第四章 数字X线成像(医学影像成像原理)
- 格式:ppt
- 大小:10.14 MB
- 文档页数:10
《医学影像成像原理》名词解释第一章1.X 线摄影(radiography):是X 线通过人体不同组织、器官结构的衰减作用,产生人体医疗情报信息传递给屏-片系统,再通过显定影处理,最终以X 线平片影像方式表现出来的技术。
2.X 线计算机体层成像(computed tomography,CT):经过准直器的X线束穿透人体被检测层面;经人体薄层内组织、器官衰减后射出的带有人体信息的X 线束到达检测器,检测器将含有被检体层面信息X 线转变为相应的电信号;通过对电信号放大,A/D 转换器变为数字信号,送给计算机系统处理;计算机按照设计好的方法进行图像重建和处理,得到人体被检测层面上组织、器官衰减系数(¦)分布,并以灰度方式显示人体这一层面上组织、器官的图像。
3.磁共振成像(magnetic resonance imaging,MRI):通过对静磁场(B0)中的人体施加某种特定频率的射频脉冲电磁波,使人体组织中的氢质子(1H)受到激励而发生磁共振现象,当RF 脉冲中止后,1H 在弛豫过程中发射出射频信号(MR 信号),被接收线圈接收,利用梯度磁场进行空间定位,最后进行图像重建而成像的。
4.计算机X 线摄影(computed radiography,CR):是使用可记录并由激光读出X 线影像信息的成像板(IP)作为载体,经X 线曝光及信息读出处理,形成数字式平片影像。
5.数字X 线摄影(digital radiography,DR):指在具有图像处理功能的计算机控制下,采用一维或二维的X 线探测器直接把X 线影像信息转化为数字信号的技术。
6.影像板(imaging plate,IP):是CR 系统中作为采集(记录)影像信息的接收器(代替传统X 线胶片),可以重复使用,但没有显示影像的功能。
7.平板探测器(flat panel detector,FPD):数字X 线摄影中用来代替屏-片系统作为X 线信息接收器(探测器)。
X射线数字成像设备的基本成像原理是怎样的X射线数字成像设备主要用于医学影像学领域,通过对人体进行X射线扫描,采集出数以万计的数字信号,并通过计算机模拟处理、图像重建等方式,最终生成高分辨率的X射线影像。
本文将简要介绍X射线数字成像设备的基本成像原理。
X射线的基本概念X射线是一种能量很高的电磁辐射,波长较短,具有较强的穿透力和吸收能力。
X射线可以穿透人体组织,不同组织对X射线的吸收程度不同,这使得它成为医学影像学中诊断疾病的一种重要手段。
X射线成像的原理X射线数字成像设备主要由X射线发射器、X射线探测器和计算机控制系统三部分组成。
X射线发射器发射X射线束,穿过人体,并被探测器捕捉到,探测器将吸收X射线的能量转化成电信号,发送到计算机控制系统中处理。
在成像过程中,X射线穿过人体后,探测器收集到的信号强度与穿透的厚度成比例。
经过计算机数字化处理,将所有收集到的信号重新组合成一幅二维影像。
这个过程需要许多复杂的数学运算和计算机算法的支持,包括滤波、背景抑制、失真矫正、图像分割等。
X射线数字成像设备的优势X射线数字成像设备具有许多优点,最显著的是它可以快速、无创、精确地获得人体内部的影像。
与传统的X线平片成像相比,数字成像设备的图像质量更高,分辨率更高,信息内容更丰富。
同时,由于成像过程只需要短时间的X射线照射,因此对患者产生的辐射伤害也大大降低。
X射线数字成像设备的发展趋势随着计算机科学和数字技术的不断发展,X射线数字成像设备的技术也不断进步。
未来,X射线数字成像设备将更加智能化、自动化,更加适合不同的临床应用场景。
也可以提高设备的效率、准确度和安全性。
总之,X射线数字成像设备是当前医学影像学领域中不可或缺的一部分,它为医生提供了更为准确、高分辨率的影像图像,提高了疾病的诊断和治疗效果,为人类的健康事业做出了重要贡献。
第四章第一节数字图像的特征1、传统X线透视荧光屏影像、I.I-TV影像、普通X线照片以及CT多幅相机照片均是由模拟量构成的图像,即属于模拟影像。
(连续的)2、将模拟量转换为数字信号的介质为模/数转换器(ADC)。
