四川省南充市2021-2022高一数学上学期期末考试试题(含解析)
- 格式:doc
- 大小:1.10 MB
- 文档页数:17
四川省南充市建华中学2020年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知a n=(n∈N*),则在数列{a n}的前30项中最大项和最小项分别是()A.a1,a30 B.a1,a9 C.a10,a9 D.a10,a30参考答案:C【考点】数列的函数特性.【分析】把给出的数列的通项公式变形,把a n看作n的函数,作出相应的图象,由图象分析得到答案.【解答】解:a n==1+,该函数在(0,)和(,+∞)上都是递减的,图象如图,∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a10,a9.故选:C.【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.2. 在△ABC中,a,b,c分别为内角A,B,C所对的边,,且满足.若点O是△ABC外一点,,,平面四边形OACB面积的最大值是().A. B. C. 3 D.参考答案:A 由,化为sinBcosA=sinA﹣sinAcosB,∴sin(A+B)=sinA,∴sinC=sinA,A,C∈(0,π).∴C=A,又b=c,∴△ABC是等边三角形,设该三角形的边长为a,则:a2=12+22﹣2×2×cosθ.则S OACB=×1×2sinθ+a2=sinθ+(12+22﹣2×2cosθ)=2sin(θ﹣)+,当θ=时,S OACB取得最大值.故选:B.点睛:四边形的面积往往转化为两个三角形面积之和,从而所求问题转化为三角函数的有界性问题,结合条件易得结果.3. 已知集合A=R,B=R+,若是从集合A到B的一个映射,则B 中的元素3对应A 中对应的元素为()A. B.1 C.2D.3参考答案:C略4. 函数f(x)=+lg(3x+1)的定义域是( )A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)参考答案:B考点:对数函数的定义域;函数的定义域及其求法.专题:计算题.分析:依题意可知要使函数有意义需要1﹣x>0且3x+1>0,进而可求得x的范围.解答:解:要使函数有意义需,解得﹣<x<1.故选B.点评:本题主要考查了对数函数的定义域.属基础题5. 已知全集I={1,2,3,4,5},A={2, 3,5},B={1,3},则B∩(C I A)=()A.{3} B.{1} C.{1,3} D.{1,2}参考答案:B6. 设分别是双曲线的左、右焦点。
2021-2022学年四川省南充市高一上学期期末数学试题一、单选题1.已知集合{|12},{|03}=-≤≤=<≤A x x B x x ,则A B =( ) A .{|10}x x -≤< B .{|10}x x -≤≤ C .{|02}x x << D .{|02}x x <≤【答案】D【分析】根据集合的交集运算可得结果.【详解】因为{|12},{|03}=-≤≤=<≤A x x B x x , 所以A B ={|0<2}≤x x . 故选:D2.40︒角的弧度数为( ) A .40 B .29π C .49π D .7200π【答案】B【分析】根据给定条件直接化成弧度数作答.【详解】依题意,240401809ππ︒=⨯=. 故选:B 3.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞【答案】A【分析】根据指数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; 【详解】解:因为12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭等价于214a a +<-,解得1a <,即原不等式的解集为(,1)-∞故选:A4.半径为2且周长为6的扇形的面积是( ) A .6 B .4 C .2 D .1【答案】C【分析】根据给定条件求出扇形弧长,利用扇形面积公式计算得解.【详解】因扇形的半径为2,且周长为6,则扇形弧长为6222-⨯=,于是得扇形面积12222S =⨯⨯=,所以半径为2且周长为6的扇形的面积是2.故选:C5.下列各图中,可表示函数()y f x =的图象的是( )A .B .C .D .【答案】B【分析】根据函数的定义判断即可.【详解】根据函数的定义,对于定义域内的每一个x 值对应唯一的y 值,可看出只有选项B 符合. 故选:B.6.设函数()()222,3log 5,3xe xf x x x ⎧+<⎪=⎨-≥⎪⎩,则((0))f f 的值为( ) A .2 B .3 C .31e - D .2e 1-【答案】A【分析】根据分段函数的解析式,先求出()0f ,再求出()()0f f 即可.【详解】因为函数()()222,3log 5,3xe xf x x x ⎧+<⎪=⎨-≥⎪⎩, 所以()0023f e =+=,所以()()()203log 42f f f ===. 故选:A7.下列函数为奇函数的是( )A .3x y =B .cos5y x =C .22x x y -=+D .22x x y -=-【答案】D【分析】根据基本初等函数的奇偶性与奇偶函数的定义判断即可; 【详解】解:对于A :3x y =为非奇非偶函数,故A 错误; 对于B :cos5y x =为偶函数,故B 错误;对于C :()22x x y f x -==+定义域为R ,且()()22x xf x f x --=+=,即22x x y -=+为偶函数,故C 错误;对于D :()22x xy g x -==-定义域为R ,且()()()2222x x x x g x g x ---=-=--=-,故22x x y -=-为奇函数,故D 正确;故选:D8.已知 2.10.5a =,0.52b =, 2.10.2c =,则a ,b ,c 的大小关系是( ) A .c b a << B .c a b <<C .b a c <<D .c b a <<【答案】B【分析】根据幂函数及指数函数的性质判断可得;【详解】解:因为 2.1y x =在()0,∞+上单调递增,所以 2.1 2.1 2.1110.50.20=>>>,即01c a <<<,又0.50221>=,即1b >,所以b a c >>;故选:B9.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .0,1 B .1,2C .()2,4D .()4,+∞【答案】C【详解】因为(2)310f =->,3(4)202f =-<,所以由根的存在性定理可知:选C. 【解析】本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.10.若α是三角形的一个内角,且1sin cos 5αα+=,则三角形的形状为( )A .钝角三角形B .锐角三角形C .直角三角形D .无法确定【答案】A【解析】已知式平方后可判断sin α为正判断cos α的正负,从而判断三角形形状.【详解】解:∵()21sin cos 25αα+=,∴242sin cos 25αα=-,∵α是三角形的一个内角,则sin 0α>, ∴cos 0α<,∴α为钝角,∴这个三角形为钝角三角形. 故选:A .11.人们通常以分贝(符号是dB )为单位来表示声音强度的等级,强度为x 的声音对应的等级为()()10lg 100f x x =(dB ).听力会受到严重影响的声音约为90dB ,室内正常交谈的声音约为60dB ,则听力会受到严重影响的声音强度是室内正常交谈的声音强度的倍数为( ) A .310 B .11000C .3D .32【答案】A【分析】分别把90dB ,60dB 代入函数()()10lg 100f x x =中求出对应的x ,然后两个x 相比可得结果【详解】∵听力会受到严重影响的声音约为90dB ,∴()110lg 10090x =,得7110x =,∵室内正常交谈的声音约为60dB ,∴()210lg 10060x =,得4210x =,∴73142101010x x ==, 故选:A.12.已知()f x 是定义在R 上的偶函数,(1)f x -是定义在R 上的奇函数,则(2022)f +(2020)f 的值为( )A .0B .1C .-1D .无法计算【答案】A【分析】先由()f x 是定义在R 上的偶函数得()()f x f x -=,以及()1f x -的奇偶性,得()()110f x f x ++-=,从而可得答案.【详解】因为(1)f x -是定义在R 上的奇函数,()()11f x f x --=-- . 因为()f x 是定义在R 上的偶函数,所以()()f x f x -=, 可得()()()()1111f x f x f x f x +=⎡-+⎤=--=--⎣⎦所以()()110f x f x ++-=,因此()()()()2022202020211202110f f f f +=++-=故选:A . 二、填空题13.tan 405︒=___________. 【答案】1【分析】用诱导公式化简计算.【详解】tan 405tan(36045)tan 451︒=︒+︒=︒=. 故答案为:1. 14.函数()(0)1kf x k x =>-在[]4,5上的最大值为1,则k 的值为___________. 【答案】3【分析】依题意可得()(0)1kf x k x =>-在[]4,5上单调递减,即可得到()()max 4f x f =,从而求出k 的值; 【详解】解:因为()(0)1k f x k x =>-是由(0)ky k x =>向右平移1个单位得到,即()(0)1k f x k x =>-在()1,+∞上单调递减,所以()(0)1k f x k x =>-在[]4,5上单调递减,所以()()max 4141kf x f ===-,解得3k =; 故答案为:315.函数log (1)2(0,1)a y x a a =-+>≠的图象恒过一定点是___________. 【答案】【解析】【详解】试题分析:对数函数过定点()1,0,令112x x -=∴=,此时2y =,所以过定点【解析】对数函数过定点16.定义在R 上的奇函数()f x 在[0,)+∞上是减函数,若()()2(32)0f m f m f +-->,则实数m 的取值范围为___________. 【答案】(1,3)-【分析】根据函数的奇偶性和单调性得出223m m <+,然后解一元二次不等式便可. 【详解】解:()f x 是定义在R 上的奇函数,且在[0,)+∞上是减函数∴ ()f x 在定义域R 上是减函数,且(0)0f =()()2(32)00f m f m f +-->=∴,即()()()23223f m f m f m >---=+故可知2223230m m m m <+⇒--<,即可解得13m -<<实数m 的取值范围为(1,3)-. 故答案为:(1,3)- 三、解答题 17.已知函数21()4f x x =-. (1)求函数()f x 的定义域;(2)判断函数()f x 在(2,)+∞上的单调性,并用定义加以证明.【答案】(1){2}x Rx ∈≠±∣ (2)在(2,)+∞上单调递减,证明见解析【分析】(1)根据分式的分母不为0,即可得到答案;(2)任取1x ,2(2,)x ∈+∞,设12x x <,证明21y y <,即可得到答案; (1)要使函数有意义,当且仅当240x -≠. 由240x -≠得2x ≠±, 所以,函数21()4f x x =-的定义域为{2}x Rx ∈≠±∣. (2) 函数21()4f x x =-在(2,)+∞上单调递减. 证明:任取1x ,2(2,)x ∈+∞,设12x x <,则210x x x ∆=-> ()()()()12122122222112114444x x x x y y y x x x x -+∆=-=-=----. ∵12x >,22x >∴2140x ->,2240x ->,120x x +>又12x x <,所以120x x -<,故0y ∆<,即21y y <, 因此,函数21()4f x x =-在(2,)+∞上单调递减. 