煤的相关知识
- 格式:doc
- 大小:88.50 KB
- 文档页数:8
关于煤的基本知识一、矿物原料特点(一) 煤的物理性质煤的物理性质是煤的一定化学组成和分子结构的外部表现。
它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。
包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。
其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。
煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。
1.颜色是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。
呈褐色—黑色,一般随煤化程度的提高而逐渐加深。
2.光泽是指煤的表面在普通光下的反光能力。
一般呈沥青、玻璃和金刚光泽。
煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。
3.粉色指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。
呈浅棕色—黑色。
一般是煤化程度越高,粉色越深。
4.比重和容重煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。
煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。
煤的容重是计算煤层储量的重要指标。
褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。
煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。
在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。
5.硬度是指煤抵抗外来机械作用的能力。
根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。
煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5;无烟煤的硬度最大,接近4。
6.脆度是煤受外力作用而破碎的程度。
成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。
在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。
煤炭基础必学知识点
1. 煤炭的定义:煤炭是一种由植物残骸经过地质作用形成的有机岩石。
2. 煤炭的类型:煤炭根据其炭质和含水量的不同可分为无烟煤、炼焦煤、褐煤和泥炭等。
3. 煤炭的组成:煤炭主要由碳、氢、氧和少量的氮、硫等元素组成。
其中碳是主要成分,占煤炭质量的一大部分。
4. 煤炭的形成过程:煤炭是在地质历史上由原始植物积聚而形成的。
这些植物在长时间的压力和温度作用下逐渐转化为煤炭。
5. 煤炭的燃烧特性:煤炭燃烧时产生热量和废气。
煤炭的燃烧分为三
个阶段:放热阶段、水汽生成阶段和煤灰形成阶段。
6. 煤炭的用途:煤炭是一种重要的能源资源,广泛用于发电、供热、
冶金、化工等行业。
同时,煤炭也用于制造煤气、焦炭和煤焦油等副
产品。
7. 煤炭储量和产量:全球煤炭储量丰富,主要储量分布在中国、美国、澳大利亚、俄罗斯等国家。
中国是全球最大的煤炭生产国和消费国。
8. 煤炭的环境影响:煤炭的燃烧会产生大量的二氧化碳和氮氧化物等
有害气体,对空气质量和气候变化有一定影响。
此外,煤炭开采和燃
烧也会对环境造成破坏。
9. 煤炭的清洁利用技术:为了减少煤炭燃烧产生的污染物排放,煤炭
的清洁利用技术得到了广泛研发和推广,包括煤炭洗选、煤气化、燃
烧增效等技术。
10. 煤炭的经济影响:煤炭是许多国家的重要经济支柱,煤炭产业的
发展与国民经济密切相关。
煤炭价格的波动也会对全球市场产生一定
影响。
