高等数学(经济类)课后习题及答案第九章多元函数微分
- 格式:docx
- 大小:1.38 MB
- 文档页数:40
习题9-1(A)
1.求下列各函数的表达式:
(1)设函数22),(yxyxf,求(,)fyx,),(xxf.
解:(,)fyx22)()(xy22xy,
0)(),(22xxxxf.
(2)设函数)1(3xfyz,已知1y时,xz,求)(xf及z的表达式.
解:由1y时,xz,有)1(13xfx,即,
所以1)1()(3xxf;而1)1(3xyxfyz.
(3)设函数yyxyxf1)1(),(2,求),(xyyxf.
解:2222))(()()(/1)/1()(),(yxyxyxyxyxyxxyxyyxxyyxf.
(4)设函数xyyxyxf),(,求),(yxf的表达式.
解:(方法1)因为
4)()(4)2(244),(222222yxyxyxyxyxyxxyyxyxf,
所以),(yxf422xy.
(方法2)令vyxuyx、,则22uvyvux、,于是
422),()(22uvuvuvxyyxyxfvuf,,所以),(yxf422xy.
2.求下列各函数的定义域,并作定义域草图:
(1))ln(xyz; (2)221arcsinxyyz;
(3)221arcsinyxxxyz; (4)41)16ln(2222yxyxz. 1]1)1[(1)1(333xxxf解:(1)由0xy且0x,得定义域}0,),{(xxyyxD.
(2)由022xy及1y,有1yx,得定义域}1),{(yxyxD.
(3)由0100122yxxxxy、、、,有0122xxyyx、、,得定义域}0,,1),{(22xxyyxyxD.
(4)由040162222yxyx、,有16422yx,或4222yx,得定义域}42),{(22yxyxD.
3.求下列极限:
(1)(,)(1,1)2lim2xyxyxy; (2)xxyayxsinlim),0(),(;
(3)22)0,0(),(1sinlimyxxyx; (4)2)1,0(),(2tanlimxyxyyx;
(5)22(,)(1,1)sin()limxyxyxy; (6)231lim)1,1(),(xyxyyx.
解:(1)(,)(1,1)2121lim2213xyxyxy.
(2)(,)(0,)(,)(0,)sinlimlimxyaxyaxyxyaxx.
(3)因为221sinyx有界,而0lim)0,0(),(xyx,所以22)0,0(),(1sinlimyxxyx0.
(4)2111211limtanlim212tanlim)1,0(),()1,0(),(2)1,0(),(yxyxyxyxyyxyxyx. (5)222222(,)(1,1)(,)(1,1)sin()()sin()limlim212.xyxyxyxyxyxyxy
(6))23(lim1)23)(1(lim231lim)1,1(),()1,1(),()1,1(),(xyxyxyxyxyxyyxyxyx4.
4.证明下列极限不存在:
(1)(,)(0,0)limxyxyxy; (2)242)0,0(),(limyxyxyx.
证明:(1)沿)1(kkxy取极限,则kkkxxkxxyxyxxxkxy11limlim00,当k取不同值时,该极限值不同,所以极限(,)(0,0)limxyxyxy不存在.
(2)沿0y取极限,00limlim024200xxyyxyx;
沿2xy取极限,212limlim44024202xxyxyxxxxy.
由于2420242002limlimyxyxyxyxxxyxy,所以极限242)0,0(),(limyxyxyx不存在.
习题9-1(B)
1.某厂家生产的一种产品在甲、乙两个市场销售,销售价格分别为yx、(单位:元),两个市场的销售量21QQ、各自是销售价格的均匀递减函数,当售价为10元时,销售量分别为2400、850件,当售价为12元时,销售量分别为2000、700件.如果生产该产品的成本函数是(2012000C)21QQ,试用yx、表示该厂生产此产品的利润L.
解:根据已知,设yabQxabQ222111、,
由10x时,24001Q;12x时,20001Q,有,,2000122400101111abab得、2001a
44001b,于是xQ20044001.
由10y时,8502Q;12y时,7002Q,有,,70012850102222abab得、752a 16002b,于是yQ7516002.
