高考数学第一轮复习必考知识点:三角函数
- 格式:doc
- 大小:26.50 KB
- 文档页数:4
专题一:三角函数一、三角函数1、同角三角函数的基本关系:22sin cos 1αα+= sin tan cos ααα=2、诱导公式(一) tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k诱导公式(二) tan )tan(cos )cos( sin )sin(αααααα-=-=--=- 诱导公式(三)sin(180)=-sin ;cos(180)cos ;tan(180)tan αααααα++=+=。
tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒诱导公式(四)sin )2cos( cos )2sin(ααπααπ=-=-sin )2cos(cos )2sin(ααπααπ-=+=+3、两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ-=+ ()c o s c o s c o s s i n s i nαβαβαβ+=-两角和与差的正弦公式:()sin sin cos cos sin αβαβαβ+=+ ()s i n s i n c o s c o s s i nαβαβαβ-=-两角和与差的正切公式:()tan tan tan 1tan tan αβαβαβ++=-; ()tan tan tan 1tan tan αβαβαβ--=+注意:,,()222k k k k z πππαβπαπβπ±≠+≠+≠+∈4、辅助角公式:sin cos ))a x b x x x x ϕ+=+=+其中辅助角ϕ由cos sin ϕϕ⎧=⎪⎪⎨⎪=⎪⎩确定,即辅助角ϕ的终边经过点(,)a b5、二倍角正弦、余弦和正切公式:sin 22sin cos ααα=2222c o s 2c o s s i n 12s i n2c o s 1ααααα=-=-=- 22t a n t a n 21t a n ααα=-注意:2,22k k ππαπαπ≠+≠+ ()k z ∈升幂公式:221cos 21cos 2cos ;sin 22αααα+-==降幂公式:221cos22cos;1cos22sinαααα+=-=7、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,m ax1y=;当22x kππ=-()k∈Z时,m in1y=-.当()2x k kπ=∈Z时,m ax1y=;当2x kππ=+()k∈Z时,m in1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k kπππ-∈Z上是增函数;在在,22k kππππ⎛⎫-+⎪⎝⎭函数性质()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数. []2,2k k πππ+ ()k ∈Z 上是减函数.()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴8、常用特殊角的三角函数值表:二、解三角形1、正弦定理:在C ∆A B 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆A B 的外接圆的半径,则有2sin sin sin a b c R C===AB .2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a RA =,sin 2b RB =,sin 2cC R=;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c CC++===A +B +AB.3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆A B 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c abc+-A =,222cos 2a c bac+-B =,222cos 2a b cC ab+-=.6、设a 、b 、c 是C ∆A B 的角A 、B 、C 的对边,则:①若222a b c +=,则90C = ; ②若222a b c +>,则90C < ;③若222a b c +<,则90C > .。
三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
其次节同角三角函数的基本关系与诱导公式考试要求:1.理解同角三角函数的基本关系式:sin2α+cos2α=1,tan α.2.借助单位圆的对称性推导出±α,π±α的正弦、余弦、正切的诱导公式.一、教材概念·结论·性质重现1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tan α.(3)常见变形:sin α=±;cos α=±;(sinα±cos α)2=1±2sin αcos α;sin α=tan α·cos α.利用同角三角函数的基本关系可以实现正弦、余弦、正切值的转化,但肯定要留意确定角的终边所在的象限.“同角”有两层含义:一是角相同,二是随意一个角(在有意义的前提下).2.三角函数的诱导公式公式一二三四五六角απ+α-απ-α-α+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcos α-cos αsin α-sin α正切tan αtan α-tan α-tan α口诀函数名不变,符号看象限函数名变更,符号看象限诱导公式的记忆口诀:“奇变偶不变,符号看象限.”其含义理解为:(1)全部诱导公式均可看作k·±α(k∈Z)和α的三角函数值之间的关系,口诀中的奇、偶指的是此处的k是奇数还是偶数,变与不变是指三角函数名称的变更.(2)结果的符号与把α当成锐角时角k·±α(k∈Z)的三角函数值的符号相同.二、基本技能·思想·活动阅历1.推断下列说法的正误,对的画“√”,错的画“×”.(1)对随意角α,sin23α+cos23α=1都成立.( √)(2)若cos(nπ-θ)=(n∈Z),则cos θ=.( ×)(3)已知sin θ=,cos θ=,其中θ∈,则m<-5或m≥3.(×) 2.若α是第四象限角,tan α=-,则sin α等于( )A.B.-C.D.-D解析:因为tan α==-,sin2α+cos2α=1,所以sinα=±.因为α是第四象限角,所以sin α=-.3.