材料力学第4章扭转
- 格式:ppt
- 大小:2.25 MB
- 文档页数:10
一、 传动轴如图19-5(a )所示。
主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。
试画出轴的扭矩图。
解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式:117030075.3695509550=⨯==n N M A A (N ·m )3513001195509550=⨯===n N M M B C B (N ·m )4683007.1495509550=⨯==n N M D D (N ·m )(2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。
现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。
BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。
根据平衡条件0=∑x m 得:01=+B n M M3511-=-=B n M M (N ·m )结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。
BC 段内各截面上的扭矩不变,均为351N ·m 。
所以这一段内扭矩图为一水平线。
同理,在CA 段内:M n Ⅱ+0=+B C M MⅡn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ468==D n M M Ⅲ(N ·m )根据所得数据,即可画出扭矩图[图19-5(e )]。
由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径D =90mm ,壁厚t =2.5mm ,工作时的最大扭矩M n =1.5kN·m ,材料的许用剪应力][τ=60MPa 。
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
材料力学扭转材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而扭转则是材料力学中非常重要的一种变形形式。
在工程实践中,我们经常会遇到各种扭转现象,比如轴承、螺纹、螺栓等零部件的扭转变形。
因此,了解材料力学中的扭转现象对于工程设计和实际应用具有重要意义。
首先,我们来看一下什么是扭转。
扭转是指材料在外力作用下沿着一定轴线发生的旋转变形。
在扭转过程中,材料内部会受到剪切应力的作用,从而导致材料发生扭转变形。
扭转变形不仅会影响材料的外观和尺寸,还会对材料的力学性能产生影响。
在材料力学中,我们通常用剪切模量来描述材料的扭转性能。
剪切模量是指材料在扭转过程中所表现出的抗扭转能力。
剪切模量越大,材料的抗扭转能力就越强,反之则越弱。
因此,在工程设计中,我们需要根据材料的剪切模量来选择合适的材料,以满足工程的扭转性能要求。
除了剪切模量,材料的断裂韧性也是影响材料扭转性能的重要因素。
断裂韧性是指材料在扭转过程中抵抗断裂的能力。
材料的断裂韧性越大,其扭转性能就越好,能够更好地抵抗扭转变形和破坏。
因此,在工程设计中,我们还需要考虑材料的断裂韧性,以确保材料在扭转过程中不会发生过早的断裂。
此外,材料的微观结构也会对其扭转性能产生影响。
晶粒的大小、形状以及晶界的性质都会影响材料的扭转性能。
一般来说,晶粒越细小,晶界越强化,材料的扭转性能就会越好。
因此,在材料的制备过程中,我们需要通过控制材料的微观结构来提高其扭转性能。
总的来说,材料力学中的扭转现象是工程设计中不可忽视的重要问题。
了解材料的扭转性能,选择合适的材料,并通过控制材料的微观结构来提高其扭转性能,对于保证工程零部件的稳定性和可靠性具有重要意义。
希望本文能够对大家对材料力学中的扭转问题有所帮助。