18.设角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它的终边上有一点(3,)P m ,且4tan 3α=-.(1)求m 及sin ,cos αα的值;(2)求2sin()cos cos ()1tan()πααπαπα-++++的值.【答案】(1)4m =-,4sin 5α=-,3cos 5α=(2)925【分析】(1)根据tan yrα=,即可求得参数m ;再根据三角函数的定义,即可求得sin ,cos αα;(2)利用诱导公式以及(1)中所求,即可求得结果. (1) ∵4tan 33y m x α===-,∴4m =-, 即(3,4)P -,22||3(4)5OP ∴=+-= 4sin ||5y OP α∴==-,3cos ||5x OP α==. (2)(2)原式2sin cos cos 1tan αααα+=+cos (sin cos )cos sin cos αααααα+=+29cos 25α==.19.今年中国“芯”掀起研究热潮,某公司已成功研发A 、B 两种芯片,研发芯片前期已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的净收入与投入的资金成正比,已知每投入1千万元,公司获得净收入0.25千万元;生产B 芯片的净收入y (千万元)是关于投入的资金x (千万元)的幂函数,其图象如图所示.(1)试分别求出生产A 、B 两种芯片的净收入y (千万元)与投入的资金x (千万元)的函数关系式;(2)现在公司准备投入4亿元资金同时生产A 、B 两种芯片.设投入x 千万元生产B 芯片,用()f x 表示公司所获利润,求公司最大利润及此时生产B 芯片投入的资金.(利润=A 芯片净收入+B 芯片净收入-研发耗费资金) 【答案】(1)0.25y x =;12y x =.(2)公司最大利润为9千万,此时生产B 芯片投入的资金为4千万.【分析】(1)结合已知条件和图像分别求解即可;(2)根据已知条件写出()f x 的解析式,并利用二次函数性质求解即可.(1)(i)不妨设生产A 芯片的净收入y (千万元)与投入的资金x (千万元)的函数关系式为:y kx =,从而0.25k =,故0.25y x =;(ii)A 、B 两种芯片的净收入y (千万元)与投入的资金x (千万元)的函数关系式y x α=, 由图像可知,y x α=的图像过点(4,2),即24α=,解得12α=, 故所求函数关系式为12y x =. (2)由题意可知,1112222()0.25(40)20.2580.25(2)9f x x x x x x =-+-=-+=--+, 由二次函数性质可知,当122x =时,即4x =时,()f x 有最大值9.20.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.【答案】(1)()323f x x π⎛⎫=+ ⎪⎝⎭(2)332⎡-⎢⎣ 【分析】(1)根据正弦型函数的图像求三角函数的解析式,根据最大值求出A ,由最小正周期求出ω,并确定ϕ.(2)根据平移后得到新的正弦型函数解析式,由函数解析式求出函数值域. (1)解:根据函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象可得3A =1252632ππππω=-=⋅,所以2ω=.再根据五点法作图可得23πϕπ⋅+=,所以3πϕ=,()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将函数()f x 的图象向右平移3π个单位后,可得22333y x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()43g x x π⎛⎫=- ⎪⎝⎭的图象.由0,3x π⎡⎤∈⎢⎥⎣⎦,可得4,33x πππ⎡⎤-∈-⎢⎥⎣⎦又函数()g x 在50,24π⎡⎤⎢⎥⎣⎦上单调递增,在5,243ππ⎡⎤⎢⎥⎣⎦单调递减∴3(0)2g =-,524g π⎛⎫= ⎪⎝⎭03g π⎛⎫= ⎪⎝⎭∴3()432g x x π⎛⎫⎡=-∈- ⎪⎢⎝⎭⎣∴函数()g x 在0,3π⎡⎤⎢⎥⎣⎦的值域32⎡-⎢⎣.21.已知()f x 是二次函数,其两个零点分别为-3、1,且(0)3f =-. (1)求()f x 的解析式;(2)设()()5,[1,2],()g x f x kx x g x =++∈-的最小值为()h k ,若方程4)h λ=有两个不等的实数根,求λ的取值范围. 【答案】(1)2()23f x x x =+-; (2)[)1,2.【分析】(1)根据给定条件设()(3)(1)f x a x x =+-,求出a 值即可作答.(2)分段讨论求出二次函数()g x 在[1,2]-上的最小值,再探讨函数()h s 在[4,)s ∈-+∞上的性质即可推理作答. (1)因()f x 是二次函数,其两个零点分别为3-、1,则设()(3)(1)f x a x x =+-,由(0)33f a =-=-解得1a =,则有2()(3)(1)23f x x x x x =+-=+-,所以()f x 的解析式是2()23f x x x =+-. (2)由(1)知,2()()5(2)2(12)g x f x kx x k x x =++=+++-≤≤,其对称轴方程为22k x +=-, 若212k +-≤-,即0k ≥时,()g x 在[1,2]-上单调递增,min ()(1)1g x g k =-=-, 若2122k +-<-<,即60k -<<时,min 2()2k g x g +⎛⎫=- ⎪⎝⎭2222k +⎛⎫=- ⎪⎝⎭, 若222k +-≥,即6k ≤-时,()g x 在[1,2]-上单调递减,()()min 2102g x g k ==+ 而()g x 的最小值为()h k ,则有2102,61()1,6041,0k k h k k k k k k +≤-⎧⎪⎪=--+-<<⎨⎪-≥⎪⎩,44≥-,令4s =,则4s ≥-,211,40()41,0s s s h s s s ⎧--+-≤≤⎪=⎨⎪->⎩, 当40s -≤≤时,2114()h s s s =--+,函数2114()h s s s =--+图象对称轴为2s =-,因此,2114()h s s s =--+在40s -≤≤上的图象关于直线2s =-对称,在[4,2]--上递增,函数值从1增到2,在[2,0]-上递减,函数值从2减到1,当0s >时,()1h s s =-在(0,)+∞上递减,其函数值的集合为(,1)-∞,函数()h s 在[)2,-+∞上单调递减,于是得()h s λ=有两个不等根,当且仅当12λ≤<,所以方程4)h λ=有两个不等的实数根,λ的取值范围为[)1,2.【点睛】思路点睛:含参数的二次函数在指定区间上的最值问题,按二次函数对称轴与区间的关系分类求解,再综合比较即可.22.设全集为R ,集合{121}A xa x a =-<<+∣,{01}B x x =<<∣. (1)若12a =,求()RA B ;(2)若集合A 不是空集,且A B =∅,求实数a 的取值范围. 【答案】(1){1|02x x -<≤,或12}x ≤< (2){122aa -<≤-∣或2}a ≥ 【分析】(1)利用补集和交集运算,借助数轴,即可得到答案;(2)由,A ≠∅可得不等式121a a -<+,再由A B =∅可得11a -≥或210a +≤,解不等式即可得到答案; (1)第 11 页 共 11 页 (1)当12a =时,122A x x ⎧⎫=-<<⎨⎬⎩⎭, {01}B x x =<<∣,{0R B xx =≤∣,或1}x ≥ {1202R A B x x x x ⎧⎫∴⋂=-<<⋂≤⎨⎬⎩⎭∣,或}1x ≥102x x ⎧=-<≤⎨⎩,或}12x ≤< (2)(2),121A a a ≠∅∴-<+,解得2a >-. 又,11A B a ⋂=∅∴-≥或210a +≤,解得:12a ≤-或2a ≥ 综上:122a a ⎧-<≤-⎨⎩∣或}2a ≥. 23.计算:(1)1320272)0.259π-⎛⎫-+ ⎪⎝⎭;(2)22log 4log 1324lg 3log 2lg 5+-⋅-. 【答案】(1)263; (2)4. 【分析】(1)根据给定条件利用指数幂的运算法则计算作答.(2)根据给定条件利用对数恒等式、对数换底公式及对数运算法则计算作答.(1)原式1322251194-⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭1232225123--⎡⎤⎛⎫⎡⎤=-+⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦5261833=-+=. (2)原式0lg 244lg3lg5lg3=+-⋅-41(lg 2lg5)4=+-+=.。
四川省南充市2022-2021学年高一下学期期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.数列{a n}前n项的和S n=3n+b(b是常数),若这个数列是等比数列,那么b为( )A.3 B.0 C.﹣1 D.1考点:等比数列的前n项和.专题:计算题.分析:依据数列的前n项的和减去第n﹣1项的和得到数列的第n项的通项公式,即可得到此等比数列的首项与公比,依据首项和公比,利用等比数列的前n项和的公式表示出前n项的和,与已知的S n=3n+b对比后,即可得到b的值.解答:解:由于a n=S n﹣S n﹣1=(3n+b)﹣(3n﹣1+b)=3n﹣3n﹣1=2×3n﹣1,所以此数列为首项是2,公比为3的等比数列,则S n ==3n﹣1,所以b=﹣1.故选C点评:此题考查同学会利用a n=S n﹣S n﹣1求数列的通项公式,机敏运用等比数列的前n项和的公式化简求值,是一道基础题.2.求值sin164°sin224°+sin254°sin314°=( )A .﹣B .C .﹣D .考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由诱导公式化简已知函数,再由两角和的余弦公式可得.解答:解:∵sin164°=sin(180°﹣16°)=sin16°,sin224°=sin(180°+44°)=﹣sin44°sin254°=sin(270°﹣16°)=﹣cos16°sin314°=sin(270°+44°)=﹣cos44°,∴sin164°sin224°+sin254°sin314°=﹣sin16°sin44°+cos16°cos44°=cos(16°+44°)=cos60°=故选:D点评:本题考查两角和与差的三角函数公式,涉及诱导公式的应用,属基础题.3.在△ABC中,角A,B,C的对边为a,b,c且有acosA=bcosB,则此三角形是( ) A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形考点:正弦定理.专题:解三角形.分析:由条阿金利用正弦定理可得sin(A﹣B)=0,即A=B 或A+B=,从而得出结论.解答:解:在△ABC中,由acosA=bcosB,利用正弦定理可得sinAcosA=cosBsinB,即sin(A﹣B)=0,即sin2A=sin2B,∴2A=2B 或2A+2B=π,即A=B 或A+B=.若A=B,则△ABC为等腰三角形,若A+B=,则C=,△ABC为直角三角形,故选:D.点评:本题主要考查正弦定理的应用,两角差的正弦公式,属于基础题.4.若a>b>0,则下列不等式中肯定成立的是( )A.a+B.a ﹣C .D .考点:不等式的基本性质.专题:不等式的解法及应用.分析:依据不等式的性质进行推断即可.解答:解:∵a>b>0,∴>>0,则a+>0,故选:A.