0,则每一项都必须为0。
- 即| a - 2|=0,解得a = 2;| b+3| = 0,解得b=-3。
- 所以a + b=2+( - 3)=-1。
2. 若| x|=3,| y| = 5,且x>y,求x + y的值。
- 解析:- 因为| x| = 3,所以x=±3;因为| y|=5,所以y = ±5。
- 又因为x>y,当x = 3时,y=-5,此时x + y=3+( - 5)=-2;当x=-3时,y=-5,此时x + y=-3+( - 5)=-8。
3. 化简| x - 1|-| x - 3|,(x<1)- 解析:- 当x<1时,x - 1<0,x - 3<0。
- 则| x - 1|=1 - x,| x - 3|=3 - x。
- 所以| x - 1|-| x - 3|=(1 - x)-(3 - x)=1 - x - 3+x=-2。
4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(| a +b|)/(2m^2+1)+4m - 3cd的值。
- 解析:- 因为a,b互为相反数,所以a + b = 0;因为c,d互为倒数,所以cd = 1;因为m的绝对值是2,所以m=±2。
- 当m = 2时,(| a + b|)/(2m^2+1)+4m-3cd=(0)/(2×2^2 + 1)+4×2-3×1=0 + 8 -3=5;- 当m=-2时,(| a + b|)/(2m^2+1)+4m - 3cd=(0)/(2×(-2)^2+1)+4×(-2)-3×1=0-8 - 3=-11。
5. 若| a|=5,| b| = 3,且| a - b|=b - a,求a + b的值。
绝对值的题目及答案绝对值是数学中的一个重要概念,指数值与零点的距离,一般用两个竖线表示。
在日常生活中,绝对值常用于计算温度、距离等物理量,也可用于求解方程、不等式等数学问题。
下面列举几个绝对值的题目及答案:题目一:求 |-5| + |3|解答:根据绝对值的定义,|-5| = 5,|3| = 3,所以 |-5| + |3| = 5 + 3 = 8。
题目二:求解方程 |2x - 1| = 5解答:根据绝对值的定义,当 2x - 1 > 0 时,|2x - 1| = 2x - 1;当 2x - 1 < 0 时,|2x - 1| = -(2x - 1) = -2x + 1。
根据以上推理,可以列出如下的方程:2x - 1 = 5 时,解得 x = 3。
-2x + 1 = 5 时,解得 x = -2。
所以方程 |2x - 1| = 5 的解为 x = 3 或 x = -2。
题目三:求解不等式 |x - 3| < 4解答:根据绝对值的定义,当 x - 3 > 0 时,|x - 3| = x - 3;当 x - 3 < 0 时,|x - 3| = -(x - 3) = -x + 3。
根据以上推理,可以列出如下的不等式:x - 3 < 4 时,解得 x < 7。
-x + 3 < 4 时,解得 x > -1。
所以不等式 |x - 3| < 4 的解为 -1 < x < 7。
除了上述题目外,还有很多与绝对值相关的问题,如求绝对值函数的图像、讨论绝对值不等式的解集等等。
在解决这些问题时,需要深入理解绝对值的概念,掌握相关的计算方法,才能做出准确的答案。
综上所述,绝对值是数学中重要的概念之一,广泛应用于各种问题中。
通过练习多个绝对值的题目,不仅可以提高自己的数学水平,还能训练自己的思维能力和解决问题的能力。
因此,在学习数学时,应该多关注绝对值,并勤加练习。