3、模/数转换器把模拟量通过采样转换成离散的数字量,该过程称为数字化。
4、数字影像是将模拟影像分解成有限个小区域,每个小区域中图像密度的平均值用一个整数表示。
5、数字化图像是由许多不同密度的点组成的,点与点之间的位置关系相对固定,点与点之间的密度是一均值。
6、模拟信号可以转换成数字信号,数字信号也可以转换成模拟信号,两者是可逆的。
7、将数字信号转换成模拟信号需要使用数/模转换器(DAC),它能把离散的数字量转换成模拟量。
8、数字图像的密度分辨率高。
9、屏片组合系统的密度分辨率只能达到26灰阶,而数字图像的密度分辨率可达到210~212,甚至16位灰阶。
10、数字图像可进行后处理。
图像后处理是数字图像的最大特点。
11、数字图像可以存储在磁盘、磁带、光盘及各种记忆卡中,并可随时进行调阅、传输。
可通过PACS网络实现远程会诊。
12、矩阵表示一个横成行、纵成列的数字方阵。
13、矩阵有影像矩阵和显示矩阵之分。
14、影像矩阵指CT重建得到的影像或CR、DR采集到的每幅影像所用矩阵;显示矩阵是指显示器上显示的影像矩阵。
15、像素又称像元,指组成图像矩阵中的基本单元。
像素是一个二维概念。
像素大小可由像素尺寸表示。
16、数字图像是用数字阵列表示的图像,阵列中的每一个元素称为像素,像素是组成数字图像的基本元素。
17、数字图像是由有限个像素点组成的,构成数字图像的所有像素构成了矩阵。
18、矩阵大小能表示构成一幅图像的像素数量多少。
19、像素大小=视野大小/矩阵大小20、当视野大小固定时,矩阵越大,像素尺寸越小;矩阵不变时,视野增大,像素尺寸随之增大。
21、数字图像是将一幅图像分成有限个被称为像素的小区域,每个像素中的灰度值用一个整数表示。
第一章概论名解:医学影像技术、放射性核素成像1、医学影像学按其原理和技术的不同可分为?①,研究生物体微观结构为主要对象的生物医学显微图像(BMMI);②,是以人体宏观解剖及功能为研究对象的现代医学影像学(MMI).2、现代医学影像按其信息载体可分为?①,X线成像,②,磁共振成象,③超声成像,④,反射性核素成像及其他成像。
3、CT成像的优点?①获得无层面外组织结构干扰的横断面图像,能准确的反映横断平面上组织器官的解剖结构,②密度分辨力高,能显示出普通X线检查所不能显示的病变,③能准确的测量各组织的X线衰减值,可通过各种计算进行定量分析。
④可进行各种图像的后处理。
4、MRI成像的特点?①以RF脉冲作为成像的能量源,不使用电离辐射,对人体安全、无创;②图像对脑和软组织分辨力极佳,能清楚的显示脑灰质、脑白质、肌肉、肌腱、脂肪等软组织以及软骨结构,解剖结构和病变形态显示清楚、逼真;③多方位成像;④多参数成、多序列成像;⑤选择性成像;⑥除了能进行形态学研究外,还能进行功能、组织化学和生物化学方面的研究。
5、超声成像的优点?6、各种成像需要哪三要素?第二章放射物理基础1、X线的特性?及在医学中的应用?2、X线产生的条件?3、电子在碰撞过程中能量损失可分为哪两种?4、X线产生的原理?5、连续X射线谱的最短波长与哪些因素有关,特征X射线与哪些因素有关?6、临床中用什么来反映X射线的量?7、影响X射线的量与质的因素?8、名解:X产生的效率、阳极效应9、X射线强度的空间分布?10、X射线与物质的相互作用主要有哪些?诊断用X线能量范围内主要作用是什么?11、为什么要在X窗口放置金属片对X线进行滤过?12、影响X线衰减程度的因素有哪些?第三章模拟X线成像名解:模拟X线成像、胶片特性曲线1、X线胶片的种类?2、X线胶片的结构?3、典型的胶片特性曲线由哪四部份组成?4、胶片管理的注意事项?5、增感屏的结构?6、影响增感屏增感率的因素有哪些?7、影响屏片系统影像质量的因素有哪些?8、X引照片的影像噪声通常由哪些因素引起?9、影像失真的分类?10、产生形状失真的主要原因有哪些?11、散射线,产生散射线的主要原因是什么?减小散射线的方法有哪些?12、简述X线照片对比度概念,分析其影响因素?13、概述X线照片密度概念,分析其影响因素?14、感绿胶片与感绿胶片的吸收光谱的峰值是多少?15、影响照片锐利度的因素有哪些?第四章数字X线成像1、CR的工作流程?2、什么是CR成像的四象限理论?3、与显示功能有关的处理包括哪些?4、谐调处理、旋转量、谐调曲线移动、空间频率处理分别改变影像的哪个参数?5、DR与CR比较有哪些优点?6、简述直接转换型FPD和间接转换型FPD的成像原理?7、DSA成像的基本方法有哪些?简述DSA的成像的基本原理?8、影响数字成像质量的基本因素有哪些?。
