六年级上册数学竞赛
- 格式:doc
- 大小:14.00 KB
- 文档页数:1
六年级数学上册知识竞赛试题一、填空。
1、五个数的平均数是20,若把其中一个数改为40,则平均数是25,这个改动的数是( )。
2、一块长方形菜地,长与宽的比是10:7,如果长减少10米,宽增加17米,就变成一个正方形。
这块正方形菜地的长和宽分别是( )米。
3、十几辆卡车运送315桶汽油,每辆卡车运的桶数一样多,且一次运完.那么, 每辆卡车运( )桶。
4、我国有13亿人员,每人节约1分钱,可以节约( )元,用这些钱帮助我国失学儿童重新上学,每人给400元,可以帮助( )名儿童重新上学。
5、一岁的小海龟问妈妈:我什么时候才能像你那么大。
妈妈告诉他:等你像我这么大年龄时,我就19岁了,海龟妈妈现在( )岁。
6、一年级的小朋友练习写数,那么他从1写到100,在这100个数中,共写了( )个 9、 决定圆的位置。
圆的面积计算公式是 。
10、把10米长的铁丝平均分成4段,每段占全长的 ,每段长 米。
11、一个半圆的半径是4cm ,它的周长是 ,面积是 12、一个分数加上它的分数单位等于1,减去它的一个分数单位等于76,这 个分数是13、比8米多41是 8米比 少4114、把2:7的后项加上21,要使比值不变,前项应 。
15、圆的周长与半径的比是 。
16、小学要举行篮球运动会,共有6个参赛队,如果每两个队之间都 要举行一场比赛,一共要比赛 场。
17、甲数的52等于乙数的43,甲乙两数和是69,甲数是 。
18、在等腰三角形中,顶角与底角的度数比是5:2,底角是 。
19、一枚硬币,抛10次,其中有7次正面朝上,下一次抛正面朝上的可能性是 。
20、把一张长方形纸连续对折四次,其中的一份是这张纸的。
21、在直径1.5米的圆形桌布周围缝一条花边,接头处5厘米,这条花边长()米。
22、有20个人,每两人握一次手,一共要握()次手。
23、张师傅用1千克的干面粉可以加工成1.5千克的湿面条,如果要制做12千克的湿面条,他需要用( )千克的干面粉。
六年级上竞赛数学试题一、选择题(每题2分,共10分)1. 下列哪个数是质数?A. 15B. 16C. 17D. 182. 一个数的平方等于其本身,这个数可能是:A. 1B. -1C. 2D. 03. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,其体积是:A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米4. 如果一个数的最小倍数是它本身,这个数是:A. 0B. 1C. 任何数D. 质数5. 一个班级有40名学生,其中女生占45%,那么这个班级有多少名女生?A. 18B. 20C. 22D. 24二、填空题(每题2分,共10分)6. 一个数的约数除了1和它本身外,没有其他约数,这个数叫做______。
7. 如果两个数的最大公约数是1,这两个数叫做______。
8. 一个数的平方根是2,那么这个数是______。
9. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是______。
10. 一个数的立方等于它本身,这个数可能是1、-1或______。
三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) (-3) × 2 + 4 ÷ 2(2) 5 × (-2) - 3 × (-4)12. 计算下列各数的平方:(1) 3.5(2) -4.213. 计算下列各数的立方:(1) 2(2) -5四、解答题(每题10分,共30分)14. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,求这个长方体的表面积和体积。
15. 一个班级有50名学生,其中男生比女生多10人。
求这个班级男生和女生各有多少人。
16. 一个数列的前三项是2,4,8,从第四项开始,每一项都是前三项的和。
求这个数列的第10项。
五、应用题(每题15分,共30分)17. 一个农场主有一块长方形的田地,长是200米,宽是150米。
他想在田地周围建一道围栏,如果围栏每米的价格是10元,那么他需要花费多少钱?18. 一个班级组织春游,需要租用大巴车。
六年级上册数学竞赛试题-奥数题习题(含答案)1.一辆汽车以60km/h的速度行驶4小时,再以40km/h的速度行驶2小时,求它行驶的总路程。
解:根据路程等于速度乘以时间的公式,第一段路程为60km/h×4h=240km,第二段路程为40km/h×2h=80km,总路程为240km+80km=320km。
答:该汽车行驶的总路程为320km。
2.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,如果他们相距60km,问他们多长时间能相遇?解:根据相遇公式,时间等于距离除以速度之和,即60km÷(5km/h+7km/h)=6h。
答:甲、乙两人相遇需要6小时。
3.甲、乙两人相向而行,甲的速度是每小时5km,乙的速度是每小时7km,他们相遇后,甲又行驶了2小时,问甲、乙两人分别行驶了多少路程?解:根据相遇公式,他们相遇时的路程之和等于他们分别行驶的路程之和,即(5km/h+7km/h)×t=60km,解XXX。
甲行驶的路程为5km/h×8h=40km,乙行驶的路程为7km/h×8h=56km。
答:甲行驶了40km,乙行驶了56km。