已知sin =,则cos =( )A.C.-D.-C解析:因为sin =,所以cos =cos =-sin =-.故选C.4.若α是第三象限角且cos α=-,则sin α=_______,tan α=_________.-解析:因为α是第三象限角且cos α=-,所以sin α=-=-,所以tanα==.5.已知sin α=,则·sin (α-π)·cos (2π-α)的值为_________.-解析:原式=·(-sin α)·cos (-α)=·(-sin α)·cos α=·(-sin α)·cos α=-sin2α=-.考点1 同角三角函数关系的基本应用——应用性考向1 知弦求弦、切或知切求弦(1)(2024·济南一模)已知α∈(0,π),若cosα=-,则tan α的值为( ) A.B.-C.D.-D解析:因为α∈(0,π),cos α=-,所以sin α=,则tan α=-.(2)已知3sin +sin (θ+π)=0,θ∈(-π,0),则sin θ=( )A.-B.-C.A解析:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3. 而θ∈(-π,0),可得sin θ=-=-.本例(2)条件不变,求cos θ的值.解:由3sin +sin (θ+π)=0,可得3cos θ=sin θ,可得tan θ=3.而θ∈(-π,0),可得sin θ<0.又tan θ=3>0,所以cos θ<0,所以cos θ=-=-.1.利用sin 2α+cos2α=1可以实现正弦、余弦的互化,利用tanα=可以实现弦切互化.2.由一个角的随意一个三角函数值可以求出这个角的另外两个三角函数值,求值时要留意角所在的象限,以免出现符号错误.考向2 弦切互化求值(1)已知cos θ=,则sin θ·的值为( )A.B.-C.3 D.-3C解析:原式=sin θ=sin θ·=3.(2)(2024·新高考全国Ⅰ卷)若tan θ=-2,则=( )A.-B.-C.C解析:将式子进行齐次化处理,得=in θ(sin θ+cos θ)====.本例(2)条件不变,求cos2θ-sin2θ的值.解:cos2θ-sin2θ===1.1.弦化切的常见结构(1)形如“a sin2α+b sin αcos α+c cos2α”的二次式,分母看作1,利用1=sin2α+cos2α将原式转化为齐次式求值.(2)形如“次分式.2.切化弦当要化简的式子中同时出现正弦、余弦、正切时,一般利用公式tan α=,把式中的正切化为弦.考向3 sin α±cos α,sin αcos α之间的关系(1)已知sin α+cos α=,且α∈(0,π),则sin α-cos α=( )A.±B.-C.C解析:把sin α+cos α=,两边平方得(sin α+cos α)2=1+2sin αcos α=,即2sin αcos α=-<0.因为0<α<π,故sin α>0,cos α<0.所以sin α-cos α====.(2)已知sin x+cos x=,x∈(0,π),则tan x等于( )A.-C.D.-D解析:由题意可知sin x+cos x=,x∈(0,π),则(sin x+cos x)2=.因为sin2x+cos2x=1,所以2sin x cos x=-,即==-,得tan x=-或tan x=-. 当tan x=-时,sin x+cos x<0,不合题意,舍去.所以tan x=-.留意方程思想的应用:对于sin α+cos α,sin α·cos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.1.已知tan θ+=4,则sin4θ+cos4θ=( )A.C.D解析:由tanθ+===4,得sin θcos θ=,所以sin4θ+cos4θ=(sin2θ+cos2θ)2-2sin2θcos2θ=1-2×=.2.若sinα+cos α=,α∈(0,π),则=( )A.B.-C.D.-B解析:因为sin α+cos α=,α∈(0,π),所以两边平方,可得1+2sin αcos α=,可得2sin αcos α=-<0,所以sin α>0,cos α<0,可得cos α-sin α=-==-=-,所以==-=-.考点2 诱导公式的应用——综合性(1)sin ·cos ·tan 的值是_________.-解析:原式=sin ·cos ·tan=··=×(-)=-.(2)(2024·北京卷)若P(cos θ,sin θ)与Q关于y轴对称,写出一个符合题意的θ值:_________.(答案不唯一)解析:因为P(cos θ,sin θ)与Q关于y轴对称,故其横坐标相反,纵坐标相等,即sin θ=sin 且cos θ=-cos ,由诱导公式sin θ=sin (π-θ),cos θ=-cos (π-θ),所以θ+=π-θ,解得θ=,则符合题意的θ值可以为.1.诱导公式的两个应用口诀(1)求值:负化正,大化小,化到锐角就终了.(2)化简:统一角,统一名,同角名少目的到.2.角的变更的通式特别角±已知角=所求角.1.下列各选项中与sin 2 022°最接近的是( )A.C.-D.-D解析:sin 2 022°=sin (1 800°+222°)=sin 222°=sin(180°+42°)=-sin 42°≈-.2.已知sin =-,则cos =( )A.C.-D.-B解析:cos =cos =-cos =-sin =.已知3cos x+4sin x=5,求tan x的值.[四字程序]读想算思求tan x的值1.同角的正弦、余弦和正切有什么关系?2.3cos x+4sin x 的最大值是多少?3.由已知条件联想点A(cosx,sin x)在哪条直线上1.求sin x和cos x.2.协助角公式1.方程思想.2.数形结合.3.转化与化归3cos x +4sinx=51.sin2x+cos2x=1,tan x=.2.3cos x +4sin x的最大值为5.3.点A(cos x,sin x)在直线3x+4y=5上1.联立3cos x+4sinx=5与sin2x+cos2x=1.2.3cos x+4sin x=5sin (x+φ)1.tan x可看作直线的斜率.2.将已知条件变为cos x+sinx=1思路参考:解方程组解:由消去cos x,整理得(5sin x-4)2=0,解得sin x=,cos x=.故tan x==.思路参考:留意到3cos x+4sin x的最大值为5,利用协助角公式推出x与协助角的关系.解:3cos x+4sin x=5=5sin (x+φ)=5,其中cos φ=,sin φ=,所以tan φ=,所以x+φ=2kπ+(k∈Z).