点评:本题主要考查不等关系的推断,依据不等式的性质是解决本题的关键.5.如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是( )A.π+24 B.π+20 C.2π+24 D.2π+20考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:该器皿的表面积可分为两部分:去掉一个圆的正方体的表面积s1和半球的表面积s2,即可求出该器皿的表面积.解答:解:该器皿的表面积可分为两部分:去掉一个圆的正方体的表面积s1和半球的表面积s2,s1=6×2×2﹣π×12=24﹣π,s2==2π,故s=s1+s2=π+24故选:A.点评:由三视图求表面积与体积,关键是正确分析原图形的几何特征.6.等差数列{a n}中,a1=﹣5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是( )A.a11B.a10C.a9D.a8考点:等差数列的通项公式;等差数列的前n项和.专题:计算题.分析:先由数列的首项和前11项和,求出数列的公差,再由抽取的一项是15,由等差数列通项公式求出第几项即可解答:解:设数列{a n}的公差为d,抽取的项为x,依题意,a1=﹣5,s11=55,∴d=2,则a n=﹣5+(n﹣1)×2而x=55﹣4×10=15,则有15=﹣5+(n﹣1)×2∴n=11故选A点评:本题考查了等差数列的通项公式和前n项和公式的运用,解题时要将公式与实际问题相结合,将实际问题转化为数学问题解决7.已知x>﹣1,y>﹣1,且(x+1)(y+1)=4,则x+y的最小值是( )A.4 B.3 C.2 D.1考点:基本不等式.专题:不等式的解法及应用.分析:由题意和基本不等式可得(x+1)+(y+1)的最小值,进而可得x+y的最小值.解答:解:∵x>﹣1,y>﹣1,∴x+1>0,且y+1>0又∵(x+1)(y+1)=4,∴(x+1)+(y+1)≥2=4,当且仅当x+1)=y+1即x=y=1时取等号,∴(x+1)+(y+1)=x+y+2的最小值为4,∴x+y的最小值为:2故选:C点评:本题考查基本不等式求最值,整体法是解决问题的关键,属基础题.8.设α、β、γ为两两不重合的平面,l、m、n为两两不重合的直线,给出下列四个命题:①若α⊥γ,β⊥γ,则α∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,l⊂α,则l∥β;④若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数是( )A.1 B.2 C.3 D.4考点:平面与平面之间的位置关系;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.专题:证明题.分析:由空间中面面平面关系的判定方法,线面公平的判定方法及线面平行的性质定理,我们逐一对四个答案进行分析,即可得到答案.解答:解:若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故①错误;由于m,n不肯定相交,故α∥β不肯定成立,故②错误;由面面平行的性质定理,易得③正确;由线面平行的性质定理,我们易得④正确;故选B点评:在推断空间线面的关系,娴熟把握线线、线面、面面平行(或垂直)的判定及性质定理是解决此类问题的基础.9.已知tanα=4,cos(α+β)=﹣,α,β均为锐角,则β的值是( )A .B .C .D .考点:两角和与差的余弦函数.专题:三角函数的求值.分析:由条件利用同角三角函数的基本关系求得sinα、cosα、sin(α+β)的值,再利用两角差的余弦公式求得cosβ=cos的值,可得β的值.解答:解:∵tanα==4,cos(α+β)=﹣,α,β均为锐角,∴sinα=,cosα=,sin(α+β)==,∴cosβ=cos=cos(α+β)cosα+sin(α+β)sinα=﹣×+×=,故β=,故选:B.点评:本题主要考查同角三角函数的基本关系,两角和差的余弦公式的应用,属于基础题.10.在△ABC中,角A,B,C的对边为a,b,c,b=8,c=8,S△ABC =16,则A等于( ) A.30°B.60°C.30°或150°D.60°或120°考点:余弦定理.专题:三角函数的求值;解三角形.分析:运用三角形的面积公式S△ABC =bcsinA,结合特殊角的正弦函数值,可得角A.解答:解:由b=8,c=8,S△ABC =16,则S△ABC =bcsinA=×sinA=16,即为sinA=,由于0°<A<180°,则A=30°或150°.故选C.点评:本题考查三角形的面积公式的运用,考查特殊角的正弦函数值,属于基础题和易错题.二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在题中横线上11.已知sinα﹣cosα=,0≤α≤π,则sin(2)=.考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由题意和同角三角函数基本关系可得sinα和cosα,进而由二倍角公式可得sin2α和cos2α,代入两角差的正弦公式计算可得.解答:解:∵sinα﹣cosα=,sin2α+cos2α=1,又∵0≤α≤π,∴sinα≥0,解方程组可得+,∴sin2α=2sinαcosα=,cos2α=cos2α﹣sin2α=﹣,∴sin(2)=sin2α﹣cos2α==故答案为:点评:本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系和二倍角公式,属中档题.12.不等式<1的解集为{x|x<1或x>2},那么a 的值为.考点:其他不等式的解法.专题:计算题;不等式的解法及应用.分析:依题意,1与2是方程(a﹣1)x2+(2﹣a)x﹣1=0的两根,且a﹣1<0,利用韦达定理即可求得答案.解答:解:∵<1,∴﹣1==<0,∴<0,∵不等式<1的解集为{x|x<1或x>2},∴1与2是方程(x﹣1)=0的两根,且a﹣1<0,即1与2是方程(a﹣1)x2+(2﹣a)x﹣1=0的两根(a<1),∴1×2=﹣=,∴a=.故答案为.点评:本题考查分式不等式的解法,考查转化思想与韦达定理的应用,考查解方程的力量,属于中档题.13.设等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=10.考点:等比数列的性质.专题:等差数列与等比数列.分析:由题意可得a4a7=a5a6,解之可得a5a6,由对数的运算可得log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5,代入计算可得.解答:解:由题意可得a5a6+a4a7=2a5a6=18,解得a5a6=9,∴log3a1+log3a2+...+log3a10=log3(a1a2 (10)=log3(a5a6)5=log395=log3310=10故答案为:10点评:本题考查等比数列的性质和通项公式,涉及对数的运算,属中档题.14.过△ABC所在平面α外一点,作PO⊥α,垂足为O,连接PA,PB,PC.若PA=PB=PC,则点O是△ABC 的外心.考点:三角形五心.专题:证明题.分析:点P为△ABC所在平面外一点,PO⊥α,垂足为O,若PA=PB=PC,可证得△POA≌△POB≌△POC,从而证得OA=OB=OC,符合这一性质的点O是△ABC外心.解答:证明:点P为△ABC所在平面外一点,PO⊥α,垂足为O,若PA=PB=PC,故△POA,△POB,△POC都是直角三角形∵PO是公共边,PA=PB=PC∴△POA≌△POB≌△POC∴OA=OB=OC故O是△ABC外心故答案为:外.点评:本题考查三角形五心,求解本题的关键是能够依据题设条件得出PA,PB,PC在底面上的射影相等,以及娴熟把握三角形个心的定义,本题是一个推断形题,是对基本概念的考查题.15.给出下列说法:①数列,3,,,3…的一个通项公式是;②当k∈(﹣3,0)时,不等式2kx2+kx ﹣<0对一切实数x都成立;③函数y=sin2(x+)﹣sin2(x ﹣)是周期为π的奇函数;④两两相交且不过同一点的三条直线必在同一个平面内.其中,正确说法序号是①②④.考点:命题的真假推断与应用.专题:函数的性质及应用;等差数列与等比数列;三角函数的图像与性质;空间位置关系与距离.分析:依据已知,归纳猜想数列的通项公式,可推断①;依据二次函数的图象和性质,结合已知,可推断②;利用诱导公式和二倍角公式,化简函数解析式,结合三角函数的图象和性质,可推断③;依据公理2及其推论,可推断④.解答:解:数列,3=,,,3=…的被开方数构造一个以3为首项,以6为公差的等差数列,故它的一个通项公式是,故①正确;②当k∈(﹣3,0)时,∵△=k2+3k<0,故函数y=2kx 2+kx﹣的图象开口朝下,且与x轴无交点,故不等式2kx2+kx ﹣<0对一切实数x都成立,故②正确;③函数y=sin2(x+)﹣sin2(x ﹣)=sin2(x+)﹣cos2=sin2(x+)﹣cos2(x+)=﹣cos(2x+0=cos2x,是周期为π的偶函数,故③错误;④两两相交且不过同一点的三条直线必在同一个平面内,故④正确.故说法正确的序号是:①②④,故答案为:①②④点评:本题考查的学问点是命题的真假推断与应用,本题综合性强,难度中档.三、解题题(本大题共6个小题,共75分)解答应写出文字说明,证明过程或演算步骤.16.化简求值:(1)tan70°cos10°(tan20°﹣1)(2)已知cos(+x)=,<x <,求的值.考点:三角函数的化简求值.专题:三角函数的求值.分析:(1)由条件利用三角恒等变换化简要求的式子,可得结果.(2)由条件利用同角三角函数的基本关系求得tan(x+)的值,再化简要求的式子为﹣•tan (x+),从而得到结果.解答:解:(1)tan70°cos10°(tan20°﹣1)=•cos10°•=•cos10°•=cos10°=﹣1.(2)∵cos(+x )=,<x<,∴x+∈(,2π),∴sin(x+)=﹣=﹣,∴tan (x+)=﹣.∴==sin2x•=﹣cos(2x+)=﹣•tan(x+)=﹣•(﹣)=﹣.点评:本题主要考查三角恒等变换及化简求值,属于中档题.17.已知集合A={x|x2﹣16<0},B={x2﹣8x+12<0},I=A∩B.(1)求集合I.(2)若函数f(x)=x2﹣2ax+1大于0对x∈I恒成立,求实数a的取值范围.考点:交集及其运算;函数恒成立问题.专题:集合.分析:(1)分别求出A与B中不等式的解集确定出A与B,求出A与B的交集即为I;(2)依据函数f(x)=x2﹣2ax+1大于0对x∈I恒成立,得到f(2)与f(﹣4)都大于0,解答:解:(1)由A中不等式变形得:(x+4)(x﹣4)<0,解得:﹣4<x<4,即A=(﹣4,4),由B中不等式变形得:(x﹣2)(x﹣6)<0,解得:2<x<6,即B=(2,6),则I=A∩B=(2,4);(2)∵函数f(x)=x2﹣2ax+1大于0对x∈I恒成立,∴,即,解得:a <.点评:此题考查了交集及其运算,以及函数恒成立问题,娴熟把握交集的定义是解本题的关键.18.若一个三角形的三边是连续的三个自然数,且三角形最大内角是最小内角的2倍,求此三角形三边的长.考点:余弦定理;正弦定理.专题:解三角形.分析:设三角形三边是连续的三个自然n﹣1,n,n+1,三个角分别为α,π﹣3α,2α,由正弦定理求得cosα=,再由余弦定理可得(n﹣1)2=(n+1)2+n2﹣2(n+1)n •,求得n=5,从而得出结论.解答:解:设三边长分别为n﹣1,n,n+1,对应的角为A,B,C,由题意知C=2A,由正弦定理得==即有cosA=,又cosA==所以=,化简为n2﹣5n=0,解得n=5,所以三边分别为4,5,6.点评:本题考查正弦定理、余弦定理的应用,求得n2﹣5n=0,是解题的难点,属于中档题.19.某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为k.