1.4.1正弦函数-余弦函数图象的教学设计
- 格式:docx
- 大小:81.88 KB
- 文档页数:6
1.4.1《正弦函数余弦函数的图像》教案正弦函数和余弦函数是高中数学中非常重要的函数之一,也是数学和物理中常用到的函数。
本节课将介绍正弦函数和余弦函数的概念和性质,并通过图像展示的方式加深学生对这两个函数的理解和认识。
一、教学目标1. 了解正弦函数和余弦函数的定义和基本性质;2. 能够画出正弦函数和余弦函数的图像,并能够根据函数的特点判断函数的周期、最值等;3. 理解正弦函数和余弦函数在数学和物理中的应用。
二、教学重点1. 正弦函数和余弦函数的定义和基本性质;2. 正弦函数和余弦函数的图像及其特点。
四、教学过程1. 引入通过投影仪展示一张正弦函数和余弦函数的图像,让学生观察并回答以下问题:1) 你能从图像中看出这是什么函数吗?2) 你能看出函数的周期是多少吗?3) 你能说出函数在哪些点上达到最大值和最小值吗?2. 讲解引导学生根据图像的特点,了解正弦函数和余弦函数的定义和基本性质:1) 正弦函数是一个周期为2π的函数,记作y = sin(x);2) 正弦函数的图像是周期性的波形图,以原点为对称轴;3) 正弦函数在x轴上有一个最大值1和最小值-1,且对称于原点。
3. 练习让学生在纸上绘制正弦函数和余弦函数的图像,并标注出周期、最大值和最小值的位置。
4. 拓展通过举例子的方式,让学生了解正弦函数和余弦函数在数学和物理中的应用:1) 数学:正弦函数和余弦函数可以用来描述周期性变化的现象,比如声音、光线的强度等;2) 物理:正弦函数和余弦函数可以用来描述振动、波动、震荡等现象,比如物体的弹簧振子、天体运动等。
七、板书设计1. 正弦函数:y = sin(x)2. 余弦函数:y = cos(x)3. 正弦函数和余弦函数的图像及其特点八、教学反思这节课主要通过图像展示的方式介绍了正弦函数和余弦函数的概念和性质,让学生通过观察图像来理解和认识这两个函数的特点。
学生的参与度较高,对函数的定义和基本性质有了初步的了解。
1.4.1《正弦函数余弦函数的图像》教案篇一:正弦函数余弦函数的图像一、教学目标1. 知识与能力能够正确理解正弦函数和余弦函数的定义,并能够绘制它们的图像。
2. 过程与方法学会利用函数的性质和特点绘制函数的图像。
3. 情感态度价值观通过绘制正弦函数和余弦函数的图像,培养学生对数学的兴趣,提高他们的数学解决问题的能力。
二、教学重难点1. 教学重点正弦函数和余弦函数的定义,以及它们的图像特点。
2. 教学难点学生可能对正弦函数和余弦函数的周期性特点理解困难,需要适当的引导和解释。
三、教学过程1. 导入通过展示一张正弦函数和余弦函数的图像,并向学生提问:“这是什么图像?它们有什么特点?”引导学生思考,激发他们的兴趣。
3. 练习让学生通过例题练习,掌握正弦函数和余弦函数的图像特点。
指导学生如何根据函数的性质绘制出函数的图像。
4. 拓展让学生利用计算机绘制正弦函数和余弦函数的图像,并与手绘的图像进行比较,加深对函数图像的理解。
6. 反思让学生总结本节课的学习收获和问题,激发他们对数学学习的兴趣。
四、教学资源1. PPT课件2. 正弦函数和余弦函数的图像3. 计算机绘图软件五、教学评价1. 提问通过提问考察学生对正弦函数和余弦函数的理解程度。
2. 练习布置练习题,检验学生对函数图像的掌握情况。
3. 课堂表现评价学生在课堂上的表现,包括学习态度和参与程度。
六、教学反思1. 教学方法在本节课的教学过程中,需要充分引导学生自主学习,培养他们的解决问题的能力。
2. 教学内容应该注重对正弦函数和余弦函数图像特点的深入讲解,让学生掌握绘制函数图像的方法。
七、教学改进在后续的教学中,可以增加案例分析和实际应用的讲解,让学生更好地理解正弦函数和余弦函数的图像特点。
注重对学生自主学习和实践能力的培养。
1.4.1《正弦函数余弦函数的图像》教案
教学目标:
1. 理解正弦函数和余弦函数的定义;
2. 掌握正弦函数和余弦函数的图像特点;
3. 能够在不借助计算工具的情况下,大致画出正弦函数和余弦函数的图像。
教学准备:
1. 黑板、粉笔;
2. 教学PPT;
3. 活动板书。
教学过程:
Step 1: 引入新课
(1)通过问题引入新课:大家知道什么是正弦函数和余弦函数吗?它们有什么特点呢?