1、什么是煤炭煤炭是古代植物埋藏在地下经历了复杂的生物化学和物理化学变化逐渐形成的固体可燃性矿物。
一种固体可燃有机岩,主要由植物遗体经生物化学作用,埋藏后再经地质作用转变而成。
俗称煤炭。
煤炭被人们誉为黑色的金子,工业的粮食,它是十八世纪以来人类世纪使用的主要能源之一。
2、煤炭的用途煤炭的用途十分广泛,可以根据其使用来总结为两大主要用途:(1)动力煤,(2)炼焦煤。
动力煤:1、发电用煤:我国约1/3以上的煤用来发电,日前平均发电耗煤为标准煤370g/(kW·h)左右。
电厂利用煤的热值,把热能转变为点能。
2、蒸汽机车用煤:占动力用煤的2%左右,蒸汽机车锅炉平均耗煤指标为100kg/(万吨·km)左右。
3、建材用煤:约占动力用煤的10%以上,以水泥用煤最大,其次为玻璃、砖、瓦等。
4、一般工业锅炉用煤:除热电厂及大型供热锅炉外,一般企业及取暖用的工业锅炉型号繁多,数量大且分散,用煤量约占动力煤的30%。
5、生活用煤:生活用煤的数量也较大,约占燃料用煤的20%。
6、治金用动力煤:治金用动力煤主要烧结和高炉喷吹用无烟煤,其用量不到动力用煤的1%。
炼焦煤:我国虽然煤炭资源比较丰富,但炼焦煤资源还相对较少,炼焦煤储量仅占我国煤炭总储量27.65%。
炼焦煤类包括气煤(占13.75%),肥美(占3.53%),主焦煤(占5.81%),瘦煤(占4.01%),其它为未分牌号的煤(占0.55%);非炼焦煤类包括无烟煤(占10.93%),贫煤(占5.55%),弱碱煤(占1.74%),不缴煤(占13.8%),长焰煤(占12.52%),褐煤(占12.76%),天然焦(占0.19%),未分牌号的煤(占13.80%)和牌号不清的煤(占1.06%)。
焦炭烟煤在隔绝空气的条件下,加热到950——1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。
由高温炼焦得到的焦炭用于高炉治练、锻造和气化。
煤炭知识概述展开全文煤炭概述1.1认识煤炭1.1.1.煤的生成煤炭是古代的有机物(主要是植物)的遗体长期埋藏在地下,处于空气不足条件下,经历复杂的生物化学作用和地质作用,逐步形成的由碳、氢、氧、氮等元素组成的黑色固体可燃矿物。
煤炭的生成大体可分为两个阶段,第一阶段是泥煤炭化阶段,即由植物转变成泥炭阶段。
当植物枯死之后,堆积在充满水的沼泽中,开始是水存在的氧气不足,后来在水面下隔绝空气,并细菌的作用下,知道植物的各部分不断分解,相互作用,最后植物的遗体变成了褐色或黑褐色的淤泥物质,这就是泥炭。
这个过程叫做泥炭化过程。
这个阶段需要漫长的地质历史时期,需要进行千百万年。
第二阶段,由泥炭转变成褐煤,褐煤转变成烟煤,烟煤再转变成无烟煤阶段。
当泥炭层形成后。
有水经常冲刷大陆的低洼地方,带来了大量的上砂、石,在泥潭层逐渐形成岩层(称为顶板)。
被埋在顶板下的泥炭层在顶板下的泥潭层在顶板岩石层的压力作用下,发生了压紧、失水、胶体老化、硬结等一系列变化,同时它的化学组成也发生了缓慢的变化,逐步变成比重较大,较致密的黑褐色的褐煤。
当顶板逐渐加厚,顶板的静压力逐渐增高,煤层中温度也逐渐升高后,煤质便发生变化,逐渐由成岩作用变成了以温度影响为主的变质作用。
这样褐煤逐渐变成了烟煤、无烟煤。
如果有更高的温度,最终可能变成石墨。
成煤必须具备四个先决条件:(1)植物条件(2)气候条件(3)地理条件(4)地壳运动条件。
1.1.2.煤的化学组成煤中有机质是复杂的高分子有机化合物,主要由碳、氢、氧、氮、硫和磷等元素组成,而碳、氢、氧三者总和约占有机质的95%以上;煤中的无机质也含有少量的碳、氢、氧、硫等元素。
碳是煤中最重要的组分,其含量随煤化程度的加深而增高。
泥炭中碳含量为50%~60%,褐煤为60%~70%,烟煤为74%~92%,无烟煤为90%~98%。
煤中硫是最有害的化学成分。
煤燃烧时,其中硫生成SO2,腐蚀金属设备、污染环境。
煤中硫的含量可分为5级:高硫煤,大于4%;富硫煤,为2.5%~4%;中硫煤,为1.5%~2.5%;低硫煤,为1.0%~1.5%;特低硫煤,小于或等于1%。
选煤基础必学知识点
1. 煤的形成与组成:煤是由植物残体在地下长期作用下形成的一种含碳、含氢、含氧、含少量氮、硫的有机燃料。