轮船的最大速度为15海里/小时.当船速为10海里/小时,它的燃料费是每小时96元,其余航行运作费用(不论速度如何)总计是每小时150元.假定运行过程中轮船以速度v匀速航行.(1)求k的值;(2)求该轮船航行100海里的总费用W(燃料费+航行运作费用)的最小值.考点:基本不等式在最值问题中的应用;函数模型的选择与应用.专题:计算题;函数的性质及应用.分析:(1)依据题意,设比例系数为k ,得燃料费为,将v=10时W1=96代入即可算出k的值;(2)算出航行100海里的时间为小时,可燃料费为96v ,其余航行运作费用为元,由此可得航行100海里的总费用为,再运用基本不等式即可算出当且仅当v=12.5时,总费用W的最小值为2400(元).解答:解:(1)由题意,设燃料费为,∵当船速为10海里/小时,它的燃料费是每小时96元,∴当v=10时,W1=96,可得96=k×102,解之得k=0.96.(2)∵其余航行运作费用(不论速度如何)总计是每小时150元.∴航行100海里的时间为小时,可得其余航行运作费用为=元因此,航行100海里的总费用为=(0<v≤15)∵,∴当且仅当时,即时,航行100海里的总费用最小,且这个最小值为2400元.答:(1)k值为0.96,(2)该轮船航行100海里的总费用W的最小值为2400(元).点评:本题给出函数应用题,求航行所需费用的最小值,着重考查应用题的转化力量、运用基本不等式求最值和基本不等式取等号的条件等学问,属于中档题.20.如图,边长为1的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A1.(1)求证:A1D⊥EF;(2)求三棱锥A1﹣DEF的体积.考点:直线与平面垂直的性质;棱柱、棱锥、棱台的体积.专题:计算题;证明题;空间位置关系与距离.分析:(1)由正方形ABCD知∠DCF=∠DAE=90°,得A1D⊥A1F且A1D⊥A1E,所以A1D⊥平面A1EF.结合EF⊂平面A1EF,得A1D⊥EF;(2)由勾股定理的逆定理,得△A1EF是以EF为斜边的直角三角形,而A1D是三棱锥D﹣A1EF的高线,可以算出三棱锥D﹣A1EF的体积,即为三棱锥A1﹣DEF的体积.解答:解:(1)由正方形ABCD知,∠DCF=∠DAE=90°,∴A1D⊥A1F,A1D⊥A1E,∵A1E∩A1F=A1,A1E、A1F⊆平面A1EF.∴A1D⊥平面A1EF.又∵EF⊂平面A1EF,∴A1D⊥EF.(2)∵A1F=A1E=,EF=∴A1F2+A1E2==EF2,得A1E⊥A1F,∴△A1EF 的面积为,∵A1D⊥平面A1EF.∴A1D是三棱锥D﹣A1EF的底面A1EF上的高线,因此,三棱锥A1﹣DEF 的体积为:.点评:本题以正方形的翻折为载体,证明两直线异面垂直并且求三棱锥的体积,着重考查空间垂直关系的证明和锥体体积公式等学问,属于中档题.21.已知数列{a n}满足a1=1,a n+1=2a n+1;(1)设b n=a n+1,求证:数列{b n}是等比数列;(2)求数列{a n}的通项公式;(3)设c n=na n,求数列{c n}的前n项和T n.考点:数列的求和;等比关系的确定.专题:等差数列与等比数列.分析:(1)a n+1=2a n+1,两边加1,由等比数列的定义,即可得证;(2)运用等比数列的通项公式,即可得到{a n}的通项公式;(3)求出c n,分别运用等差数列和等比数列的求和公式,以及错位相减法,即可得到所求前n项和T n.解答:解:(1)证明:a n+1=2a n+1,可得a n+1+1=2(a n+1),即有b n+1=2b n,则数列{b n}是首项为a1+1=2,公比为2的等比数列;(2)由等比数列的通项公式可得,b n=2•2n﹣1=2n,即有a n=2n﹣1;(3)c n=na n=n•2n﹣n,令S n=1•2+2•22+3•23+…+n•2n,①2S n=1•22+2•23+3•24+…+n•2n+1,②①﹣②可得,﹣S n=2+22+23+…+2n﹣n•2n+1=﹣n•2n+1,即有S n=(n﹣1)•2n+1+2,则前n项和T n=(n﹣1)•2n+1+2﹣.点评:本题考查数列的通项的求法,以及数列的求和方法:错位相减法,同时考查等差数列和等比数列的通项和求和公式的运用,属于中档题.。
绝密★启用前四川省南充市2020-2021学年高一上学期期末考试数学试卷注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、选择题:本题共12小题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{|12}A B x x =-=-<<,则A B =( )A. {1,0}-B. {1,1}-C. {0,1}D. {1,0,1}-2. cos 210︒=( )A.2B. C.12D. 12-3. 已知函数22()1x f x x=+,则12f ⎛⎫= ⎪⎝⎭( ) A. 5B. 3C.13D.154. 已知向量(2,1),(3,5)a b =-=,则2a b =-( ) A. (8,9)--B. (4,9)--C. (5,6)--D. (8,11)5. 若函数()xf x a x a =--(0a >且1a ≠)有两个不同零点,则a 的取值范围是( ) A. (2,)+∞ B. (1,)+∞C. (0,)+∞D. (0,1)6. 角α终边上有一点(,)P a a ,(0)a ≠,则sin α=( )A.2B. 2-C. 2±D. 17. 为了得到函数sin(2)6y x π=-的图象,可以将函数sin 2y x =的图象( )A 向右平移6π个单位长度 B. 向左平移12π个单位长度C. 向左平移6π个单位长度 D. 向右平移12π个单位长度8. 已知f (x )=5x +a 3x +bx-8,且f (-2)=10,那么f (2)等于( )A. -26B. -18C. -10D. 109. 已知1tan 2α=,则2sin sin cos ααα+=( ) A.15B. 25C. 35D.4510. 给定集合A ,B ,定义{},,A B x x m n m A n B *==-∈∈,若{}4,5,6A =,{}1,2,3B =,则集合A B *中的所有元素之和为( ) A. 15B. 14C. 27D. 14-11. 已知12,e e 是单位向量,1223e e ⋅=-,若平面向量a 满足11a e ⋅=,22a e ⋅=且12a xe ye =+,则x y +=( ) A. 9B. 8C. 7D. 612. 已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()()0.52log 3,log 5,(2)a f b f c f m ===,则( )A. a b c <<B. a c b <<C. c b a <<D. c a b <<二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量(1,),(2,2)a m b ==-,且a b ⊥,则m =__________. 14. 若12sin 313πα⎛⎫+= ⎪⎝⎭,则()cos 6πα-=__________. 15. 幂函数()f x 的图象过点1(2,)4,则(3)f -=__________.16. 函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-,若对任意的(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是_______ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17. 已知函数1()21f x x x =+++ (1)求()f x 定义域;(2)若0a >,求(1)f a -的值.18. 已知函数()f x ax b =+是R 上的奇函数,且()12f =.(1)求a ,b ;(2)用函数单调性的定义证明()f x 在R 上是增函数. 19. 已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 20. 设函数()2sin 26f x x mπω⎛⎫=-+ ⎪⎝⎭的图象关于直线x π=对称,其中102ω<<. (1)求()f x 的最小正周期;(2)若函数()y f x =的图象过点(,0)π,求()f x 在30,2π⎡⎤⎢⎥⎣⎦上的值域;21. 已知二次函数()y f x =的图象以原点为顶点且过点(1,1),函数()kg x x=的图象过点(1,8),()()()h x f x g x =+.(1)求()h x 的解析式;(2)证明:当3m >时,函数()()()H x h x h m =-有三个零点.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22. 已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围. 23. 若,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 23k x π⎛⎫+- ⎪⎝⎭的值总不大于零,求实数k 的取值范围.南充市2020-2021学年度上期高中一年级教学质量监测 数学试卷(解析版)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将答题卡交回.一、选择题:本题共12小题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{|12}A B x x =-=-<<,则A B =( )A. {1,0}-B. {1,1}-C. {0,1}D. {1,0,1}-答案:C 【解析】利用交集定义求解即可. 解:由题意,{}0,1A B =故选:C.2. cos 210︒=( )A.2B. C.12D. 12-答案:B 【解析】利用诱导公式化简求值即可.解:()cos 210cos 18030cos30︒=︒+︒=-︒= 故选:B3. 已知函数22()1x f x x=+,则12f ⎛⎫= ⎪⎝⎭( ) A. 5 B. 3C.13D.15答案:D 【解析】根据函数的解析式,代入准确计算,即可求解.解:由题意,函数22()1x f x x=+,可得221()112()1251()2f ==+. 故选:D.4. 已知向量(2,1),(3,5)a b =-=,则2a b =-( ) A. (8,9)-- B. (4,9)--C. (5,6)--D. (8,11)答案:A 【解析】利用平面向量坐标公式求解即可. 解:2(6,10)b =,2a b ∴=-(8,9)--故选:A5. 若函数()xf x a x a =--(0a >且1a ≠)有两个不同零点,则a 的取值范围是( ) A. (2,)+∞ B. (1,)+∞ C. (0,)+∞ D. (0,1)答案:B 【解析】先讨论01a <<,根据函数单调性,判定不满足题意;再讨论1a >,结合图形,即可判定出结果. 解:当01a <<时,()xf x a x a =--在定义域上单调递减,最多只有一个零点,不满足题意; 当1a >时,根据函数()x f x a x a =--有两个不同零点,可得方程x a x a =+有两个不等实根, 即函数xy a =与直线y x a =+有两不同零点,指数函数xy a =恒过点()0,1;直线y x a =+过点()0,a ,作出函数x y a =与y x a =+的大致图象如下:因为1a >,所以点()0,a 在()0,1的上方,因此1a >时,y x a =+与xy a =必有两不同交点,即原函数有两不同零点,满足题意; 综上1a >. 故选:B.【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6. 