于是tan x=tan ==.思路参考:令tan x=t,借助已知条件用t表示sin x和cos x.解:令tan x=t,即t cos x=sin x,代入3cos x+4sin x=5,得3cos x+4t cos x=5,所以cos x=,sin x=.再代入sin2x+cos2x=1,得+=1,解得t=,即tan x=.思路参考:设P(m,n)为角x终边上随意一点,r=,利用三角函数的定义求解.解:设P(m,n)为角x终边上随意一点,点P到原点O的距离为r,则r=.把sin x=,cos x=代入已知等式得3·+4·=5,即(3m+4n)2=(5r)2=25(m2+n2),整理得(4m-3n)2=0,所以4m=3n.明显m≠0,故tan x==.思路参考:设点A(cos x,sin x)是直线3x+4y=5与单位圆x2+y2=1的切点,而tan x =k OA.解:由3cos x+4sin x=5可知点A(cos x,sin x)在直线3x+4y=5上,同时也在单位圆x2+y2=1上,所以点A为直线3x+4y=5与单位圆的切点.由于直线3x+4y=5的斜率为-,所以OA的斜率为,即tan x=.思路参考:m=(cos x,sin x),n=,证明m∥n.解:因为cos x+sin x=1,不妨令m=(cos x,sin x),n=,可知|m|=1,|n|=1,所以m,n均为单位向量,且m·n=1.由|m||n|≥|m·n|,等号成立的条件为m∥n,则有cos x=sin x,即tan x=.1.本题考查同角三角函数基本关系的应用,基本解题方法是构建方程(组)、数形结合等.在求解过程中,应留意同角三角函数的基本关系本身是恒等式,也可以看作是方程.2.基于课程标准,解答本题一般须要有良好的运算求解实力、转化与化归的实力.本题的解答体现了数学运算的核心素养.3.基于高考数学评价体系,本题的多种解法中涉及同角三角函数基本关系式、方程、协助角公式、直线与圆、向量等学问,渗透着函数与方程、等价转换、数形结合等思想方法,对提升思维的敏捷性起到了主动的作用.已知θ是第一象限角,若sin θ-2cos θ=-,求sin θ+cos θ的值.解:因为sin θ-2cos θ=-,所以sin θ=2cos θ-,所以+cos2θ=1,所以5cos2θ-cosθ-=0,即=0.又因为θ为第一象限角,所以cos θ=,所以sin θ=,所以sin θ+cos θ=.课时质量评价(二十二)A组全考点巩固练1.已知sin α=,α∈,则tan α=( )A.B.-C.D.-D解析:因为sin α=,α∈,所以cos α=-=-,则tanα==-.2.已知α是其次象限角,sin (π-α)=,则cos (π+α)=( )A.-B.-C.D解析:因为α是其次象限角,sin (π-α)=,可得sin α=,所以cos α=-=-,则cos(π+α)=-cos α=.3.已知tan α=3,则=( )A.-C.±D解析:因为tanα=3,所以===.4.(2024·安徽模拟)已知cos+cos (π+α)=,则tan α+=( ) A.2 B.-2C.D.3A解析:因为cos +cos (π+α)=,所以-sin α-cos α=,即sin α+cos α=-,两边平方,可得1+2sin αcos α=2,所以sin αcos α=,所以tan α+===2.5.已知cos =,则cos =______,sin=_________.-解析:cos =cos =-cos =-.sin =sin =cos =.6.已知函数f(x)=a sin (πx+α)+b cos (πx+β),且f(4)=3,则f(2 021)=_________.-3解析:因为f(4)=a sin (4π+α)+b cos (4π+β)=a sin α+b cos β=3,所以f(2 021)=a sin (2 021π+α)+b cos (2 021π+β)=a sin (π+α)+b cos (π+β)=-(a sin α+b cos β)=-3.B组新高考培优练7.(多选题)已知α是三角形内角,若sin α+cos α=,则sin α-cos α的值可能为( )A.-B.-C.BC解析:因为α是三角形内角,所以α∈(0,π),又因为(sin α+cos α)2=sin2α+cos2α+2sinαcos α=1+2sin αcos α=,解得2sin αcos α=.因为sin αcos α>0且α∈(0,π),所以sin α>0,cos α>0,所以sin α-cos α符号不确定,所以(sin α-cos α)2=1-2sin αcos α=1-=,所以sin α-cos α=±.8.(2024·聊城模拟)已知α,β∈,且满意sin αcos β-2cos αsin β=0,则tan (2π+α)+tan 的最小值为( )A.2 B.C.1 D.2D解析:因为sin αcos β-2cos αsin β=0,α,β∈,所以tan α>0,tan β>0,tan α=2tan β,所以tan (2π+α)+tan =tan α+=2tan β+≥2,当且仅当tan β=时等号成立.9.(2024·承德二模)若α∈,2sin α+cos α=,则tan α=( )A.-2 B.2C.D.-A解析:由2sin α+cos α=,两边平方,可得(2sin α+cos α)2=,即4sin2α+4sinαcos α+cos2α=.所以,所以,则11tan2α+20tanα-4=0.解得tan α=-2或tan α=.因为α∈,所以tan α=-2.10.(2024·浙江卷)若3sin α-sin β=,α+β=,则sin α=________,cos 2β=_________.解析:因为3sin α-sin β=,α+β=,所以3sin α-cos α=,所以cos α=3sin α-.因为sin2α+cos2α=1,所以sin2α+(3sinα-)2=1,解得sin α=,cos β=sin α=,cos 2β=2cos2β-1=2×-1=.11.已知cos+sin =1,则cos2+cosβ-1的取值范围为_________.解析:由已知得cos β=1-sin α.因为-1≤cos β≤1,所以-1≤1-sin α≤1.又-1≤sin α≤1,可得0≤sin α≤1,所以cos2+cosβ-1=sin2α+1-sinα-1=sin2α-sinα=-.(*) 又0≤sin α≤1,所以当sin α=时,(*)式取得最小值-,当sin α=0或sin α=1时,(*)式取得最大值0,故所求范围是.12.已知-<α<0,且函数f(α)=cos -sin α·-1.(1)化简f(α);(2)若f(α)=,求sin αcos α和sin α-cos α的值.解:(1)因为-<α<0,所以sin α<0,所以f(α)=sin α-sin α·-1=sinα+sin α·-1=sin α+cos α.(2)法一:由f(α)=sin α+cos α=,平方可得sin2α+2sinα·cos α+cos2α=,即2sinαcos α=-.所以sin αcos α=-.又-<α<0,所以sin α<0,cos α>0,所以sin α-cos α<0,因为(sin α-cos α)2=1-2sin αcos α=,所以sin α-cos α=-.法二:联立方程解得或因为-<α<0,所以所以sin αcos α=-,sin α-cos α=-.。