4.一辆汽车以每小时60km的速度行驶,行驶了2小时后,因故障而减速为每小时40km,又行驶了3小时,问它行驶的总路程。
解:前两小时行驶的路程为60km/h×2h=120km,后三小时行驶的路程为40km/h×3h=120km,总路程为120km+120km=240km。
答:该汽车行驶的总路程为240km。
1.根据题目给出的条件,可以得出马每步长为7/4倍狗的步长。
因为狗已经跑出了30米,所以马需要追赶的距离是30米。
根据速度比可以得出马与狗相差的路程份额为1,所以马需要跑21倍狗才能追上它,即21/20倍狗已经跑的距离,计算得出马需要跑630米才能追上狗。
2.根据题目给出的信息,可以得出甲、乙两车相遇时,甲车行驶了10份路程,乙车行驶了8份路程,两车的路程差是80千米。
人教版六年级上册数学竞赛试题一、擂台赛,我能在括号里填上正确的答案。
〔每题2分,共20分〕 1. “六〔1〕班人数是六〔2〕班人数的76〞是把〔 〕看作单位“1”,〔 〕占〔 〕的67。
假如六〔2〕班有42人,那两个班一共有〔 〕人。
2.(())=〔 〕∶〔 〕=140%=35÷〔 〕=〔 〕。
3. 把73米铁丝平均分成3份,每份长〔 〕米,第二份占全长的(())。
4. 全世界有200来个国家,其中缺水的国家有100多个,严峻缺水的国家有40多个。
缺水的国家约占全世界国家总数的〔 〕%,严峻缺水的国家约占全世界国家总数的〔 〕%。
5. 某饭店十月份的营业额是30万元,假如按营业额的5%缴纳营业税,该饭店十月份应缴纳营业税( )元。
6、直径为10分米的半圆,周长是〔 〕分米。
7. 80%的倒数是〔 〕,132的倒数是〔 〕。
8. 在100克水中参与25克盐,则盐水的含盐率是〔 〕。
9. 85∶0.125的比值是〔 〕,化成最简整数比是〔 〕。
10. 把一个正方体切成两个小长方体,正方体外表积是两个长方体外表积总和的(())。
二、我是公正小法官,能精确推断是及非。
〔对的打“√〞,错的打“×〞。
5分〕11. 4∶5的后项增加10,要使比值不变,前项应增加8。
〔 〕 12. 在32、0.67、66.7%中最大的数是66.7%。
〔 〕 13. 一个数除以分数的商肯定比原来的数大。
〔 〕 14. 定价100元的商品,先提价20%,再降价20%,还是原价。
〔 〕 15. 甲数除以乙数,等于甲数乘乙数的倒数。
〔 〕 三、欢乐,我选得又快又准。
〔每题2分,共10分〕16. 以下图形中,对称轴最少的是〔 〕A 、长方形B 、正方形C 、等腰三角形D 、圆 17. 一个圆的半径扩大4倍,面积扩大( )倍。
A 、4 B 、8 C 、16 D 、 ∏18. 一根长2米的绳子,先用去31,再用去31米,还剩下〔 〕米。
人教版六年级上学期数学竞赛试题(含答案)一、拓展提优试题1.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.2.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.3.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.4.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.5.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.6.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.7.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.8.如图所示的“鱼”形图案中共有个三角形.9.已知自然数N的个位数字是0,且有8个约数,则N最小是.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.12.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).13.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.14.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.15.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.【参考答案】一、拓展提优试题1.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.2.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.3.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.4.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.5.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.6.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.7.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.8.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.9.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:912.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.13.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.14.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.15.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:1000。