角α的终边上有一点(,)P a a ,(0)a ≠,则sin α=( )2 B. 2 C. 2 D. 1答案:C【解析】根据三角函数的定义,分类讨论,即可求解.解:由题意,角α的终边上有一点(,)P a a ,则222r OP a ===,当0a >时,根据三角函数的定义,可得2sin 22y r a α===; 当0a <时,根据三角函数的定义,可得2sin 22y r a α===--, 综上,sin α=2故选:C7. 为了得到函数sin(2)6y x π=-的图象,可以将函数sin 2y x =的图象( )A. 向右平移6π个单位长度B. 向左平移12π个单位长度C. 向左平移6π个单位长度 D. 向右平移12π个单位长度答案:D 【解析】因为把2y sin x =的图象向右平移12π个单位长度可得到函数22126y sin x sin x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象,所以,为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin2y x =的图象,向右平移12π个单位长度故选D.8. 已知f (x )=5x +a 3x +bx-8,且f (-2)=10,那么f (2)等于( ) A. -26 B. -18C. -10D. 10答案:A 【解析】令()g x =5x +a 3x +bx ,利用函数的奇偶性求解即可.解:令()g x =5x +a 3x +bx ,由函数的奇偶性定义,函数为奇函数, 则()()8f x g x =-,所以()()22810f g -=--=, 得()218g -=,又函数()g x 是奇函数,即()()22g g =--, 所以()218g =-,则()()22818826f g =-=--=-. 故选:A点评:本题考查了利用函数的奇偶性求函数值,考查了基本运算求解能力,属于基础题.9. 已知1tan 2α=,则2sin sin cos ααα+=( ) A.15B. 25C. 35D.45答案:C 【解析】根据三角函数的基本关系式,化简为“齐次式”,代入即可求解. 解:因为1tan 2α=, 由2222sin sin cos sin sin cos cos sin αααααααα++=+222211()tan tan 32211tan 51()2ααα++===++. 故选:C.10. 给定集合A ,B ,定义{},,A B x x m n m A n B *==-∈∈,若{}4,5,6A =,{}1,2,3B =,则集合A B *中的所有元素之和为( ) A. 15 B. 14C. 27D. 14-答案:A 【解析】根据集合的新定义,分别表示出符合A B *的集合的元素,再求和即可 解:由题可知,456m ,,=,1,2,3n =, 当4m =时,1,2,3n =时,321m n ,,-= 当5m =时,1,2,3n =时,432m n ,,-= 当6m =时,1,2,3n =时,543m n ,,-= 所以{}12345A B ,,,,*=,元素之和为15 故选A点评:本题考查对新定义的理解,元素与集合的关系,解题关键在于不遗漏,m n 的取值,正确算出m n -,属于基础题11. 已知12,e e 是单位向量,1223e e ⋅=-,若平面向量a 满足11a e ⋅=,22a e ⋅=且12a xe ye =+,则x y +=( )A. 9B. 8C. 7D. 6答案:A 【解析】对12a xe ye =+两边都与1e 、2e 求数量积,所得两个式子相加即可求解. 解:因为12a xe ye =+,所以211211a e xe ye e ⋅=+⋅=,即213x y -=①, 因为12a xe ye =+,所以221222a e xe e ye ⋅=⋅+=,即223x y -+=②, 两式相加可得:11333x y +=,所以9x y +=, 故选:A点评:关键点点睛:本题解题的关键是将12a xe ye =+两边都与1e 、2e 求数量积即可利用已知条件的数据得出关于x 和y 的两个方程.12. 已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()()0.52log 3,log 5,(2)a f b f c f m ===,则( )A. a b c <<B. a c b <<C. c b a <<D. c a b <<答案:D 【解析】根据()f x 为偶函数便可求出m =0,从而||()21x f x =-,根据此函数的奇偶性与单调性即可作出判断.解:∵()f x 为偶函数; ∴()()f x f x -= ; ∴||2121x m x m ----=-;∴--=-x m x m 得()()22x m x m --=- ,0mx = 得0m = ∴()21xf x =- ;∴()f x 在[)0,+∞上单调递增,并且()()0.52log 3log 3a f f ==,()()2log 5,(2)0b f c f m f ===∵220log 3log 5<<; ∴c a b <<. 故选:D点评:方法点晴:对于偶函数比较函数值大小的方法就是将自变量的值变到区间[)0,+∞上,根据单调性去比较函数值大小.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量(1,),(2,2)a m b ==-,且a b ⊥,则m =__________. 答案:1 【解析】因为a b ⊥,则0a b ⋅=,代入坐标求解即可求出答案. 解:因为a b ⊥,所以=220,1a b m m ⋅-=∴=. 故答案为:1. 14. 若12sin 313πα⎛⎫+= ⎪⎝⎭,则()cos 6πα-=__________. 答案:1213【解析】 由于362πππαα⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,可得632πππαα⎛⎫-=+- ⎪⎝⎭,然后由诱导公式可得 cos cos sin 6323ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,最后写出结果即可解:362πππαα⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,632πππαα⎛⎫∴-=+- ⎪⎝⎭,12cos cos cos sin 63223313ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=+-=-+=+= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:1213.点评:关键点点睛:本题的解题关键是由角的关系得出632πππαα⎛⎫-=+- ⎪⎝⎭,进而利用诱导公式进行计算.15. 幂函数()f x 的图象过点1(2,)4,则(3)f -=__________. 答案:19【解析】设出幂函数的解析式,由图象过12,4⎛⎫ ⎪⎝⎭确定出解析式,然后令x =-3即可得到f (-3)的值.解:设f (x )=x a ,因为幂函数图象过12,4⎛⎫ ⎪⎝⎭,则有14=2a ,∴a=-2,即f (x )=x -2, ∴f(-3)=(-3)-2=19,故答案为19.点评:本题考查了待定系数法求幂函数解析式的问题,考查了求幂函数的函数值,属于基础题. 16. 函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-,若对任意的(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是_______ 答案:7,3⎛⎤-∞ ⎥⎝⎦ 【解析】首先根据已知条件依次得到在(0,1]x ∈附近的区间,(1,2]x ∈、(2,3]x ∈对应的函数解析式,然后按其规律画出函数的图像,再根据不等式恒成立的意义与函数图像即可求得实数m 的取值范围 解:当10-<≤x 时,011x <+≤,则11()(1)(1)22f x f x x x =+=+, 当12x <≤时,011x <-≤,则()2(1)2(1)(2)f x f x x x =-=--,当23x <≤时,021x <-≤,则22()2(1)2(2)2(2)(3)f x f x f x x x =-=-=--,由此作出()f x 图象如图所示,由图知当23x <≤时,令282(2)(3)9x x --=-,整理得:(37)(38)0x x --=, 解得:73x =或83x =,要使对任意的(,]x m ∈-∞,都有8()9f x ≥-,必有73m ≤, 所以m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦, 故答案为:7,3⎛⎤-∞ ⎥⎝⎦点评:本题主要考查函数的解析式,函数的图象,不等式恒成立问题,考查分类讨论,数形结合的思想,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17. 已知函数1()21f x x x =+++ (1)求()f x 的定义域;(2)若0a >,求(1)f a -的值.答案:(1){|2x x ≥-且}1x ≠-;(2)1(1)1f a a a-=+ 【解析】(1)由1020x x +≠⎧⎨+≥⎩,解不等式可得定义域;(2)0a >时,将1a -代入求值即可.解:(1)由1020x x +≠⎧⎨+≥⎩,解得2x ≥-且1x ≠-故()f x 的定义域为{|2x x ≥-且}1x ≠- (2)若0a >,11(1)11f a a a-==-+18. 已知函数()f x ax b =+是R 上的奇函数,且()12f =. (1)求a ,b ;(2)用函数单调性的定义证明()f x 在R 上是增函数. 答案:(1)2a =,0b =;(2)证明见详解. 【解析】(1)根据函数是奇函数,得到()00f b ==,根据()12f =求出a ,再验证函数奇偶性,即可得出结果;(2)任取12x x <,作差比较()1f x 与()2f x ,根据函数单调性的定义,即可得出结论. 解:(1)因为()f x ax b =+是R 上的奇函数,所以()00f b ==,则()f x ax =;又()12f =,所以2a =,则()2f x x =,此时()()2f x x f x -=-=-,所以()2f x x =是奇函数,满足题意;故2a =,0b =;(2)任取12x x <,则()()()121220f x f x x x -=-<显然成立,即()()12f x f x <, 所以()f x 在R 上是增函数. 点评:方法点睛:定义法判定函数()f x 在区间D 上的单调性的一般步骤: 1.取值:任取1x ,2x D ∈,规定12x x <, 2.作差:计算()()12f x f x -; 3.定号:确定()()12f x f x -的正负; 4.得出结论:根据同增异减得出结论.19. 已知4,3,(23)(2)61a b a b a b ==-⋅+=.(1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积.答案:(1)23π;(2(3)【解析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 解:(1)因为(23)(2)61a b a b -⋅+=, 所以2244361aa b b-⋅-=.又4,3a b ==,所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+=42+2×(-6)+32=13,所以13a b +=;(3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =14322⨯⨯⨯=点评:该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 20. 