煤的主要组成元素是碳、氢、氧和硫。
2. 煤的分类:根据煤的成熟程度和煤中挥发分的含量,煤可分为无烟煤、烟煤、褐煤和泥炭等不同类型。
3. 煤的物理性质:包括密度、容重、孔隙度、抗压强度、抗拉强度、
抗冻性等。
4. 煤的化学性质:煤可以在高温下发生各种化学反应,例如燃烧、气化、液化和干馏等。
煤中的化学性质主要包括碳含量、挥发分含量、
固定碳含量、灰分含量等。
5. 煤的燃烧特性:煤在燃烧过程中释放出热能,并产生一系列燃烧产物,如烟气、灰渣和烟尘等。
煤的燃烧性质包括燃点、可燃性和热值等。
6. 煤的加工和利用技术:包括煤的洗选、煤的破碎、煤的干馏、煤的
气化、煤的液化等技术,以及煤的燃烧和发电技术。
7. 煤的矿产资源与开发利用:煤是世界上最重要的化石能源之一,对
于国民经济的发展和能源安全具有重要意义。
煤的开采、加工和利用
对于实现煤炭资源的有效利用和环境保护非常重要。
8. 煤矿安全:煤矿是煤的开采和生产基地,煤矿安全对于保障矿工生
命财产安全、保持煤炭生产稳定具有重要意义。
煤矿安全知识包括煤矿通风、防灭火、安全设备、事故预防和应急措施等。
一、煤炭产品基础知识(一)、煤炭的生成煤炭是古代的有机物(主要是植物)的遗体,经过生物及化学的变质作用而形成的。
大体可分为两个阶段:第一阶段是泥煤炭化阶段,即由植物转变成泥炭阶段。
第二阶段,由泥炭转变成褐煤,褐煤转变成烟煤,烟煤再转变成无烟煤阶段。
这样褐煤逐渐变成了烟煤、无烟煤。
如果有更高的温度,最终可能变成石墨。
成煤必须具备四个先决条件:(1)植物条件。
(2)气候条件。
(3)地理条件。
(4)地壳运动条件。
(二)、煤炭资源的分布❖世界煤炭资源目前,世界煤炭储量估计为1.083 万亿吨,按目前的煤炭消费水平计算,足以可供开采200 多年。
世界各地的煤炭资源分布并不平衡,煤炭主要集中在北半球,世界煤炭资源的70%分布在北半球北纬30°~70°之间。
其中,以亚洲和北美洲最为丰富,分别占全球地质储量的58%和30%,欧洲仅占8%;南极洲数量很少。
世界煤炭可采储量的60%集中在美国(25%)、前苏联(23%)和中国(12%),此外,澳大利亚、印度、德国和南非4 个国家共占29%。
2001 年,上述7 国的煤炭产量占世界总产量的80%。
澳大利亚、美国和加拿大可供炼焦的优质烟煤储量丰富,2002 年3 国的炼焦煤总产量占世界贸易总量的81%。
❖中国煤炭资源1.煤炭资源丰富,但人均占有量低。
2.煤炭资源的地理分布极不平衡。
中国煤炭资源北多南少,西多东少,煤炭资源的分布与消费区分布极不协调。
从各大行政区内部看,煤炭资源分布也不平衡,如华东地区的煤炭资源储量的87%集中在安徽、山东,而工业主要在以上海为中心的长江三角洲地区;中南地区煤炭资源的72%集中在河南,而工业主要在武汉和珠江三角洲地区;西南煤炭资源的67%集中在贵州,而工业主要在四川;东北地区相对好一些,但也有52%的煤炭资源集中在北部黑龙江,而工业集中在辽宁。
3.各地区煤炭品种和质量变化较大,分布也不理想。
中国炼焦煤在地区上分布不平衡,四种主要炼焦煤种中,瘦煤、焦煤、肥煤有一半左右集中在山西,而拥有大型钢铁企业的华东、中南、东北地区,炼焦煤很少。
如何辨别煤的好坏一、矿物原料特点(一) 煤的物理性质煤的物理性质是煤的一定化学组成和分子结构的外部表现。
它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。
包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。
其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。
煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。
1.颜色是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。
呈褐色—黑色,一般随煤化程度的提高而逐渐加深。
2.光泽是指煤的表面在普通光下的反光能力。
一般呈沥青、玻璃和金刚光泽。
煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。
3.粉色指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。
呈浅棕色—黑色。
一般是煤化程度越高,粉色越深。
4.比重和容重煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。
煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。
煤的容重是计算煤层储量的重要指标。
褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。
煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。
在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。
5.硬度是指煤抵抗外来机械作用的能力。
根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。
煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5;无烟煤的硬度最大,接近4。
6.脆度是煤受外力作用而破碎的程度。
成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。
在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。
煤炭灰熔点又称煤灰熔融性,煤灰熔点即煤灰熔融性是动力和气化用煤的重要指标。
煤灰是由各种矿物质组成的混合物,没有一个固定的熔点,只有一个熔化温度的范围。
煤的矿物质成分不同,煤的灰熔点比其某一单个成分灰熔点低。
常用符号:DT—变形温度,ST—软化温度,FT—流动温度,HT—半球温度。
1、关于煤炭灰熔点知识一、什么是煤炭灰熔点?煤炭的灰溶点:是煤燃烧后余下的灰份组成。
即灰在高温情况下开始软化变形的温度,是一个温度区间。
它与气氛有很大关系,气氛不同,温度相差很大。
尤其是灰中氧化铁含量高时。
煤炭灰熔点又称煤灰熔融性,煤灰熔点即煤灰熔融性是动力和气化用煤的重要指标。
煤灰是由各种矿物质组成的混合物,没有一个固定的熔点,只有一个熔化温度的范围。
煤的矿物质成分不同,煤的灰熔点比其某一单个成分灰熔点低。
这些组分在一定温度下还会形成一种共熔体,这种共熔体在熔化状态时,有熔解煤灰中其他高熔点物质的性能,从而改变了熔体的成及其熔化温度。
灰熔点的测定方法常用角锥法,见GB219-74。
将煤灰与糊精混合塑成三角锥体,放在高温炉中加热,根据灰锥形态变化确定四个特征温度:1、变形温度,符号DT,原称T1;2、软化温度,符号:ST,原称T2;3、半球温度,符号HT;4、流动温度,符号:FT,原称T3。
在灰熔融性的四个指标中,最常用的是软化温度,即ST(T2)。
一般用ST评定煤灰熔融性。
二、灰熔点高好还是低好?1050度是煤炭的灰熔点,各种不同的煤,灰份熔点是不一样的,没有一个统一的标准数值,即便是同一种煤其熔点也不是固定的,影响灰熔点的因素有:1、成分因素:灰分中各种不同成分的物质含量及比例变化时,灰的熔点就不同,如灰中含二氧化硅和氧化铝越多,灰的熔点就越高。
2、介质因素:与周边介质性质改变有关,如当灰份与一氧化碳、氢等还原性气体相遇时,其熔点会降低。
3、浓度因素:当煤中含灰量不同时,熔点也会发生变化一般灰越多越低,这是由于各物质之间有助熔作用。
燃烧多灰的煤,因为灰中各成份在加热过程中相互接触频繁,则产生化合、分解、助熔等作用的机会就增多,所以分浓度也是影响灰熔点的因素。
由于煤中矿物质不同,煤经高温灼烧后剩下的残留物即灰分的成份十分复杂,其含量变化范围很大,他们主要有硅、铝、铁、钙、镁、钾和钠等元素的氧化物和盐类。
这些成份决定了煤灰的熔融性和灰渣粘度特性。
所以煤质不同也决定了灰的熔点的。