x线的成像原理X线成像原理。
X线成像是一种常见的医学影像检查方法,它通过X射线的穿透能力和组织对X射线的吸收能力来获取人体内部的影像信息。
X线成像原理是基于X射线的透射特性和组织对X射线的吸收特性,下面将详细介绍X线成像的原理和相关知识。
首先,X线是一种电磁波,它具有很强的穿透能力,可以穿透人体组织并在感光底片或数字探测器上形成影像。
X线成像的基本原理是X射线透射和吸收。
当X射线穿过人体组织时,不同密度和厚度的组织对X射线的吸收能力不同,这就形成了X线影像中的明暗对比度。
例如,骨头对X射线的吸收能力很强,所以在X线影像上呈现出白色;而软组织对X射线的吸收能力较弱,所以在X线影像上呈现出灰色或黑色。
其次,X线成像的原理基于X射线的透射特性。
X射线透射是指X射线穿过物体时发生的现象。
当X射线穿过人体组织时,部分X射线被组织吸收,而剩余的X射线穿透组织并形成影像。
透射X射线的强度取决于组织的密度和厚度,密度大、厚度大的组织对X射线的吸收能力也大,透射X射线的强度就相对较小,所以在X线影像上呈现出较暗的区域;相反,密度小、厚度小的组织对X射线的吸收能力较小,透射X射线的强度就相对较大,所以在X线影像上呈现出较亮的区域。
最后,X线成像的原理还涉及到X射线的散射。
X射线在穿过组织时会发生散射现象,散射X射线会影响X线影像的清晰度和对比度。
为了减少散射X射线的影响,医学影像设备通常会采用散射屏、滤光器等装置。
综上所述,X线成像原理是基于X射线的透射特性和组织对X射线的吸收特性。
通过对X射线的透射和吸收情况进行分析,就可以获取人体内部的影像信息。
X线成像在医学诊断中具有重要的应用价值,它可以帮助医生发现骨折、肿瘤、器官损伤等疾病,并为医生制定治疗方案提供重要参考。
希望本文对X线成像原理有所帮助,谢谢阅读!。
数字x线摄影原理数字x线摄影是一种利用数字成像技术对物体进行无损检测的方法。
它基于x射线的特性,通过对物体进行扫描和探测,获取物体内部的结构和组成信息。
在数字x线摄影中,数字化的成像系统成为关键,它能够将探测到的信号转化为图像,提供给操作人员进行分析和判断。
数字x线摄影的原理主要包括射线产生、射线透射、信号探测和图像重建等几个方面。
首先,通过高能电子束轰击金属靶产生x射线。
这些x射线经过滤波器和调节器调整能量和强度,然后通过射线束发射系统产生成束的x射线。
接下来,x射线通过被检测物体时,会发生透射、散射和吸收等不同的现象。
透射是指x射线穿过物体并到达探测器的过程,散射是指x射线在物体内部发生方向改变并传播出去的过程,吸收是指x射线被物体吸收或衰减的过程。
在数字x线摄影中,信号探测是关键的一步。
探测器通常采用闪烁晶体、荧光屏或半导体等材料,能够将x射线探测到的能量转化为光或电信号。
这些信号经过放大和滤波等处理后,传输给计算机进行数字化处理。
计算机通过对信号进行采样、量化和编码等处理,将其转化为数字信号,并生成数字图像。
数字图像可以通过显示器进行显示和分析,操作人员可以根据图像中的信息来判断物体的内部结构和缺陷情况。
数字x线摄影的图像重建是通过计算机对探测到的信号进行处理和重建,生成高质量的图像。
图像重建的方法主要包括滤波反投影和迭代重建等。
滤波反投影是一种传统的重建方法,通过对探测到的信号进行滤波处理,然后反投影到二维平面上,得到图像。
迭代重建是一种较新的重建方法,它通过不断迭代计算,逐步优化图像质量。
这些重建方法能够提高图像的分辨率和对比度,使操作人员能够更清晰地观察物体的内部细节。
数字x线摄影具有许多优点和应用价值。
首先,它能够对物体进行非接触式的检测,不会对物体造成任何损伤。
其次,数字化的成像系统能够提供高分辨率和高对比度的图像,使操作人员能够更准确地判断物体的内部结构和缺陷情况。
此外,数字x线摄影还能够快速获取图像,提高工作效率,并且可以通过计算机网络进行远程传输和共享。