(2)通过学生回答引入新课。
Step 2: 讲解正弦函数和余弦函数的定义
(1)通过PPT展示正弦函数和余弦函数的定义公式。
(2)对正弦函数和余弦函数的定义公式进行解释和讲解。
Step 4: 画出正弦函数和余弦函数的图像
(1)通过活动板书,讲解如何画出正弦函数和余弦函数的图像。
(2)例题演示:画出函数 y = sin(x) 的图像。
(3)学生练习:画出函数 y = cos(x) 的图像。
Step 6: 课堂小结
(1)对本节课的主要内容进行小结。
(2)对学生提出的问题进行解答。
Step 7: 课后作业
(1)完成课后习题;
(2)预习下一课时内容。
教学反思:
本节课通过讲解正弦函数和余弦函数的定义,以及讲解它们的图像特点,帮助学生理解正弦函数和余弦函数的意义和作用。
通过画出正弦函数和余弦函数的图像,培养学生观察和绘图的能力。
在课堂上只是大致画出了图像,没有精确到每个点的计算,这可能会让一部分学生产生困惑。
在课后的作业中,可以布置一些计算题,让学生从计算的角度进一步理解函数的图像特点。
1.4.1《正弦函数余弦函数的图像》教案一、教学目标:1.了解正弦函数和余弦函数的定义和性质;2.掌握正弦函数和余弦函数的变化规律;3.学会画出正弦函数和余弦函数的图像。
三、教学准备:1.教材、教具:教科书、黑板、粉笔、投影仪等;2.学生准备:课本、笔、纸等。
四、教学过程:1.引入新知识(5分钟)通过问题引入新知识,“你们平时都见过些什么周期性的现象呢?”让学生思考并回答。
然后引导学生回忆圆的周长和半径的关系,引出正弦函数和余弦函数的定义。
最后介绍正弦函数和余弦函数的性质。
2.探究正弦函数和余弦函数的图像(15分钟)通过投影仪展示正弦函数和余弦函数的图像,让学生观察并思考:(1)正弦函数和余弦函数的周期是多少?为什么?(2)正弦函数和余弦函数的图像曲线有什么特点?(3)正弦函数和余弦函数的图像有哪些基本形态?然后让学生进行小组讨论,交流归纳出正弦函数和余弦函数的图像特点和基本形态。
4.练习画出正弦函数和余弦函数的图像(20分钟)让学生根据给定的函数式画出对应的正弦函数和余弦函数的图像,并找出最大值、最小值、零点等重要点,并用函数式表达。
5.总结归纳(5分钟)通过讲解和练习,让学生总结正弦函数和余弦函数的图像特点和变化规律。
6.课堂练习(15分钟)出示一些正弦函数和余弦函数的问题,让学生分组进行讨论,解决问题。
然后进行板书总结。
五、布置作业:1.完成课堂练习的剩余部分;2.预习下一节课的内容。
六、教学反思:通过引入问题,让学生了解正弦函数和余弦函数的定义和性质;通过观察图像,让学生探究正弦函数和余弦函数的图像特点和基本形态;通过引导观察和讲解,让学生掌握正弦函数和余弦函数的变化规律;通过练习画图和解答问题,让学生巩固所学知识。
整节课设计合理,学生参与度高,能够较好地达到教学目标。
§1.4.1正弦函数,余弦函数的图象【教学目标】1、知识与技能: (1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状;(2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象;(3)用“五点法”作出正弦函数、余弦函数的简图。
2、过程与方法进一步培养合作探究、分析概括,以及抽象思维能力。
3、情感态度价值观通过作正弦函数和余弦函数图象,培养认真负责,一丝不苟的学习精神。
{【教学重点难点】教学重点:“五点法”画长度为一个周期的闭区间上的正弦函数图象教学难点:运用几何法画正弦函数图象。
【教学过程】1. 问题引入,创设情境:问题1::任意给定一个实数x ,对应的正弦值sinx 、余弦值cosx 是否存在是否唯一 问题2:一个函数总具有许多基本性质,要直观、全面了解正、余弦函数的基本特性,我们应从哪个方面入手图象视频演示:…“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”思考: 有什么办法画出该曲线的图象2、新课讲解(1)提出问题:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象作图过程中有什么困难答:列表、描点、连线。
由于表中部分值只能取近似值,再加上描点时的误差,部分同学取的点较少,所以画出的图象难免误差大。
如何画出更精确的图象呢(2)探究新知:根据学生的认知水平,正弦曲线的形成分了三个层次: 引导学生画出点)3sin ,3(ππ | 问题一:你是如何得到23的呢如何精确描出这个点呢 问题二:请大家回忆一下三角函数线,看看你是否能有所启发电脑演示正弦线、余弦线的定义,同时说明:当角度变化时,对应的线段MP 的长度就是这个角度的正弦值。