高三数学一轮复习知识点讲解专题5.3 三角函数的图象与性质【考纲解读与核心素养】1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 3.高考预测:(1) “五点法”作图; (2)三角函数的性质;(3)往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1)掌握正弦、余弦、正切函数的图象;(2)掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】知识点1.正弦、余弦、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例剖析】高频考点一 三角函数的定义域和值域 【典例1】(2020·山东高一期末)函数tan2xy =的定义域为_____.【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈. 故答案为:{}2,x x k k Z ππ≠+∈.【典例2】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【规律方法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】1.(2020·上海高三专题练习)函数sin y m x n =+的最大值为2,最小值为4-,则m =_________,n =_________.【答案】3± 1- 【解析】由已知得24m n m n ⎧+=⎪⎨-+=-⎪⎩,解得31m n =±⎧⎨=-⎩. 故答案为:3±;1-.2.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 高频考点二 三角函数的单调性【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.【典例4】(2020·河南洛阳�高一期末(理))已知sin33a =︒,cos55b =︒,tan35c =︒则a ,b ,c ,的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】因为cos55sin35sin33b a ==>=,且sin 35tan 35sin 35cos35c ==>,所以c b a >>. 故选:A .【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是________. 【答案】2 30,2⎛⎤ ⎥⎝⎦【解析】因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2, 因为()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数, 所以,,4322πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 所以4232πωππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦.故答案为:(1). 2 (2). 30,2⎛⎤⎥⎝⎦【规律方法】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2C π≠,则下列结论中正确的是( ) A .tan tan A C < B .tan tan A C >C .sin sin <A CD .sin sin A C >【答案】D 【解析】若543,,12123124A B C πππππ=====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312A B C ππππ====,则tan 0tan A C <<, 75sin sin sin sin sin 121212A C πππ==>=,所以BC 选项错误.在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.由①得sin sin A C >.所以D 选项正确. 故选:D2.(2020·河南林州一中高一月考)π()sin()(0,),2f x x ωϕωϕ=+>≤若π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴,()f x 在区间ππ(,)54上单调,则ω的最大值是 ( ) A .14 B .18C .20D .22【答案】A 【解析】因为π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴, 所以2144n T n N ,π+=∈,即21244n ππω+=, n N ∈,即42,?n n N ω=+∈,即ω为正偶数. 因为()f x 在区间ππ,54⎛⎫⎪⎝⎭上单调,则ππ45202T π-=≤,即210T ππω=≥. 20ω≤. 当18ω=时,ππ sin 18088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得9 ,4k k Z πϕπ-+=∈,9 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=,()πsin 184f x x ⎛⎫=+ ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π779518,42020x ππ⎛⎫+∈ ⎪⎝⎭,其中,901202f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调; 当14ω=时,ππ sin 14088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得7 ,4k k Z πϕπ-+=∈,7 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=-,()πsin 144f x x ⎛⎫=- ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π516514,42020x ππ⎛⎫-∈ ⎪⎝⎭,满足()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调. 