设函数()2sin 26f x x m πω⎛⎫=-+ ⎪⎝⎭的图象关于直线x π=对称,其中102ω<<. (1)求()f x 的最小正周期;(2)若函数()y f x =的图象过点(,0)π,求()f x 在30,2π⎡⎤⎢⎥⎣⎦上的值域; 答案:(1)3T π=;(2)[]3,0-. 【解析】(1)由函数图象关于直线x π=对称,可得ω的值,进而得出函数的最小正周期;(2)由函数()y f x =的图象过点(,0)π,求出m 的值,由30,2x π⎡⎤∈⎢⎥⎣⎦,结合正弦函数的图象和性质得出函数的值域.解:(1)函数()2sin 26f x x m πω⎛⎫=-+ ⎪⎝⎭的图象关于直线x π=对称,则2,62k k Z ππωππ⨯-=+∈,解得1,23k k Z ω=+∈ 又102ω<<,则当0k =时,13ω= 即2()2sin 36f x x m π⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为2323T ππ==;(2)函数()y f x =的图象过点(,0)π, 则()22sin 036f m πππ⎛⎫=-+=⎪⎝⎭,解得2m =- 故2()2sin 236f x x π⎛⎫=-- ⎪⎝⎭302x π≤≤,203x π∴≤≤,256366x πππ-≤-≤ 则12sin 1236x π⎛⎫-≤-≤ ⎪⎝⎭,232sin 2036x π⎛⎫-≤--≤ ⎪⎝⎭()f x 在30,2π⎡⎤⎢⎥⎣⎦上的值域为[]3,0-. 21. 已知二次函数()y f x =的图象以原点为顶点且过点(1,1),函数()kg x x=的图象过点(1,8),()()()h x f x g x =+.(1)求()h x 的解析式;(2)证明:当3m >时,函数()()()H x h x h m =-有三个零点. 答案:(1)28()h x x x =+;(2)证明见解析. 【解析】(1)待定系数法即可求解(2)将方程变形,分解因式,分析实数根的个数.解:(1)设2()=f x ax ,由(1)1f a ==可得2()f x x =(1)8g k ==,()8g x x=故28()h x x x=+(2)令()()()0H x h x h m =-= 故22880x m x m-+-= 即()()1180x m x m x m ⎛⎫-++-= ⎪⎝⎭,故()()80m x x m x m xm -⎛⎫-++= ⎪⎝⎭即()()80x m x m xm ⎡⎤-+-=⎢⎥⎣⎦,0x ≠ 故()280x m x mx m ⎛⎫-+-= ⎪⎝⎭① 当3m >时,22288821803m m m m m +-=->->,2320m m+> 故280x mx m+-=有两实根,且不为0和m 0x m -=有一根,为m故()()()0H x h x h m =-=有三实数根故()()()H x h x h m =-有三个零点. 点评:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22. 已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围. 答案:{|1}m m ≥- 【解析】B A ⊆时,要分类讨论,分B =∅和B ≠∅讨论.解:∵B A ⊆,∴当B =∅时,211m m -≥+,即2m ≥,当B ≠∅时,213142m m m -≥-⎧⎪+≤⎨⎪<⎩,解得12m -≤<,综上所述,m 的取值范围是{|1}m m ≥-.点评:本题考查集合的包含关系,解题时要注意空集是任何集合的子集.因此需分类讨论. 23. 若,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 23k x π⎛⎫+- ⎪⎝⎭的值总不大于零,求实数k 的取值范围.答案:k ≤【解析】先根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭,进而得πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,在求函数πtan 23y x ⎛⎫=-- ⎪⎝⎭最小值即可得答案.解:解:根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立.∵ππ,63x ⎡⎤∈⎢⎥⎣⎦,∴ π20,33x π⎡⎤-∈⎢⎥⎣⎦,∴π0tan 23x ⎛⎫≤-≤ ⎪⎝⎭πtan 203x ⎛⎫--≤ ⎪⎝⎭,∴min πtan 23x k ⎡⎤⎛⎫--≥ ⎪⎢⎥⎝⎭⎣⎦,∴k ≤点评:方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可); ② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.。
2021-2022学年高一上学期期中考试数学试卷一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 23.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .35.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M6.已知a =312,b =log 2√3,c =log 92,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a7.函数y =4xx 2+1的图象大致为( ) A .B .C.D.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅10.函数f(x)是定义在R上的奇函数,下列命题中正确的有()A.f(0)=0B.若f(x)在[0,+∞)上有最小值﹣1,则f(x)在(﹣∞,0]上有最大值1C.若f(x)在[1,+∞)上为增函数,则f(x)在(﹣∞,﹣1]上为减函数D.若x>0时,f(x)=x2﹣2x,则当x<0时,f(x)=﹣x2﹣2x11.如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为2B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积不超过80m2D.若浮萍蔓延到2m2,4m2,8m2所经过的时间分别是t1,t2,t3,则2t2=t1+t3 12.若集合A={x∈R|ax2﹣3x+2=0}中只有一个元素,则a的取值可以是()A.92B.98C.0D.1三.填空题(共4小题,满分20分,每小题5分)13.若函数f(x)的定义域为[﹣2,2],则函数f(3﹣2x)的定义域为.14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表:销售单价/元6789101112日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为元/桶时能获得最大利润.15.不等式0.1x﹣ln(x﹣1)>0.01的解集为.16.对于函数f(x),若在定义域存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x﹣m•2x﹣3是定义在R上的“局部奇函数”,则实数m的取值范围为.四.解答题(共6小题,满分70分)17.(10分)(1)已知a ≤2,化简:√(a −2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%.某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x(单位:吨)最少为70吨,最多为100吨.日加工处理总成本y(单位:元)与日加工处理量x之间的函数关系可近似地表示为y=12x2+40x+3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种.①每日进行定额财政补贴,金额为2300元;②根据日加工处理量进行财政补贴,金额为30x.如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么?21.(12分)定义在R上的奇函数f(x)是单调函数,满足f(3)=6,且f(x+y)=f(x)+f(y)(x,y∈R).(1)求f(0),f(1);(2)若对于任意x∈[12,3]都有f(kx2)+f(2x﹣1)<0成立,求实数k的取值范围.22.(12分)已知函数f(x)=2x−12x,g(x)=(4﹣lnx)•lnx+b(b∈R).(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;2021-2022学年高一上学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2B .∃x ∈N ,x 3>x 2C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 2解:命题p :∀x ∈N ,x 3>x 2的否定形式是特称命题; ∴¬p :“∃x ∈N ,x 3≤x 2”. 故选:D .3.已知p :|m +1|<1,q :幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:p :|m +1|<1等价于﹣2<m <0,∵幂函数y =(m 2﹣m ﹣1)x m 在(0,+∞)上单调递减, ∴m 2﹣m ﹣1=1,且m <0, 解得m =﹣1,∴p 是q 的必要不充分条件, 故选:B .4.已知幂函数f (x )=x 2m﹣1的图象经过点(2,8),则实数m 的值是( )A .﹣1B .12C .2D .3解:∵幂函数f (x )=x 2m ﹣1的图象经过点(2,8),∴22m ﹣1=8,∴m =2, 故选:C .5.设集合M ={x |x =4n +1,n ∈Z },N ={x |x =2n +1,n ∈Z },则( ) A .M ⫋NB .N ⫋MC .M ∈ND .N ∈M解:①当n =2m ,m ∈Z 时,x =4m +1,m ∈Z , ②当n =2m +1,m ∈Z 时,x =4m +3,m ∈Z , 综合①②得:集合N ={x |x =4m +1或x =4m +3,m ∈Z }, 又集合M ={x |x =4n +1,n ∈Z }, 即M ⫋N , 故选:A . 6.已知a =312,b=log 2√3,c =log 92,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a解;∵a =312∈(1,2),b=log 2√3>log 2√2=12,∵log 2√3<log 22=1, ∴12<b <1,c =log 92<log 93=12, 则a >b >c , 故选:A . 7.函数y =4xx 2+1的图象大致为( ) A .B.C.D.解:函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(﹣x)=−4xx2+1=−f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B,故选:A.8.给出下列不等式:①a2+3>2a;②a2+b2>2(a﹣b﹣1);③x2+y2>2xy.其中恒成立的个数是()A.0B.1C.2D.3解:①a2+3﹣2a=(a﹣1)2+2>0恒成立,所以a2+3>2a,故①正确;②a2+b2﹣2a+2b+2=(a﹣1)2+(b﹣1)2≥0,所以a2+b2≥2(a﹣b﹣1),故②正确;③x2+y2≥2xy,当且仅当x=y时等号成立,故③不正确.故恒成立的个数是2.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.