演示点)3sin ,3(ππ的画法。
问题三:能否借用画点)3sin,3(ππ的方法,作出y=sinx,x∈[0,2π]的图象呢课件演示:正弦函数图象的几何作图法教师引导:在直角坐标系的x轴上任意取一点O1,以O1为圆心作单位圆,从圆O1与x轴的交点A起把圆O1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确),过圆O1上的各分点作x轴的垂线,可以得到对应于0、6π、3π、2π、……、π2等角的正弦线,相应地,再把x轴上从0到π2这一段分成12等份,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,再用光滑的曲线把这些正弦线的终点连结起来,就得到了函数xy sin=,[]π2,0∈x的图象问题四:如何得到xy sin=,Rx∈的图象因为终边相同的角有相同的三角函数值,所以函数xy sin=在[]0,,)1(2,2≠∈+∈kZkkkxππ的图象与函数xy sin=,[]π2,0∈x的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每次π2个单位长度),就可以得到正弦函数xy sin=,Rx∈的图象,即正弦曲线。
1.4.1《正弦函数余弦函数的图像》教案教学目标:1.掌握正弦函数、余弦函数的定义及其基本性质;2.能够正确绘制出正弦函数、余弦函数的图像;3.了解正弦函数、余弦函数在实际问题中的应用。
教学重点:教学步骤:Step1:引入1.教师在黑板上先画出一张较简单的正弦函数和余弦函数的函数图像,让学生观察并想一想这张图像的实际意义:(在什么条件下会出现这个图像?)Step2:基本性质1.正弦函数与余弦函数在一个周期内的取值范围是多少?它们的最大值和最小值分别是多少?2.让学生想一想正弦函数与余弦函数为何是周期函数?周期有多少?3.正弦函数和余弦函数的对称轴在哪里?4.正弦函数和余弦函数的奇偶性分别是什么?Step3:图像绘制1.教师在黑板上画出正弦函数和余弦函数标准的函数图像。
2.教师讲解正弦函数和余弦函数图像的绘制过程,并且提到绘制函数图像的思路和方法,以及如何对函数图像进行平移、反转和缩放等变换。
3.教师通过例题的方式讲解如何依据给定的函数式来绘制函数图像。
Step4:实际应用1.让学生看看周围的实际事物,发现哪些事物的变化可以用正弦函数或余弦函数来表示?2.引导学生看看平时做的岁月流逝图、疫情现状图、股票走势图等,了解正弦函数和余弦函数在这些图表中的应用。
3.以一道实际的应用题作为结束:小球做周期性振动,受到阻尼力的影响,振动幅度会逐渐减小。
假设小球的下落位移 y 与时间 t 的关系为y=10sin(20πt)·e^(-0.1t)(其中sin(20πt) 是无阻尼情况下垂直方向的振动)。
请画出在 t=0至t=4π 前的小球运动轨迹。
教学方法:2.操作法:实际操作来帮助学生弄清楚如何进行绘图。
教学资源:1.黑板、彩色粉笔、三角函数表;2.绘图软件、电子白板/投影仪;3.相关练习题和实例题。
教学评价:。
1.4.1《正弦函数余弦函数的图像》教案【摘要】本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特点。
文章首先介绍了正弦函数和余弦函数在数学中的重要性,然后概述了本教案的主要内容和目的。
接着分别讨论了正弦函数和余弦函数的图像特点,包括周期、振幅、相位等。
通过具体的案例分析,帮助学生更好地理解函数图像的绘制方法和规律。
在结尾部分,对本教案进行了总结,并提出了相应的教学建议,同时展望了学生在学习正弦函数和余弦函数图像时可能取得的进展和突破。
通过本教案的学习,学生将能够掌握正弦函数和余弦函数的图像特点,提高数学学习的效率和兴趣。
【关键词】正弦函数、余弦函数、图像、教案、概述、特点、案例分析、总结、教学建议、展望。
1. 引言1.1 1.4.1《正弦函数余弦函数的图像》教案正弦函数和余弦函数是高中数学中重要的函数之一,它们在数学中有着广泛的应用。
本教案将重点讲解正弦函数和余弦函数的图像特点,帮助学生更好地理解和掌握这两个函数的性质。
在学习正弦函数的图像特点时,我们将介绍正弦函数的周期、幅值、对称轴等基本概念,并通过实例演示如何绘制正弦函数的图像。
我们也会讲解正弦函数的性质,如奇偶性、单调性等,以便学生更好地应用正弦函数解决实际问题。
通过本教案的学习,学生将能够准确绘制正弦函数和余弦函数的图像,并理解它们的基本特点。
学生还将学会如何利用正弦函数和余弦函数解决实际问题,提高数学应用能力。
希望本教案能够对学生的数学学习起到一定的帮助,让他们更加喜爱数学这门学科。
2. 正文2.1 引言在本节课程中,我们将学习正弦函数和余弦函数的图像特点。