故ω的最大值是14. 故选A.3.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【解析】因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上单调递增,所以222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【总结提升】1.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.高频考点三 三角函数的周期性 【典例6】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C. 【规律方法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π. 【解析】(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 【特别提醒】最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 高频考点四 三角函数的奇偶性【典例7】(2018届辽宁省丹东市测试(二))设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C 【解析】 由题意得,∴.∴,∴函数为偶函数.故选C . 【规律方法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】(浙江省2019届高考模拟卷(二))函数的图象可能是( )A .B .C .D .【答案】A 【解析】 由题意得函数的定义域为,∵,∴函数为偶函数,∴函数图象关于y 轴对称,故排除C,D . 又当时,,因此可排除B . 故选A . 【特别提醒】利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 高频考点五 三角函数的对称性 【典例8】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【规律方法】函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】(2021·广西钦州一中高三开学考试(理))关于函数()1cos cos f x x x=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2x π=对称.④()f x 的图像关于点,02π⎛⎫⎪⎝⎭对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】对于①,()f x 定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以()f x 的图象关于y 轴对称,命题①正确;对于②,532f π⎛⎫= ⎪⎝⎭,532f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②错误; 对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪⎝⎭,则233f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于2x π=对称,命题③错误; 对④,1sin 2sin f x x x π⎛⎫-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫+=-- ⎪⎝⎭, 则22f x f x ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭,命题④正确. 故答案为:①④.【特别提醒】1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.2.正切函数图象的对称中心是(k π2,0)而非(k π,0)(k ∈Z ).高频考点六 三角函数的图象和性质的应用 【典例9】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________. 【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【典例10】(2020·上海高三专题练习)函数3sin 1()sin 2x f x x -=+的最大值是____,最小值是_________.【答案】234- 【解析】3(sin 2)77()3sin 2sin 2x f x x x +-==-++ sin [1,1]x[]sin 21,3x ∴+∈11,1sin 23x ⎡⎤∴∈⎢⎥+⎣⎦777,sin 23x ⎡⎤∴-∈--⎢⎥+⎣⎦7234,sin 23x ⎡⎤∴-∈-⎢⎥+⎣⎦即max 2()3f x =,min ()4f x =- 故答案为:23;4- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤,∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭,∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 【规律方法】1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.4.求形如y =a sin x +bc sin x +d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立关于y 的不等式反解出y .