煤灰的熔融性和煤灰的利用取决于煤灰的组成,煤灰成分十分复杂,主要有:SiO2,A12O 3,Fe2O3,CaO,MgO,SO3等。
我国煤灰成分的分析:灰分成分SiO2A12O3Fe2O3CaO MgO K2O+Na2O 含量(%)15~6015~401~351~201~51~5煤灰熔点高,不易结渣,发电厂锅炉的选择就要依据灰熔点来选择排渣方式。
煤炭的灰熔点与煤灰里的氧化铁,氧化铝和二氧化硅的含量有关,氧化铁的含量越高,煤灰熔点就越低,氧化铝和二氧化硅的含量越高,煤灰的熔点就越高。
在我国13个大型的煤炭生产基地(基本涵盖我国大部分的煤田)中,出产的煤灰熔点大于1250度的有:1、晋北煤炭基地的平朔矿区出产的煤,煤灰中的氧化铝含量较高,在40%-48%之间,因此煤灰熔点为1450度以上。
2、晋东基地的阳泉矿区出产的无烟煤,煤灰中的氧化铝和二氧化硅含量均很高,因此煤灰熔点在1500度以上。
3、蒙东基地的霍林河矿区的深部煤层的煤,此处的煤炭的煤灰熔点为1250度-1450度之间,霍林河矿区比较特别,浅部煤层的煤炭煤灰熔点较低,在1100度-1250度之间。
而该基地的另一矿区铁法,煤灰熔点为平均1340度。
双鸭山矿区的气煤,熔点为1350-1450度之间。
4、河南基地的郑州矿区,煤炭煤灰的熔点多在1450度以上。
5、鲁西基地的允州矿区,该矿区的西山组煤灰中的氧化铝含量较高,因此煤灰熔点ST一般在1300度以上,而且有不少大于1500度。
6、晋中基地的西山矿区,该矿区的煤炭的氧化铝含量非常高,在40%左右,因此煤灰的熔点一般大于1500度。
7、两淮基地的淮南矿区和淮北矿区,淮南矿区的煤灰熔点ST多在1500度以上,而淮北矿区的煤灰熔点平均在1450度以上。
8、冀中基地的开滦矿区,煤灰的熔点一般平均为1500度以上。
而另一矿区峰峰,煤灰熔点多为1400-1500度之间。
熔点是晶体将其物态由固态转变(熔化)为液态的过程中固液共存状态的温度。
进行相反动作(即由液态转为固态)的温度,称之为凝固点(也称冰点),晶体的凝固点和熔点相同。
一般的,非晶体并没有固定的熔点和凝固点。
与沸点不同的是,熔点受压力的影响很小。
大多数物质的熔点和凝固点都是相同的。
例如水下降至摄氏零度时会结冰,但是上升至摄氏零度时则会融化。
熔点固态晶体物转变成液体时的温度;固态晶体物熔解成为液体时的温度称为熔点.当固态受热熔化时。
分子会快速地振动,使部分分子克服将它们束缚在固定位置上的力量,而在周围运动,但彼此之间还不能完全地分开(即液态)。
纯元素或纯化合物在精确固定的温度熔化,混合物则在较大的温度范围内熔化。
举例来说,锌在419.58℃熔化,铜在1083.4℃熔化,而锌铜混合而成的黄铜,其熔点则在900℃~1000℃。
熔点(melting point)熔点是固体将其物态由固态转变(熔化)为液态的温度。
进行相反动作(即由液态转为固态)的温度,称之为凝固点。
与沸点不同的是,熔点受压力的影响很小。
晶体融化时的温度叫做熔点。
物质有晶体和非晶体,晶体有熔点,而非晶体则没有熔点。
晶体又因类型不同而熔点也不同.一般来说晶体熔点从高到低为,原子晶体>离子晶体>金属晶体>分子晶体。
在分子晶体中又有比较特殊的,如水,氨气等.它们的分子只间因为含有氢键而不符合"同主组元素的氢化物熔点规律性变化''的规律。
熔点是一种物质的一个物理性质。
物质的熔点并不是固定不变的,有两个因素对熔点影响很大。
一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况;如果压强变化,熔点也要发生变化。
熔点随压强的变化有两种不同的情况.对于大多数物质,熔化过程是体积变大的过程,当压强增大时,这些物质的熔点要升高;对于像水这样的物质,与大多数物质不同,冰熔化成水的过程体积要缩小(金属铋、锑等也是如此),当压强增大时冰的熔点要降低。
另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。
但在现实生活中,大部分的物质都是含有其它的物质的,比如在纯净的液态物质中熔有少量其他物质,或称为杂质,即使数量很少,物质的熔点也会有很大的变化,例如水中熔有盐,熔点就会明显下降,海水就是熔有盐的水,海水冬天结冰的温度比河水低,就是这个原因。