正弦函数和余弦函数是我们在数学中经常接触到的函数,它们在几何学、物理学等领域也有广泛的应用。
通过学习它们的图像特点,我们可以更好地理解它们的性质和规律。
正弦函数是一种周期函数,它的图像呈现出波浪形状。
正弦函数的周期为2π,在每个周期内有一个最大值和一个最小值,这些点称为正弦函数的极值点。
1.4.1《正弦函数余弦函数的图像》教案教学目标:1. 了解正弦函数和余弦函数的定义及其基本特性;2. 能够绘制正弦函数和余弦函数的图像;3. 掌握正弦函数和余弦函数的周期、振幅和相位差的概念。
教学准备:1. 教材:数学课本、教学PPT;2. 板书工具:黑板、彩色粉笔;3. 工具:计算器;4. 图表工具:纸张、铅笔。
教学过程:一、导入(5分钟)在黑板上写下正弦函数和余弦函数的定义,并询问学生对这两个函数的了解程度,以激发学生的学习兴趣。
二、正弦函数的图像(15分钟)1. 根据正弦函数的定义,将角度从0度到360度以10度为间隔进行计算,并用表格的形式呈现。
2. 按照表格中的数值,绘制正弦函数的图像,并让学生找出图像的一些特点。
3. 引导学生理解正弦函数的周期、振幅和相位差的概念,并将其在图像中标注出来。
四、练习(15分钟)1. 让学生自己计算并绘制正弦函数和余弦函数的图像,巩固所学的知识。
2. 出示几个问题,让学生用图像来解决,例如求正弦函数和余弦函数的最大值、最小值等。
五、拓展(15分钟)1. 介绍正弦函数和余弦函数在实际生活中的应用,例如天空中的周期性变化、声波的振动等。
2. 进一步拓展,介绍正弦函数和余弦函数的积分和导数,以及它们在物理方程中的应用。
六、总结(5分钟)让学生回顾和总结本节课所学的内容,强化对正弦函数和余弦函数的理解。
教学反思:本节课通过表格和图像的形式,帮助学生理解了正弦函数和余弦函数的定义及其基本特性。
通过练习和拓展,激发了学生对这两个函数的兴趣和思考能力。
通过引导学生理解一些重要概念,如周期、振幅和相位差,培养了学生的抽象思维能力。
但是在教学过程中,需要注意适当引导学生思考,增强学生的主动性和参与度。
1.4.1《正弦函数余弦函数的图像》教案一、教学目标:1. 了解正弦函数和余弦函数的定义及特点;3. 能够用正弦函数和余弦函数解决实际问题。
二、教学重点:四、教学方法:1. 讲授法;2. 示例法;3. 观察法。
五、教学过程:1. 引入教师通过介绍古代数学家在海上导航中所运用的正弦函数和余弦函数,引导学生了解正弦函数和余弦函数的概念及其在实际生活中的应用。
2. 讲解教师讲解正弦函数和余弦函数的定义及特点,引导学生能够理解正弦函数和余弦函数在数轴上的周期性、奇偶性以及范围等概念。
教师通过一些具体的例子,让学生感受正弦函数和余弦函数的图像特点,并指导学生如何通过调整参数来改变图像的形状。
教师通过投影仪或电子白板,展示正弦函数和余弦函数在数轴上的图像,让学生观察图像,理解其特点,并进行分析与总结。
5. 实践举例:一根长为30cm的橡皮筋,从两端各拎起2cm,然后放手让它自由弹起来,问橡皮筋振动的周期是多少?解:因为橡皮筋是做简谐振动,而简谐振动的运动规律可以用正弦函数表示,所以可以设橡皮筋振动的轨迹为y=sin(wx),其中w为角速度。
当y=0时,橡皮筋处于最高或最低位置,即为一个周期的起点。
所以要找到w,根据题意,橡皮筋先向上振动,然后又向下振动,所以w与橡皮筋的振动次数有关,即w=2π/T,其中T表示周期,所以T=2π/w=2π/(2π/30)=30。
学生通过运用正弦函数和余弦函数解决实际问题,增强了对这两个函数的理解。
六、教学评价:通过观察学生的听课表现和课后的练习情况,检验教学效果。
学生能够正确理解正弦函数和余弦函数的概念及特点,掌握正弦函数和余弦函数的图像,且实际问题的解答正确率高。
正弦、余弦函数的图象知识目标:(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状; (2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些相关问题. 水平目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法; (2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法.德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神. 教学重点:用单位圆中的正弦线作正弦函数的图象. 教学难点:作余弦函数的图象. 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪. 