综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>-⎪⎝⎭B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭【答案】C 【解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+,令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈, 当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭. 故选:C.2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此22(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩ 3.(浙江省绍兴市第一中学2019届高三上期末)设函数(1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】 (1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【总结提升】比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。
知识点总结 51 三角函数概念及三角恒等变换一.角的概念的推广:1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的分类:{按旋转方向的不同分类{正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:没有旋转;按终边位置不同分类{象限角:角的终边在第几象限,就是第几象限的角;轴线角:角的终边在坐标轴上。
3.终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 4.几种特殊位置的角的集合 (1)象限角的集合:①第一象限角:{α|2kπ<α<2kπ+π2 ,k ∈Z};②第二象限角:{α|2kπ+π2<α<2kπ+π ,k ∈Z}; ③第三象限角:{α|2kπ+π<α<2kπ+3π2,k ∈Z};④第四象限角:{α|2kπ+3π2<α<2kπ+2π ,k ∈Z};(2)轴线角的集合:①终边在x 轴非负半轴上的角的集合:{α|α=2kπ ,k ∈Z }. ②终边在x 轴非正半轴上的角的集合:{α|α=2kπ+π ,k ∈Z }. ③终边在x 轴上的角的集合:{α|α=kπ ,k ∈Z }. ④终边在y 轴上的角的集合:{α|α=kπ+π2 ,k ∈Z}.⑤终边在坐标轴上的角的集合:{α|α=k ∙π2 ,k ∈Z}. (3)终边在特殊直线上:①终边在y =x 上的角的集合:{α|α=kπ+π4 ,k ∈Z}.②终边在y =-x 上的角的集合:{α|α=kπ−π4 ,k ∈Z}.③终边在坐标轴或四象限角平分线上的角的集合:{α|α=k ∙π4 ,k ∈Z}. 二.弧度制:1.弧度的角:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示.2.正角、负角和零角的弧度数一般的,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角度制与弧度制的换算(1)1°=π180 rad. (2)1 rad =(180π)°4.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr 相关公式:(1)扇形的弧长公式:l =nπr180=|α|r . (2)扇形的面积公式:S =12lr =nπr 2360=12|α|r 2. 三.三角函数概念(1)利用单位圆定义三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: sin α=y . cos α=x . tan α=yx (x ≠0).(2)利用终边上的点定义三角函数:设α是一个任意角,它的终边过点P (x ,y ),|OP |=r 那么: sin α=yr. cos α=xr. tan α=yx(x ≠0).(3)符号法则:一全二正三切四余 (4)特殊角的三角函数值四.三角恒等变形 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sinαcosα=tan α(α≠kπ+π2,k ∈Z). 变形:(1)(sin α±cos α)2=1±2sin αcos α=1±sin2α,(2)sin 2α=1-cos 2α=(1+cos α)(1-cos α); (3)cos 2α=1-sin 2α=(1+sin α)(1-sin α); (4)sin α=tan αcos α(α≠kπ+π2,k ∈Z).2.正弦、余弦的诱导公式:奇变偶不变,符号看象限。
专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭例 4. 函数y =sin x -cos x 的定义域为 .【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线.(3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<-例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T 2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x ∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π= 3π例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( )A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-. 【解析】 【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =, 因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsinφ16,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤, 因此,当11236x ππ+=时,即34x π=时,32y =-, 当5232x ππ+=时,即1312x π=时,3y =. 所以该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值是3,最小值是32-.