已知关于x的不等式ax2+bx+3>0,关于此不等式的解集有下列结论,其中正确的是()A.不等式ax2+bx+3>0的解集可以是{x|x>3}B.不等式ax2+bx+3>0的解集可以是RC.不等式ax2+bx+3>0的解集可以是{x|﹣1<x<3}D.不等式ax2+bx+3>0的解集可以是∅解:在A 项中,依题意可得a =0,且3b +3=0,解得b =﹣1,此时不等式为﹣x +3>0,解得x <3,故A 项错误;在B 项中,取a =1,b =2,可得x 2+2x +3=(x +1)2+2>0,解集为R ,故B 项正确; 在C 项中,依题意可得a <0,且{−1+3=−ba −1×3=3a ,解得{a =−1b =2,符合题意,故C 项正确.在D 选中,当x =0时,ax 2+bx +3=3>0,可得其解集不为∅,故D 选错误; 故选:BC .10.函数f (x )是定义在R 上的奇函数,下列命题中正确的有( ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值﹣1,则f (x )在(﹣∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为减函数D .若x >0时,f (x )=x 2﹣2x ,则当x <0时,f (x )=﹣x 2﹣2x 解:根据题意,依次分析选项:对于A ,函数f (x )是定义在R 上的奇函数,则f (﹣x )=﹣f (x ),当x =0时,有f (0)=﹣f (0),变形可得f (0)=0,A 正确,对于B ,若f (x )在[0,+∞)上有最小值﹣1,即x ≥0时,f (x )≥﹣1,则有﹣x ≤0,f (﹣x )=﹣f (x )≤1,即f (x )在(﹣∞,0]上有最大值1,B 正确,对于C ,奇函数在对应的区间上单调性相同,则若f (x )在[1,+∞)上为增函数,则f (x )在(﹣∞,﹣1]上为增函数,C 错误,对于D ,设x <0,则﹣x >0,则f (﹣x )=(﹣x )2﹣2(﹣x )=x 2+2x ,则f (x )=﹣f (﹣x )=﹣(x 2+2x )=﹣x 2﹣2x ,D 正确, 故选:ABD .11.如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过80m 2D .若浮萍蔓延到2m 2,4m 2,8m 2所经过的时间分别是t 1,t 2,t 3,则2t 2=t 1+t 3 解:图象可知,函数过点(1,3), ∴a =3,∴函数解析式为y =3t , ∴浮萍每月的增长率为:3t+1−3t3t=2×3t 3t=2,故选项A 正确,∵函数y =3t 是指数函数,是曲线型函数,∴浮萍每月增加的面积不相等,故选项B 错误, 当t =4时,y =34=81>80,故选项C 错误,对于D 选项,∵3t 1=2,3t 2=4,3t 3=8,∴t 1=log 32,t 2=log 34,t 3=log 38, 又∵2log 34=log 316=log 32+log 38,∴2t 2=t 1+t 3,故选项D 正确, 故选:AD .12.若集合A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,则a 的取值可以是( ) A .92B .98C .0D .1解:∵A ={x ∈R |ax 2﹣3x +2=0}中只有一个元素,∴若a =0,方程等价为﹣3x +2=0,解得x =23,满足条件. 若a ≠0,则方程满足△=0,即9﹣8a =0,解得a =98.故选:BC .三.填空题(共4小题,满分20分,每小题5分)13.若函数f (x )的定义域为[﹣2,2],则函数f (3﹣2x )的定义域为 [12,52] . 解:∵函数f (x )的定义域为[﹣2,2], ∴由﹣2≤3﹣2x ≤2,解得12≤x ≤52.∴函数f (3﹣2x )的定义域为[12,52].故答案为:[12,52].14.某数学小组进行社会实践调查,了解到某桶装水经营部在为如何定价发愁,进一步调研,了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表: 销售单价/元 6 7 8 9 10 11 12 日均销售量/桶480440400360320280240根据以上信息,你认为该经营部把桶装水定价为 11.5 元/桶时能获得最大利润. 解:由表可知,销售单价每增加1元,日均销售就减少40桶. 设每桶水的价格为(6+x )元,公司日利润为y 元,则y =(6+x ﹣5)(480﹣40x )﹣200=﹣40x 2+440x +280=﹣40(x −112)2+1490, 所以当x =5.5时,y 取得最大值,所以每桶水定价为11.5元时,公司日利润最大. 故答案为:11.5.15.不等式0.1x ﹣ln (x ﹣1)>0.01的解集为 (1,2) . 解:设函数f (x )=0.1x ﹣ln (x ﹣1), ∵y =0.1x 和y =﹣ln (x ﹣1)均为减函数, ∴函数f (x )为减函数,∵f (2)=0.01,且函数的定义域为(1,+∞), ∴原不等式等价于f (x )>f (2), ∴1<x <2,∴不等式的解集为(1,2). 故答案为:(1,2).16.对于函数f (x ),若在定义域存在实数x ,满足f (﹣x )=﹣f (x ),则称f (x )为“局部奇函数”.若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则实数m 的取值范围为 [﹣2,+∞) .解:根据题意,由“局部奇函数”的定义可知:若函数f (x )=4x ﹣m •2x ﹣3是定义在R 上的“局部奇函数”,则方程f (﹣x )=﹣f (x )有解; 即4﹣x ﹣m •2﹣x ﹣3=﹣(4x ﹣m •2x ﹣3)有解;变形可得4x +4﹣x ﹣m (2x +2﹣x )﹣6=0,即(2x +2﹣x )2﹣m (2x +2﹣x )﹣8=0有解即可;设2x +2﹣x =t (t ≥2),则方程等价为t 2﹣mt ﹣8=0在t ≥2时有解;设g (t )=t 2﹣mt ﹣8=0,必有g (2)=4﹣2m ﹣8=﹣2m ﹣4≤0, 解可得:m ≥﹣2,即m 的取值范围为[﹣2,+∞); 故答案为:[﹣2,+∞).四.解答题(共6小题,满分70分) 17.(10分)(1)已知a ≤2,化简:√(a−2)2+√(a +3)33+(14)−12;(2)求值:3−log 32+log 610⋅(lg2+lg3)+log 927. 解:(1)∵a ≤2, ∴√(a −2)2+√(a +3)33+(14)−12, =2﹣a +a +3+2=7;(2)3−log 32+log 610⋅(lg2+lg3)+log 927, =12+log 610⋅lg6+32, =12+1+32=3.18.(12分)已知全集U =R ,集合A ={x |1≤x <5},B ={x |2<x <8},C ={x |a <x ≤a +3}. (1)求A ∪B ,(∁U A )∩B ;(2)若“x ∈C ”为“x ∈A ”的充分不必要条件,求a 的取值范围.解:(1)∵集合A ={x |1≤x <5},B ={x |2<x <8}∴A ∪B ={x |1≤x <8},(∁U A )={x |x <1或x ≥5},(∁U A )∩B ={x |5≤x <8}(2)∵“x ∈C ”为“x ∈A ”的充分不必要条件,C ={x |a <x ≤a +3}∴C ⫋A ,∴{a +3<5a ≥1,解得1≤a <2,故a的取值范围是[1,2).19.(12分)已知函数f(x)=x2−2x+ax.(1)当a=4时,求函数f(x)在x∈(0,+∞)上的最小值;(2)若对任意的x∈(0,+∞),f(x)>0恒成立.试求实数a的取值范围;(3)若a>0时,求函数f(x)在[2,+∞)上的最小值.解:(1)当a=4时,f(x)=x−2x+4x=x+4x−2,当x∈(0,+∞)时,f(x)=x+4x−2≥2√x×4x−2=2,当且仅当x=4x即x=2时等号成立,所以f(x)的最小值为2.(2)根据题意可得x2﹣2x+a>0在x∈(0,+∞)上恒成立,等价于a>﹣x2+2x在x∈(0,+∞)上恒成立,因为g(x)=﹣x2+2x在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=1,所以a>1.(3)f(x)=x+ax−2,设0<x1<x2<√a,f(x1)﹣f(x2)=x1﹣x2+ax1−a x2=(x1﹣x2)(1−ax1x2)=(x1−x2)(x1x2−a)x1x2,∵0<x1<x2<√a,∴x1x2<a,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),∴f(x)在(0,√a)单调递减,同理可证f(x)在(√a,+∞)单调递增,当0<a≤4时,0<√a≤2,函数f(x)在[2,+∞)上单调递增,f(x)min=f(2)=a 2,当a>4时,√a>2,函数f(x)在[2,√a)上单调递减,在(√a,+∞)上单调递增,f(x)min=f(√a)=2√a−2.所以f(x)min={a2(0<a<4)2√a−2(a>4).20.(12分)国家发展改革委、住房城乡建设部于2017年发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类,垃圾回收、利用率要达35%以上.截至2019年底,这46个重点城市生活垃圾分类的居民小区覆盖率已经接近70%. 某企业积极响应国家垃圾分类号召,在科研部门的支持下进行技术创新,新上一种把厨余垃圾加工处理为可重新利用的化工产品的项目.已知该企业日加工处理量x (单位:吨)最少为70吨,最多为100吨.日加工处理总成本y (单位:元)与日加工处理量x 之间的函数关系可近似地表示为y =12x 2+40x +3200,且每加工处理1吨厨余垃圾得到的化工产品的售价为100元.(Ⅰ)该企业日加工处理量为多少吨时,日加工处理每吨厨余垃圾的平均成本最低?此时该企业处理1吨厨余垃圾处于亏损还是盈利状态?(Ⅱ)为了该企业可持续发展,政府决定对该企业进行财政补贴,补贴方式共有两种. ①每日进行定额财政补贴,金额为2300元; ②根据日加工处理量进行财政补贴,金额为30x .如果你是企业的决策者,为了获得最大利润,你会选择哪种补贴方式进行补贴?为什么? 解:(Ⅰ)由题意可知,每吨厨余垃圾平均加工成本为yx=x 2+3200x+40,x ∈[70,100],而x2+3200x +40≥2√x 2⋅3200x+40=2×40+40=120,当且仅当x2=3200x,即x =80时,每吨厨余垃圾的平均加工成本最低.因为80<100,所以此时该企业处理1吨厨余垃圾处于亏损状态.(Ⅱ)若该企业采用补贴方式①,设该企业每日获利为y 1,y 1=100x −(12x 2+40x +3200)+2300=−12x 2+60x −900=−12(x −60)2+900, 因为x ∈[70,100],所以当x =70吨时,企业获得最大利润,为850元. 若该企业采用补贴方式②,设该企业每日获利为y 2,y 2=130x −(12x 2+40x +3200)=−12x 2+90x −3200=−12(x −90)2+850, 因为x ∈[70,100],所以当x =90吨时,企业获得最大利润,为850元.结论:选择方案一,当日加工处理量为70吨时,可以获得最大利润;选择方案二,当日加工处理量为90吨时,获得最大利润, 由于最大利润相同,所以选择两种方案均可.21.(12分)定义在R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y )(x ,y ∈R ). (1)求f (0),f (1);(2)若对于任意x ∈[12,3]都有f (kx 2)+f (2x ﹣1)<0成立,求实数k 的取值范围. 解:(1)因为R 上的奇函数f (x )是单调函数,满足f (3)=6,且f (x +y )=f (x )+f (y ).