有限元法基础讲稿-第7讲新.doc
- 格式:ppt
- 大小:98.00 KB
- 文档页数:2
有限元的理论基础有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
1.加权余量法:是指采用使余量的加权函数为零求得微分方程近似解的方法称为加权余量法。
(Weigh ted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。
加权余量法是求解微分方程近似解的一种有效的方法。
设问题的控制微分方程为:在V 域内 在S 边界上式中 :L 、B ——分别为微分方程和边界条件中的微分算子;f 、g ——为与未知函数u 无关的已知函数域值;u ——为问题待求的未知函数 ()0B u g -=(5.1.2)()0L u f -=(5.1.1)混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。
对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。
无论采用何种方法,在建立试函数时均应注意以下几点:(1)试函数应由完备函数集的子集构成。
已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。
(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。
(3)试函数应与问题的解析解或问题的特解相关联。
若计算问题具有对称性,应充分利用它。
显然,任何独立的完全函数集都可以作为权函数。
按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。
其中伽辽金法的精度最高。
2、虚功原理——平衡方程和几何方程的等效积分“弱”形式虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。
有限元分析与应用_第7讲有限元方法的一般步骤有限元方法(Finite Element Method,简称FEM)是一种将连续体力学问题转化为有限个离散子域的数学方法。
下面是有限元方法一般步骤的详细介绍。
第一步是建立数学模型。
根据实际问题的特点和要求,选择合适的数学模型。
通常需要确定几何模型(包括尺寸和形状)、物理模型(包括材料特性和边界条件)和数学模型(通常为偏微分方程组)。
同时,也要将实际问题抽象为离散子域。
第二步是离散化。
将实际问题转化为有限个子域,将连续的问题离散为离散节点和单元的问题。
通常包括选择节点和单元的类型、确定网格尺寸和单元形状以及建立局部坐标。
第三步是建立有限元方程。
根据离散化的结果,利用变分原理或其他数学方法,建立离散节点上的有限元方程。
通常需要建立刚度矩阵和载荷矢量。
刚度矩阵的计算包括积分和局部坐标转换等。
第四步是引入边界条件。
根据实际问题的特点,确定边界条件,包括固支约束、力和热边界条件等。
将边界条件应用到有限元方程中,得到最终的离散方程。
第五步是求解离散方程。
利用数值计算方法,求解离散方程组,得到节点上的未知位移、温度或其他待求解变量。
求解过程一般涉及线性方程组的求解方法,如直接法(高斯消元法)和迭代法(雅可比法、SOR法等)。
第六步是后处理。
根据求解结果,进行数据分析和可视化,得到问题的解释和评估。
后处理结果可以包括位移、应力、温度等各种物理量的分布图、曲线图和表格。
同时,也可以对模型进行验证和优化。
总的来说,有限元方法的一般步骤包括建立数学模型、离散化、建立有限元方程、引入边界条件、求解离散方程和后处理。
每个步骤都需要综合考虑问题特点、数学方法和计算机实现的要求。
在实际应用中,可以根据具体情况和经验进行适当的调整和改进,以得到更准确和高效的结果。
有限元基础讲解
有限元分析是一种工程数值分析方法,用于解决复杂结构的力学问题。
它将结构划分为有限数量的小单元,通过对这些小单元进行数值计算,得到整个结构的力学行为。
有限元分析的基本步骤包括:
1. 离散化:将结构划分为有限数量的小单元,如三角形、四边形、六面体等。
每个小单元具有一些自由度,用于描述该单元的位移、应力等信息。
2. 建立单元刚度矩阵:根据单元的几何形状和材料性质,计算每个小单元的刚度矩阵。
刚度矩阵描述了小单元受力和位移之间的关系。
3. 组装全局刚度矩阵:将所有小单元的刚度矩阵组装成整个结构的全局刚度矩阵。
这个过程涉及到将小单元的自由度与整个结构的自由度进行匹配。
4. 施加边界条件:确定结构的边界条件,如固支、受力等。
将这些边界条件转化为对应的约束条件,将其应用于全局刚度矩阵中。
5. 求解方程:将约束条件应用于全局刚度矩阵,得到未知位移的方程。
通过求解这些方程,可以得到结构的位移、应力等信息。
6. 后处理:根据求解结果,进行后处理分析。
可以计算结构的应力、变形、位移等,并进行可视化展示。
有限元分析的优点包括可以处理复杂的几何形状和边界条件,具有较高的计算精度和灵活性。
但也存在一些限制,如需要对结构进行合理的离散化、需要大量的计算资源等。