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)完善表格见解析;图象见解析;最大值为2,最小值为 【解析】 【分析】(1)利用最大值点和零点可确定最小正周期,由此可求得ω;利用()01f =可求得ϕ,由此可得()f x 解析式;令()222262k x k k Z πππππ-+≤+≤+∈即可求得单调递增区间;(2)令26X x π=+,利用五点作图法即可完善表格并得到图象,结合图象可求得最值.(1)若()12f x =,()20f x =,即1x 是()f x 的最大值点,2x 是()f x 的零点,且12x x -的最小值为4π,设()f x 的最小正周期为T ,则44T π=,即2T ππω==,解得:2ω=. 由()01f =可得:()02sin 1f ϕ==,即有1sin 2ϕ=, 26k πϕπ∴=+或()526k k Z ππ+∈,又2πϕ<,6πϕ∴=, 综上所述:()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;令()222Z 262k x k k πππππ-+≤+≤+∈,解得:()Z 36k x k k ππππ-+≤≤+∈,()f x ∴的单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)根据“五点作图法”的要求先完成表格:令2X x π=+.由图可知:当6x π=时,()f x 取到最大值2;当712x π=时,()f x 取到最小值3-. 【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭【答案】C 【解析】 【分析】利用关于正切型函数的不等式去求函数()f x =的定义域【详解】由πtan(2)14x,可得ππππ2π442k x k ,则π3πππ2428k k x则函数()f x 3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭ 故选:C例 4. 函数y =sin x -cos x 的定义域为 . 【答案】5{|22,}44x k x k k Z ππππ+≤≤+∈ 【解析】法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为4π,54π,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈. 法二:sin x -cos x =2sin (4x π-)≥0,将4x π-视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -4π≤π+2k π(k ∈Z ),解得2k π+4π≤x ≤2k π+54π (k ∈Z ),所以定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈ 【点睛】若定义域中含k π或2k π应注明k ∈Z . 【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线. (3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-【答案】A 【解析】709,,sin()1,363663x x x ππππππ∴≤≤∴-≤-≤≤-≤max min 2,y y ∴==故选A例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.【答案】16,8⎡⎤-⎢⎥⎣⎦【解析】 【分析】由x 的范围求出tan x 的范围,再根据二次函数的性质即可得出答案. 【详解】因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]tan 1,1x ∈-,22312tan 3tan 12tan 48y x x x ⎛⎫=-+-=--+ ⎪⎝⎭,则当3tan 4x =时,()max 18f x =,当tan 1x =-时,()min 6f x =-, 所以函数()f x 的值域为16,8⎡⎤-⎢⎥⎣⎦.故答案为:16,8⎡⎤-⎢⎥⎣⎦.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π,076x π=,03y =;(2)最大值0,最小值3-. 【解析】 【详解】试题分析:(1)由图可得出该三角函数的周期,从而求出00,x y ;(2)把26x π+看作一个整体,从而求出最(1)由题意知:()f x 的最小正周期为π,令y=3,则2+2k k 62x Z πππ+=∈,,解得+k k 6x Z ππ=∈,,所以076x π=,03y =. (2)因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是 当206x π+=,即12x π=-时,()f x 取得最大值0;当262x ππ+=-,即3x π=-时,()f x 取得最小值3-.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,CD 选项均不满足条件.例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】 【详解】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<- 【答案】A 【解析】 【分析】依题意可求ω=2,又当x 23π=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=A sin (2x 6π+),解:依题意得,函数f (x )的周期为π, ∵ω>0, ∴ω2ππ==2.又∵当x 23π=时,函数f (x )取得最小值, ∴223π⨯+φ=2k π32π+,k ∈Z ,可解得:φ=2k π6π+,k ∈Z , ∴f (x )=A sin (2x +2k π6π+)=A sin (2x 6π+).∴f (﹣2)=A sin (﹣46π+)=A sin (6π-4+2π)>0.f (2)=A sin (46π+)<0, f (0)=A sin 6π=A sin56π>0, 又∵326ππ->4+2π562ππ>>,而f (x )=A sin x 在区间(2π,32π)是单调递减的,∴f (2)<f (﹣2)<f (0). 故选A .