饱和食盐水的熔点可下降到约-220℃,北方的城市在冬天下大雪时,常常往公路的积雪上撒盐,只要这时的温度高于-22℃,足够的盐总可以使冰雪熔化,这也是一个利用熔点在日常生活中的应用。
熔点实质上是该物质固、液两相可以共存并处于平衡的温度,以冰熔化成水为例,在一个大气压下冰的熔点是0℃,而温度为0℃时,冰和水可以共存,如果与外界没有热交换,冰和水共存的状态可以长期保持稳定。
在各种晶体中粒子之间相互作用力不同,因而熔点各不相同。
同一种晶体,熔点与压强有关,一般取在1大气压下物质的熔点为正常熔点。
在一定压强下,晶体物质的熔点和凝固点都相同。
熔解时体积膨胀的物质,在压强增加时熔点就要升高。
在有机化学领域中,对于纯粹的有机化合物,一般都有固定熔点。
即在一定压力下,固-液两相之间的变化都是非常敏锐的,初熔至全熔的温度不超过0.5~1℃(熔点范围或称熔距、熔程)。
但如混有杂质则其熔点下降,且熔距也较长。
因此熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。
测定方法一般用毛细管法和微量熔点测定法。
在实际应用中我们都是利用专业的测熔点仪来对一种物质进行测定。
(右图就是一台显微图像熔点仪)钨(W)是熔点最高的金属,在2000℃-2500℃高温下,蒸汽压仍很低。
钨的硬度大,密度高,高温强度好。
下面是几种物质的熔点/摄氏度(在标准大气压下)碳 3550 钨 3410 铂 1769 铁 1535 钢 1515 灰铸铁 1177 铜 1083 金 1064 铝 660 铅 328 锡 232 萘 80.5 硫代硫酸钠 48 水(冰) 0 固态水银 -39 固态甲苯 -95固态酒精 -117 固态氮 -210 固态氧 -218 固态氢 -2592、关于干馏知识固体有机物在隔绝空气条件下加热分解的反应过程。
干馏的结果是生成各种气体、蒸气以及固体残渣。
气体与蒸气的混合物经冷却后被分成气体和液体。
干馏是人类很早就熟悉和采用的一种生产过程,如干馏木材制木炭,同时得到木精(甲醇)、木醋酸等。
在第一次世界大战前,工业上丙酮就是由木材干馏所得的木醋酸用石灰中和,再经干馏而制得的(见农林化工产品)。
最初制得环己酮的方法是干馏庚二酸钙。
在煤的化学加工中,干馏一直是重要的方法。
目前,干馏过程除用于煤化工外,还应用于油页岩、木材和农副产品等的加工过程。
过程机理干馏是一个复杂的化学反应过程,包括脱水、热解、脱氢、热缩合、加氢、焦化等反应。
不同物质的干馏过程虽各有差别,但一般均可分为三个阶段:①脱水分解。
干馏操作初期,温度相对较低,有机物首先脱水,随着温度升高,逐渐分解产生低分子挥发物。
②热解。
随着干馏温度的继续升高,有机物中的大分子发生键的断裂,即发生热解,得到液体有机物(包括焦油)。
这些干馏产物随干馏物质而异,如干馏糠壳可得糠醛,干馏油页岩可得页岩油和一些杂环化合物。
③缩合和碳化。
当温度进一步提高时,随着水和有机物蒸气的析出,剩余物质受热缩合成胶体。
同时,析出的挥发物逐渐减少,胶体逐渐固化和碳化。
随着温度升高、加热时间延长,所生成的固体产物中的碳含量逐渐增多,氢、氧、氮和硫等其他元素含量逐渐减少。
从木材干馏可得木炭,从煤可得焦炭。
过程条件不同物质的干馏所需的温度差别很大,可以从100℃以上(如木材干馏)到1000℃左右(如煤高温干馏)。
压力可以是常压,也可以是减压。
干馏所得气、液、固产物的相对数量随加热温度和时间变化而有差别,如低温干馏一般可获得较多的液体产物。
因此,变换和调节干馏过程的条件即可达到不同的生产目的。
干馏生产大多采用间歇操作,但干馏装置可因原料种类和目的不同而异,一般可分为外热式和自热式两类。
外热式是将原料放入金属或耐火材料制成的密闭干馏炉(窑)内,外部用燃料燃烧供热。
现代干馏装置多采用这种型式。
自热式则是在干馏的同时,向干馏炉内通入一定量的空气,使部分干馏原料燃烧放热,因此原料利用率较低,只在小规模生产中采用。
蒸馏distillation 利用液体混合物中各组分挥发度的差别,使液体混合物 部分汽化并随之使蒸气部分冷凝,从而实现其所含组分的分离。