教学过程:一、复习引入:1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角. 2.正、余弦函数定义:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y ), P 与原点的距离r (02222>+=+=y x yx r ),则比值ry叫做α的正弦,记作:r y =αsin比值r x叫做α的余弦,记作:rx =αcos3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP r y ==αsin ,OM rx==αcos 向线段MP 叫做角α的正弦线,有向线段OM 叫做角α的余弦线.二、讲解新课:1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):(1)函数y=sinx 的图象第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这个段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相对应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.ry)(x,αP根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相对应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.(2)余弦函数y=cosx 的图象正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法): 正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0)余弦函数y=cosx ,x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)只要这五个点描出后,图象的形状就基本确定了.所以在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.优点是方便,缺点是精确度不高,熟练后尚能够. 3.讲解范例:例1 作以下函数的简图(1)y=1+sinx ,x ∈[0,2π],(2) y=-cosx.y=cosxy=sinx π2π3π4π5π6π-π-2π-3π-4π-5π-6π-6π-5π-4π-3π-2π-π6π5π4π3π2ππ-11yx-11o xy解:三、小结:本节课学习了以下内容:1.正弦、余弦曲线 几何画法和五点法;2.注意与诱导公式,三角函数线的知识的联系. 四、练习:在同一直角坐标系内画出和的图象.3sin()2y x =-πcos y x =。
§ 1.4.1正弦、余弦函数图象的教学设计
【教材分析】
《正弦函数,余弦函数的图象》是高中新教材人教A版必修四的内容,作为函数,它是已学过的一次函数、二次函数、指数函数与对数函数的后继内容,是在已有三角函数线知识的基础上,来研究正余弦函数的图象与性质的,它是学习三角函数图象与性质的入门课,是今后研究余弦函数、正切函数的图象与性质、正弦型函数的图象的知识基础和方法准备。
因此,本
节的学习在全章中乃至整个函数的学习中具有极其重要的地位与作用。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出的图象,考察图象的特点,用“五点作图法”画简图,并掌握与正弦函数有关的简单的图象平移变换和对称变换;再利用
图象研究正余弦函数的部分性质(定义域、值域等)
【学情分析】
本课的学习对象为高二下学期的学生,他们经过近一年半的高中学习,已具有一定的学习基础和分析问题、解决问题的能力,思维活跃、想象力丰富、乐于尝试、勇于探索,学习欲望强的学习特点。
【教学目标】
1、知识与技能
(1)会用单位圆中的三角函数线作出y sin x, x [0,2 ]的图象,明确图象的形状;
(2)根据关系cosx sin(x ),作出y cosx,x R的图象;
2
(3)用“五点法”作出正弦函数、余弦函数的简图。
2、过程与方法
进一步培养合作探究、分析概括,以及抽象思维能力。
3、情感态度价值观
通过作正弦函数和余弦函数图象,培养认真负责,一丝不苟的学习精神
【教学重点难点】
教学重点:“五点法”画y sinx,x [0,2 ],y cosx,x 0,2 图像
教学难点:运用几何法画正弦函数图象。
【教学过程】
一. 情景引入
实验:简谐振动,得到直观的图象,让学生注意观察它的图形特点,并说明,在物理学中称其为“正弦曲线”或“余弦曲线”.