两个市场销售该产品的收入为22217516002004400yyxxyQxQR,
该产品的成本(2012000CyxQQ15003200040008800012000)21
yx15004000132000.
根据利润等于收入减去成本,得
)15004000132000(751600200440022yxyyxxL
132000752003100840022yxyx.
2.求下列极限:
(1)yyxxy)11(lim),2(),(; (2)22)0,0(),(1elim22yxyxyx;
(3)4422),(),(limyxyxyx; (4)22(,)(0,0)lim.xyxyxy
解:(1)211),2(),(),2(),(e])11[(lim)11(limxxyyxyyxxyxye.
(2)法1: 令tyx22,则当)00()(,,yx时,0t,所以
tyxttyxyx1elim1elim022)0,0(),(221.
法2:因为)00()(,,yx时,1e22yx与22yx是等价无穷小,所以
1lim1elim2222)0,0(),(22)0,0(),(22yxyxyxyxyxyx.
(3)因为224424424422110yxyxyyxxyxyx,
而00lim),(),(yx, 0)11(lim22),(),(yxyx,根据“夹逼准则”得0lim4422),(),(yxyxyx.
(4)令sincosyx、,则当)00()(,,yx时,0(其中在区间)20[,内任意变化),所以sincoslimlim20022)0,0(),(yxxyyx0. 3.证明极限22222)0,0(),()(limxyyxyxyx不存在.
证明:沿0y取极限,00lim)(lim202222200xxyyxyxxxy;
沿xy取极限,11lim)(lim0222220xxxyxyyxyx.
因此,极限22222)0,0(),()(limxyyxyxyx不存在.
4.讨论函数0002)(222222yxyxyxxyyxf,,,,在点),(00处的连续性.
解:沿xy取极限,由)00(11lim2lim)(lim02200,,fyxxyyxfxxxyxxy,有
)00()(lim)0,0(),(,,fyxfyx,所以函数)(yxf,在点),(00处不连续.
习题9-2(A)
1. 求下列函数的偏导数:
(1)223zxyxy; (2)2cossin()zxyxy;
(3)ln(2)zxy; (4)2ln(ln)zxy;
(5)cosyzxyx(0x); (6)arcsin1zxy;
(7)22yxxyz; (8)arctanxyzxy;
(9)yxzu; (10)zyxu)tan(22.
解:(1)2123zyxxy,32223zxyyxy.
(2)2sincoscos()sin2cos()zxyxyyxyyxyxyx,
2sincoscos()sin2cos()zxyxyxxyxxyxyy.
(3)11122ln(2)2(2)ln(2)zxxyxyxyxy,
111222ln(2)(2)ln(2)zyxyxyxyxy.
(4)22122lnlnzxxxxyxy,22111ln(ln)zyyxyyxy.
(5)xyxyxyxyxyxyxyxyxyyxzsincos21)(sincos2332,
xyxyxyyxxxyxyxyxyxyzsincos211sincos2.
(6))1(212)1(11xyxyyxyyxyxz, )1(212)1(11xyxyxxyxxyyz.
(7)2/3223222222)(yxyyxyxxxyyxyxz,
由变量yx、的对称性,得2/3223)(yxxyz.
(8)222211()1()()1()zxyxyyxyxxyxyxy,
22221()1()1()1()xyxyzxxyyxyxyxy.
(9)zzyyzzxuyxyxln11ln,zzyxyxzzyuyxyxln)(ln22,
yyxyxzyxzyxzu1.
(10)zyxxzxyxxu)(sec22)(sec222222,
zyxyzyyxyu)(sec2)2()(sec222222,222)tan(zyxzu.
2. 求曲线1,2122xyxz在点)3,1,1(M处的切线与x轴正向的夹角.
解:222zxxxy,112211122xxyyzxxxy,
用表示曲线1,2122xyxz在点)3,1,1(M处的切线与y轴正向的夹角,则21tan,所以432621arctan.
3. 设xyxyxzxsec)1(e2,求)0,1(xz及)0,1(yz.