2024年数学六年级竞赛题目一、填空题(1 - 10题)1. 把一个圆平均分成若干份后,拼成一个近似的长方形,长方形的长是12.56厘米,这个圆的面积是()平方厘米。
解析:把圆拼成近似长方形时,长方形的长近似于圆周长的一半。
圆的周长公式为C = 2π r,那么圆周长的一半就是π r。
已知长方形长12.56厘米,即π r=12.56,r = 12.56÷3.14 = 4厘米。
圆的面积公式S=π r^2,所以圆的面积为3.14×4^2=50.24平方厘米。
2. 六班今天出勤48人,有2人因病请假,今天六班学生的出勤率是()。
解析:出勤率 = 出勤人数÷总人数×100%。
总人数 = 出勤人数+请假人数 = 48 + 2=50人。
则出勤率为48÷50×100% = 96%。
3. 一个直角三角形的两条直角边分别是3厘米和4厘米,这个直角三角形的面积是()平方厘米。
解析:直角三角形面积 = 两条直角边乘积的一半。
所以面积为(1)/(2)×3×4 = 6平方厘米。
4. 从一个边长为10分米的正方形纸里剪一个最大的圆,这个圆的周长是()分米。
解析:在正方形中剪最大的圆,圆的直径等于正方形的边长。
圆的周长公式C=π d,这里d = 10分米,所以周长C = 3.14×10=31.4分米。
5. 12÷()=(())/(25)=0.6=(())/(())(填最简分数)解析:因为12÷() = 0.6,所以括号里的数为12÷0.6 = 20;0.6=(6)/(10)=(3)/(5),(())/(25)=0.6,括号里的数为0.6×25 = 15。
6. 把(1)/(7)化成小数后,小数点后第2024位上的数字是()。
解析:(1)/(7)=0.1̇42857̇,循环节是142857,共6位数字。
冀教版2024年六年级上册数学应用题专项竞赛题班级:__________ 姓名:__________1. 学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费.每本画册的印刷费是3.6元,学校印制了多少本画册?2. 某次数学测试,老师以80分作为标准,将六名同学的成绩记为+4、+10、-5、0、+7、-4,这六名同学的实际平均成绩是多少?3. 客车和货车分别从甲、乙地相向而行,客车行全程需要4小时,货车每小时行60千米,行了90千米,遇上客车,求甲、乙两地的距离?4. 甲、乙两名同学从相距100米的两点同时出发相向而跑,当跑到另一点时,立即返回,甲每秒跑6.5米,乙每秒跑5.5米,经过几秒钟两人第二次相遇?5. 被除数、除数和商三个数的和是181,商是12,求被除数。
6. 甲乙两地相距360千米。
一辆汽车从甲地到乙地计划7小时行完全程,汽车的速度如下表。
汽车能否在计划时间内行完全程?(计算后说明)时间/小时 2 3 4 ……路程/千米100 150 200 ……7. 天猫商城在“双十一”活动中,部分商品实行降价促销,求商品的促销价。
8. 甲、乙两个粮库共有粮食420吨。
从甲粮库取出的粮食放入乙粮库,两个粮库的粮食就同样多。
原来两个粮库各有粮食多少吨?(先画线段图理解,再解答)9. 如果汽车轮胎放在前轮可以用50000公里,放在后轮可以使用30000公里,一汽车四个轮胎,怎样合理轮换能使得轮胎使用最长公里数,最多可以行驶多少公里不换胎?如果只允许轮换一次,应在多少公里时轮换?10. 5号线的开通,给市民的生活和工作带来了方便。
张叔叔以前乘坐公交车上班需要小时,比现在乘坐5号线所用时间的3倍少小时,张叔叔现在乘坐5号线上班需要多少小时?(用方程解答)11. 快车和一辆慢车同时从甲、乙两地相对开出,经过12小时相遇,相遇后,慢车又行了18小时达到甲地。
求快车还要行多少到达乙地?12. 张星和王宁一共有邮票128张。
人教版小学六年级数学上册竞赛试卷附答案人教版小学六年级数学上册竞赛试卷附答案人教版小学六年级数学上册竞赛试卷题目(一)一、认真思考,仔细填写。
(27分)(1)、0.35的倒数是( )。
(2)、在3:8中,把比的前项加上9,要使比值不变,比的后项应加上()。
(3)、2.5:0.5 化简成最简整数比是(),比值是()。
(4)、15:( )=38 =36 ( )=( )%=( )(小数)=()成(5)、一个圆的半径是5cm,直径是( )cm,周长是( )cm,面积是( )c㎡。
(6)、六(1)班女生人数是男生人数的25,男生比女生多( )() ,女生人数与全班人数的比是( ),男生人数占全班的( ) ()。
(7)、小翔在2008年到银行存款200元,按两年期年利率2.79%计算,到2010年到期时,利息是()元,利息的税金按5%交纳是( )元,可得到本金和税后利息一共()元。
(8)、一件500元的皮衣打折后卖425元,这是打( )折,比原价便宜了()%。
(9)、一根绳子长57 米,平均分成5份,每份占全长的(),每份长()米。