问题:如何得到正弦函数的精确图象?
二、新课讲解
师:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中 有什么困难?
答:列表、描点、连线。
由于表中部分值只能取近似值,再加上描点时的误差,部分同学取的点较少,所以画出 的图象难免误差大。
如何画出更精确的图象呢?下面我们来学习另一种新的作图方法——几 何作图法 1 •正弦函数的图象
利用正弦线作出比较精确的正弦函数 y sinx,x [0,2]图象(先简单复习三角函数线) 第一步:先作单位圆,把。
O 十二等分; 第二步:十二等分后得0, — , — ,
…2等角,作出相应的正弦线;
6
3
2
第三步:将x 轴上从0到2 一段分成12等份(2〜6.28); 第四步:取点,平移正弦线,使起点与 x 轴上的点重合; 第五步:用光滑的曲线把上述正弦线的终点连接起来,得 y=sinx ,x [0,2 ]的图象;
三角函数值相等.
说明:该图象称为“正弦曲线” 2•余弦函数y cosx,x R 的图象 问题:如何作出y cosx 的图象
引导学生从简谐振动的图象的名称“正弦曲线”或“余弦曲线”出发,可以利用正弦曲 线与适当的图形变换得到余弦函数的图象.
由诱导公式六,y cosx sin (
x ),所以,可以通过将正弦函数y sinx,x R 的图象
2
向左平移一个单位长度而得到.
2
问题:如 图象?
禾
何作出y sin x ,x R 的
用终边相同的角其同一
y
电
乂 y=cosx
、
-6 -4 0 h -2
-1.
2 W 4
、5丿 6 ■
3•“五点法”作图
问题:几何作图法作图象,虽然比较精确,但不太实用,如何快捷地画出正弦函数的图象呢? 学生活动:请同学们观察,边口答在y sinx ,x 0,2的图象上,起关键作用的点有几个?
3
引导学生自然得到下面五个:(0,0), ( ,1), ( ,0), (
, 1), (2 ,0)
2 2
组织学生描出这五个点,并用光滑的曲线连接起来,很自然得到函数的简图,称为“五 点法”作图。
小结作图步骤:1、列表2、描点3、连线 学生小组活动:试试用五点法画出函数 y cosx ,x 0,2的图象 三、例题分析
例1画出下列函数的简图 (1)y=1+sinx,x € [0,2 n ];
活动:本例的目的是让学生在教师的指导下会用 “五点法”画图,并通过独立完成课后练 习1领
悟画正弦、余弦函数图象的要领,最终达到熟练掌握.从实际教学来看,“五点法”画图 易学却难掌握,学生需练好扎实的基本功•可先让学生按“列表、描点、连线”三步来完成• 对学生出现的种种失误,教师不要着急,在学生操作中指导一一纠正,这对以后学习大有好处• x 0
2
n
3 2
2n
si nx 0 1 0 -1 0 1+si nx
1
2
1
1
(2)y=-cosx,x
€ [0,2 n ]. y E y=sinx
描点并将它们用光滑的曲线连接起来
I
y—— COS 兀W LO,2 ]
1* 7t
7Z N h 2兀
——
_y= COSJC, JCW |(),2TU1
注意:“五点法”是画正弦函数、余弦函数简图的基本方法,本例是最简单的变化.本例的目的是让学生熟悉“五点法” •如果是多媒体教学,要突破课件教学的互动性,多留给学生一些动手操作的时间,或者增加图象纠错的环节,效果将会令人满意,切不可教师画图学生看•完成本例后,让学生阅读本例下面的“思考”,并回答如何通过图象变换得出要画的图象,让学生从另一个角度熟悉函数作图的方法• 四、课堂练习
对课本34页练习第一题进行讲解五、课堂小结
通过这节课的学习,同学们,你们有什么收获吗?