令x =y =0可得f (0)=2f (0), 所以f (0)=0,令x =1,y =1,可得f (2)=2f (1),令x =2,y =1可得f (3)=f (1)+f (2)=3f (1)=6, 所以f (1)=2;(2)∵f (x )是奇函数,且f (kx 2)+f (2x ﹣1)<0在x ∈[12,3]上恒成立, ∴f (kx 2)<f (1﹣2x )在x ∈[12,3]上恒成立,且f (0)=0<f (1)=2; ∴f (x )在R 上是增函数,∴kx 2<1﹣2x 在x ∈[12,3]上恒成立, ∴k <(1x )2−2(1x )在x ∈[12,3]上恒成立, 令g(x)=(1x )2−2(1x )=(1x −1)2−1. 由于12≤x ≤3,∴13≤1x≤2.∴g (x )min =g (1)=﹣1,∴k <﹣1,即实数k 的取值范围为(﹣∞,﹣1). 22.(12分)已知函数f (x )=2x −12x ,g (x )=(4﹣lnx )•lnx +b (b ∈R ). (1)若f (x )>0,求实数x 的取值范围;(2)若存在x 1,x 2∈[1,+∞),使得f (x 1)=g (x 2),求实数b 的取值范围;解:(1)f(x)>0⇔2x−12x>0,∴2x>2﹣x,∴x>﹣x,即x>0.∴实数x的取值范围为(0,+∞).(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B.∵f(x)=2x−12x在[1,+∞)上单调递增,∴A=[32,+∞).∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4(b∈R).∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,依题意可得A∩B≠∅,∴b+4≥32,即b≥−32.∴实数b的取值范围为[−32,+∞).。
四川省南充市顺庆区第二中学2021-2022学年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图所示,在平行四边形中,AE∶EB=1∶2,若=6cm2,则为( ).A.54 cm2B.24 cm2C.18 cm2D.12 cm2参考答案:C2. 求的流程图程序如右图所示,其中①应为 ( )A.B.C.D.参考答案:3. 设x2+x7=a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6+a7(x+1)7,则a6=()A.﹣5 B.﹣6 C.﹣7 D.﹣8参考答案:C略4. 直线x+3y+1=0的倾斜角是( )A.B.C.D.参考答案:D【考点】直线的倾斜角.【专题】计算题;直线与圆.【分析】求出直线的斜率,即可求出直线的倾斜角.【解答】解:直线x+3y+1=0的斜率是﹣,倾斜角是,故选:D.【点评】本题考查了直线的倾斜角与斜率的关系,属于基础题.5. 设f(x)为奇函数,且在(0,+∞)内是增函数,f(﹣2)=0,则f(x)<0的解集为()A.(﹣2,0)∪(2,+∞) B.(﹣2,0)∪(0,2)C.(﹣2,0)D.(﹣∞,﹣2)∪(0,2)参考答案:D【考点】3N:奇偶性与单调性的综合.【分析】根据题意,由函数的奇偶性分析可得函数在(﹣∞,0)上为增函数,且f(2)=0,分x>0与x<0两种情况讨论,分析f(x)<0的解集,综合即可得答案.【解答】解:根据题意,由于函数f(x)为奇函数,且在(0,+∞)内是增函数,则函数在(﹣∞,0)上为增函数,又由f(﹣2)=0,则f(2)=﹣f(﹣2)=0,当x∈(0,+∞),函数为增函数,且f(2)=0,f(x)<0的解集为(0,2),当x∈(﹣∞,0),函数为增函数,且f(﹣2)=0,f(x)<0的解集为(﹣∞,﹣2),综合可得:f(x)<0的解集为(﹣∞,﹣2)∪(0,2);故选:D.【点评】本题考查函数的奇偶性与单调性的综合应用,关键是充分利用函数的奇偶性.6. 在等差数列中,若,则的前项和()A. B. C. D.参考答案:B7. 图1是某次歌咏比赛中,七位评委为某参赛选手打出分数的茎叶图.去掉一个最高分,再去掉一个最低分,则所剩数据的平均数和方差分别为(A)84,4.84 (B)84,1.6(C)85,4 (D)85,1.6参考答案:D8. 观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.199参考答案:C【考点】F1:归纳推理.【分析】观察可得各式的值构成数列1,3,4,7,11,…,所求值为数列中的第十项.根据数列的递推规律求解.【解答】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.9. 数列{a n}满足a n=4a n﹣1+3且a1=0,则此数列第4项是()A.15 B.16 C.63 D.255参考答案:C 【考点】梅涅劳斯定理;数列递推式.【专题】计算题;等差数列与等比数列.【分析】根据a n=4a n﹣1+3,把a1=0代入求出a2,进而求出a3,a4,即可确定出第4项.【解答】解:把a1=0代入得:a2=4a1+3=3,把a2=3代入得:a3=4a2+3=12+3=15,把a3=15代入得:a4=4a3+3=60+3=63,则此数列第4项是63,故选:C.【点评】此题考查了梅涅劳斯定理,数列的递推式,熟练掌握运算法则是解本题的关键.10. 已知函数f(x)=ln x+ax2+(a+2)x+1(a∈Z)在(0,+∞)上恒不大于0,则a的最大值为()A.-2B. -1C. 0D. 1参考答案:A【分析】先求得函数导数,当时,利用特殊值判断不符合题意.当时,根据的导函数求得的最大值,令这个最大值恒不大于零,化简后通过构造函数法,利用导数研究所构造函数的单调性和零点,并由此求得的取值范围,进而求得的最大值.【详解】,当时,,则在上单调递增,,所以不满足恒成立;当时,在上单调递增,在上单调递减,所以,又恒成立,即. 设,则. 因为在上单调递增,且,,所以存在唯一的实数,使得,当时,;当时,,所以,解得,又,所以,故整数的最大值为.故选A.【点睛】本小题主要考查利用导数研究函数的单调性和最值,考查构造函数法,考查零点存在性定理,考查化归与转化的数学思想方法,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11. 在△ABC中,已知sinA:sinB:sinC=3:5:7,则此三角形的最小内角的余弦值等于.参考答案:【考点】余弦定理;正弦定理.【分析】由正弦定理可得a :b :c=3:5:7,进而可用b 表示a ,c ,可求A 为三角形的最小内角,代入余弦定理化简即可得解.【解答】解:∵sinA:sinB :sinC=3:5:7, ∴由正弦定理可得a :b :c=3:5:7, ∴a=,c=,A 为三角形的最小内角,∴由余弦定理可得cosA===.故答案为:.【点评】本题考查正余弦定理的应用,用b 表示a ,c 是解决问题的关键,属于基础题.12. 已知函数f (x )=,若a n =f (n )(n∈N *),则数列{a n }的前50项和等于.参考答案:【考点】数列的求和.【分析】n≤7时,a n =f (n )=2n ﹣10,可得a 6=f (6),a 7=f (7).x >7时,a 8=f (8)=,a 9=f(9)=,n≥10时,a n =f (n )==f (n ﹣4).即可得出.【解答】解:n≤7时,a n =f (n )=2n ﹣10, ∴a 6=f (6)=2×6﹣10=2,a 7=f (7)=2×7﹣10=4.n >7时,a 8=f (8)==,a 9=f (9)==,a 10=f (10)==f (6)=2,a 11=f (11)==f (7)=4,a 12=f (12)==f (8)=,…,n≥10时,a n =f (n )==f (n ﹣4).∴数列{a n }的前50项和为:+11×=.故答案为:.13. 已知且,则实数的值等于_________参考答案:略14. 平面内一条直线把平面分成2部分,2条相交直线把平面分成4部分;3条相交直线最多把平面分成7部分;试猜想:n 条相交直线最多把平面分成______________部分.参考答案:略15. 图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数是( ) A.25 B.66 C.91 D.120参考答案: C 略16. 在正方体ABCD —A 1B 1C 1D 1各个表面的对角线中,与直线异面的有__________条;参考答案:6略17. 在极坐标系中,曲线与的交点的极坐标为_____.参考答案:三、解答题:本大题共5小题,共72分。
本试卷分第I 卷(选择题)和第II 卷(非选择题).第I 卷1至2页,第II 卷3至4页,共4 页,满分150分,考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试卷、草稿 纸上答题无效,考试结束后,只将答题卡交回.注意事项:必须使用23铅笔在答题卡上将所选答案对应的标题涂黑.第I 卷共12小题.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合A = {-1,0,1}, 3 = {0,1,2},则( )A. {—1,1,2}B. {0,1}C. -1,0,1,2D.{-1,0,2}【答案】C 【解析】 【分析】根据集合并集运算规则即可得解.【详解】由题:集合A = {-1,0,1}, 3 = {0,1,2}, 则 4U3= -1,0,1,2 . 故选:C【点睛】此题考査集合的并集运算,根据给立集合直接写岀并集,属于简单题.2. log, 6-log, 3=( ) A. -2B. -1C. 0D. 1【答案】D 【解析】 【分析】根据同底对数减法法则求解.【详解】根据同底对数减法法则:Iog26 — log2 3 = log2 2 = l. 故选:D【点睛】此题考査对数的基本运算,同底对数相减,根据公式直接求解.四川省南充市2021-2022高一数学上学期期末考试试(含解析)3.tan 225° =()A. 1 B・-1 C・y/2D・一JJ 【答案】A【解析】【分析】处理tan 225° = tan (180°+45°) = tan 45° 即可得解.【详解】由题:tan225° = tan(180°+45°) = tan45° = 1.故选:A【点睛】此题考査求已知角的正切值,根据正切函数的周期直接写出正切值,或根据诱导公式求解,属于简单题.4•若函数/(x) = VTT3 + —,则/(-1)=( )x + 2A. ^2-1B. ^2 + 1C. y/3-1D. VJ+1 【答案】B【解析】【分析】根据函数解析式直接代入得解.【详解】由题:函数+.X I 2— 1 + 2故选:B【点睛】此题考查根据函数解析式求函数值,代入解析式il•算即可.5•若角&的终边经过点P(6,8),则sina=( )A.D.【答案】A【解析】【分析】根据角的终边上的点的坐标表示三角函数的公式即可得解.【详解】由题:角&的终边经过点P(68),. 8 8 4mil sin a = •才 =—=—io 5-故选:A【点睛】此题考査根据角的终边上的点的坐标求正弦值,关键在于熟练掌握相关公式,直接计算.【答案】C【解析】【分析】根据函数最小正周期的求法,12 3T =八=2龙则/(x)的最小正周期一丄一2故选:C【点睛】此题考查正切型函数最小正周期的求法,此题易错点在于混淆正弦型与正切型函数最小正周期的公式,导致岀错.7.已知/(X)是偶函数,且在区间(—8,0]上单调递减,则满足/(3x + 1) v / j的实数x的取值范围是()【答案】B 【解析】 【分析】根据题意可得/(X)在(0,+s)上单调递增,从而可得一]V 3x + 1 V ],解不等式即可.2 2【详解】解析:由/(A )是偶函数且在(-。