(10)、如果a1112=b12= c34(a、b、c不为0),则( )﹥( )﹥( )。
(11)、班主任张老师带领五(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,男生和女生分别有()名和()名。
二、仔细推敲,认真辨析。
(对的打,错的打)(5分)(1)比的前项和后项都增加或减少相同的数,比值不变。
( )(2)如果大圆和小圆的半径比是5:1,面积和周长的比都是25:1。
( )(3)生产105个零件,全部合格,合格率是100%。
( )(4)甲数比乙数多甲数与乙数的比是1:4。
()(5)10克盐溶解在100克水中,含盐率10%( )三、反复比较,谨慎选择。
(把正确答案的序号填在括号里)(5分)(1)要想更清楚地了解各部分数量同总数之间的关系,应该选用()A.条形统计图B.折线统计图C.扇形统计图(2)在、66.78%和0.67这三个数中最大的一个是( )A. B.66.78% C.0.67(3)画圆时,圆的周长为15.7cm,那么圆规两脚间的距离为()A.2.5cmB.5cm C.15.7cm(4)王红的体重比李云的体重重,那么李云的体重比王红体重轻( )A.B. C.(5)一件20元的商品,先提价15%,再降价15%,这件商品()A.比原价贵B.价钱不变C.比原价便宜四、开动脑筋,灵活计算。
六年级上学期数学竞赛试题(含答案)一、拓展提优试题1.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.2.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.3.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)4.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.5.对任意两个数x,y,定义新的运算*为:(其中m是一个确定的数).如果,那么m=,2*6=.6.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.7.图中的三角形的个数是.8.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)11.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.12.能被5和6整除,并且数字中至少有一个6的三位数有个.13.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.2.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.3.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.4.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.5.解:(1)1*2==,即2m+8=10,2m=10﹣8,2m=2,m=1,(2)2*6,=,=,故答案为:1,.6.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.7.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.8.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.11.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.12.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.13.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.14.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。
六年级比赛总决赛
1、某汽车出口公司二月份出口汽车1.3万辆,比上月增长三成。
1月份出口汽车多少万辆?
2、书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。
这套书原价多少元?
3、一个圆锥的底面周长31.4cm,高是9cm。
它的体积是多少?
4、有块正方体的木料,它的棱长是4dm。
把这块木料加工成一个最大的圆柱(如下图)。
这个圆柱的体积是多少?
5、育新小区1号楼的实际高度为35m,它的高度与模型高度的比是500:1。
模型的高度是多少厘米?
6、一个圆柱的侧面积是188.4dm²,底面半径是2dm。
它的高是多少?
7、电器商城店庆,所有商品均降价两成。
汪叔叔买了一台洗衣机和一台电冰箱,加上50元的送货上门费一共花了5010元。
如果不降价,这两件商品一共要多少钱?
8、一根长1米的圆钢,把它截成两段后,表面积比原来增加288平方厘米,这根圆钢原来的体积是多少立方厘米?
9、在8:9中,如果前项加上20,要使比值不变,后项要加上多少?
10、把一根长2.5米的圆柱形刚材截成4段,表面积增加了37.68平方
分米。
原来这根钢材的体积是多少平方分米?
11、某出租车公司上月缴纳3%的营业税后的收入是46.56万元,这家公司上月的营业额为多少万元?
12、兴成鞋厂2月生产了36000双鞋,3月生产了45000双鞋,3月比2月增产几成?。