①正弦函数图象的几何作图法
②正弦函数图象的五点作图法(注意五点的选取)
③由正弦函数图象平移得到余弦函数的图象六、布置作业:
课后练习题
七、板书设计
§ 1.4.1正弦、余弦函数的图象
1、正弦函数y sinx, x [0,2 ]的图象 4 、五点作图法
2、正弦函数y sinx, x R的图象
3、余弦函数y CO8(,X R的图象
【教学反思】
自我感觉这节课的亮点有以下几个方面:
1、整堂课的教学设计体现了充分备学生的特点。
根据我校平行班学生数学基础比较薄弱的实际情况,对偏难繁杂的内容大胆地删减,如:利用正、余弦线作图的方法,将函数性质留待下节课讲解等等,使得教学难度适中,真正做到了因材施教。
2、数学总是要在游戏中学习的,本课开场白我通过简易的物理实验吸引学生的眼球,并采用计算机绘图来增加学生的新鲜感,充分调动起学生的学习兴趣。
在这四十分钟里,我先后采用投影仪展示丰富多彩的课件,使学生积极而充分地参与到课堂活动中来,符合新课改的理念。
3、在处理教材上,我先让学生在函数y sin x, x [0,2 ]的图象上直接找和读关键点的坐标,从而直观感知正弦曲线,再结合特殊角的三角函数值、诱导公式及简单的图象变换等旧
知,让学生来探索余弦曲线及其作图方法。
这种由特殊到一般,由结论到实例的直线型思维模式,一反数学的严格推理论证模式,由浅入深,使我们的学生在思维上易于理解与接受。
4、板书设计工整,善于运用多媒体辅助教学;普通话标准,教态自然大方,有较好的教学基本功。
尽管公开课上得比较顺利,但并没有达到最好的效果,主要存在以下几个方面的不足,需要我认真反思,并在今后不断努力改进:
1、在重点知识的强调上稍快,给学生的思考和发挥的空间不足。
比如开头讲函数
y sinx,x [0,2 ]的图象时,给学生寻找关键点的时间不够长;应当多让他们去领悟“五点作图法”的思维过程,而且可以用小组讨论的方法调动他们去想问题,这样才能使他们对知识的理解更为深刻。
2、时间安排上不够精当。
在“师生探索”中给学生作正弦曲线的时间过长,而“学生活动”中给学生作余弦曲线的时间又相对显得短了点。
应当反过来,这样学生才能有充分的独立思考时间;同时也可避免“练习”讲解时间不充足。
3、教学语言还需要不断锤炼。
数学这一门严谨的学科决定了老师的语言必须精确到位,不能含糊
其辞,因为它对学生的逻辑思维起着潜移默化的影响。
这些细节方面都需要严格把关,平时要反复琢磨。
因为说到底,教师是要靠语言艺术去感染学生的。
4、板书需要提高。
教师的魅力不仅仅是借助口头语言展示出来,摆在学生面前的板书也是重要的一环。
优秀的教师,粉笔字潇洒大方,作图时一气呵成,让学生赏心悦目,叹为观止。
教育人生的精彩源于课堂,新课改也对教师提出了越来越高的要求。
面对过去自己经历过的刻板、死气、严肃的灌输式教育法,现在更提倡多给学生一点爱,让学生积极地参与到课堂活动中来;同时老师要做有效课堂的引导者,不断优化教学策略,体现良好的示范作用。
作为一名教龄不足一年的年轻教师,我肩负着崇高的使命。
必须不断学习,不断改进和超越自己,才能赢得学生的喜爱和社会的认可。
这段时间的公开课提供给了我非常好的打磨和展示自我的平台,我会以此为契机,在平日的教学实践中不断思考和创新,争取早日脱胎换骨, 成为一名成熟并且优秀的数学教师!。