第2章 matlab数值计算功能
- 格式:ppt
- 大小:1.57 MB
- 文档页数:129
MATLAB数值计算功能下面将详细介绍MATLAB数值计算功能的一些主要方面:1. 矩阵运算和线性代数:MATLAB具有强大的矩阵操作功能,可以直接对矩阵进行加减乘除、求逆矩阵、求特征值等运算。
MATLAB中的线性方程组求解函数(如`linsolve`和`inv`)可以更轻松地解决各种线性代数问题。
2. 数值积分和微分:MATLAB提供了多种数值积分和微分函数,用于求解一元和多元函数的定积分、不定积分、数值微分和数值求导。
例如,可以使用`integral`函数计算函数的定积分,并使用`diff`函数计算函数的导数或`gradient`函数计算梯度。
3. 方程求解:MATLAB提供了一系列函数,用于解决非线性方程和代数方程组。
这些函数包括`fsolve`(用于求解非线性方程),`roots`(用于求解多项式方程的根)和`solve`(用于求解代数方程组)等。
4. 曲线拟合和数据拟合:MATLAB提供了多个函数用于曲线拟合和数据拟合,包括`polyfit`(多项式拟合),`lsqcurvefit`(非线性最小二乘曲线拟合),`interp1`(一维插值)和`griddata`(多维数据插值)等。
这些函数可以帮助用户找到数据之间的模式和关系。
5. 常微分方程(ODE)求解:MATLAB提供了用于求解常微分方程组(ODE)的函数,既可以用传统的数值方法求解,也可以用符号计算求解。
用户可以使用`ode45`、`ode23`或`ode15s`等函数来求解初值问题或边界值问题。
6. 线性最小二乘拟合:MATLAB中的`lsqnonlin`函数可以用于线性最小二乘问题的求解,包括曲线拟合、数据拟合、参数估计等。
用户可以使用该函数来找到使得拟合曲线和观测数据之间残差最小的参数。
7. 数值优化:MATLAB包含一系列优化函数,可以求解常规优化问题、无约束优化问题、约束优化问题等。
用户可以使用函数`fminsearch`、`fminunc`和`fmincon`等来找到函数的最小值或最大值。
MATLAB数值计算功能
MATLAB是一种非常强大的数值计算软件,被广泛应用于科学计算、
工程计算和数据分析等领域。
它提供了丰富的数值计算功能,包括基本的
数学运算、线性代数、数值积分、微分方程求解、优化算法等。
下面将详
细介绍一些常见的数值计算功能。
1.数学运算:
MATLAB提供了丰富的数学函数,可以进行各种基本的算术运算,如
加减乘除、幂运算、取模运算等。
同时,它还提供了一些高级的数学函数,如三角函数、指数函数、对数函数等。
通过这些函数,用户可以进行各种
复杂的数学运算。
2.线性代数:
3.数值积分:
4.微分方程求解:
5.优化算法:
MATLAB提供了各种优化算法,如线性规划、非线性规划、整数规划、二次规划等。
用户可以通过设定目标函数和约束条件,利用MATLAB的优
化函数寻找最佳的解。
这对于优化问题的求解非常有用,如工程设计、生
产调度等。
6.统计分析:
7.数据可视化:
总之,MATLAB的数值计算功能非常丰富,可以满足各种数学计算和数据分析的需求。
它不仅提供了各种基本的数学运算功能,还提供了高级的线性代数、数值积分、微分方程求解、优化算法和统计分析等功能。
同时,其强大的数据可视化功能也是很多用户选择MATLAB作为数值计算工具的重要原因之一。
第二章非线性方程求根习题2-11. 试寻找f(x)= x 3+6.6 x2-29.05 x +22.64=0的实根上下界,及正根所在的区间,区间长度取1。
解:由笛卡儿符号规则知,f(x)=0可能有二个正根或无正根f(-x)= -x 3+6.6 x2+29.05 x +22.64=0即x 3 -6.6 x2-29.05 x -22.64=0f(-x)=0有一个正根,因此,f(x)=0有一个负根。
由定理2-3,f(x)=0的正根上界f(x)=0的负根下界x0123456 6.39f(x)++-+++++正根所在区间为(1, 2),(2, 3)。
2.你能不利用多项式的求导公式,而借鉴于余数定理的思想,构造出P n(x)=a0x n+a1x n-1+...+a n-1x+a n在x0这点上的导数值的算法吗?习题2-21.用二分法求方程x2-x-1=0的正根,要求准确到小数点后第一位a F(a)b F(b)x F(x)0-1211-11-121 1.5-0.251.5-0.2521 1.750.31251.5-0.25 1.750.3125 1.6250.3015625 1.5-0.25 1.6250.015625 1.5625-0.12109375 1.5625-0.12104375 1.6250.015625 1.59375-0.053710937 1.59375-0.053710937 1.6250.015625 1.609375-0.019287109 1.609375-0.019287109 1.6250.015625 1.6171875-0.001892089 1.6171875-0.001892089 1.6250.015625 1.621093750.006851196 1.6171875-0.001892089 1.621093750.006851196 1.6191406250.002175738 1.6171875-0.001892089 1.619140620.002475738 1.6181640630.000290904X*=1.618K=5X*=1.593752.试证明用试位法(比例求根法),求在区间[0, 1]内的一个根必然收敛。