例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【答案】D【解析】法一:(反子集法)∵x ∈⎝⎛⎭⎫π2,π,∴ωx +π4∈⎝⎛⎭⎫πω2+π4,πω+π4. ∵f (x )在⎝⎛⎭⎫π2,π上单调递减,∴⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,解得⎩⎨⎧ω≥4k +12,k ∈Z ,ω≤2k +54,k ∈Z.∴k =0,此时12≤ω≤54,故选D .法二:(子集法)由2k π+π2≤ωx +π4≤2k π+3π2,得2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z ,因为f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减, 所以⎩⎨⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得⎩⎨⎧ω≥4k +12,ω≤2k +54.因为k ∈Z ,ω>0,所以k =0,所以12≤ω≤54,即ω的取值范围为⎣⎡⎦⎤12,54.故选D . 【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3【答案】A 【解析】 【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<, 322π⎛⎫324ππ2所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】 由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+【答案】A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 22πy =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确;y =sin2x +cos2x =(2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确;y =sin x +cosx =(x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确;故选A .例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.三角函数是奇、偶函数的充要条件(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π= 【答案】A 【解析】 【详解】试题分析:由题图知,2A =,最小正周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+.因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22()32k k Z ππϕπ+=+∈,令0k =,得6πϕ=-,所以2sin(2)6y x π=-,故选A. 例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( ) A .[]4,2-- B .[]2,0-C .[]0,2D .[]2,4【答案】A(1)4sin(1)14sin11f -=-+=-+,因为sin1sin 4π>4sin110-+<,(0)4sin10f =>,因此()f x 在[1,0]-上有零点,故在[2,0]-上有零点;(2)4sin524sin(25)2f π=-=---,而025ππ<-<,即sin(25)0π->,因此(2)0f <,故()f x 在[0,2]上一定存在零点;虽然(4)4sin1740f =-<,但99()4sin(1)4sin(1)844f πππππ=+-=+-,又21243πππ<+<,即3sin(1)42π+>,从而,于是()f x 在区间9[2,]8π上有零点,也即在[2,4]上有零点,排除B ,C ,D ,那么只能选A .例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据()f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈, 因为0>ω,所以当0k =时min 3ω=; 故答案为:3例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3求出36x π+的范围,再由函数值为零,得到36x π+的取值可得零点个数.【详解】 详解:0x π≤≤ 193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点.。
第2节同角三角函数的基本关系与诱导公式考试要求 1.理解同角三角函数的基本关系:sin2α+cos2α=1,sin αcos α=tan α;2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α-sin__α-sin__αsin__αcos__αcos__α余弦cos α-cos__αcos__α-cos__αsin__α-sin__α正切tan αtan__α-tan__α-tan__α口诀函数名改变,符号看象限函数名改变,符号看象限1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α;sin α=tan α·cos α.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.1.思考辨析(在括号内打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)sin(π+α)=-sin α成立的条件是α为锐角.( ) (3)若α∈R ,则tan α=sin αcos α恒成立.( ) (4)若sin(k π-α)=13(k ∈Z ),则sin α=13.( ) 答案 (1)× (2)× (3)× (4)× 解析 (1)对任意的角α,sin 2α+cos 2α=1. (2)中对于任意α∈R ,恒有sin(π+α)=-sin α. (3)中当α的终边落在y 轴上时,商数关系不成立. (4)当k 为奇数时,sin α=13, 当k 为偶数时,sin α=-13.2.求值:cos 2 023π6=________. 答案 -32解析 cos ⎝ ⎛⎭⎪⎫337π+π6=-cos π6=-32.3.若cos α=33,则tan α=________. 答案 ±2解析 因为cos α=33, 所以sin α=±1-cos 2 α=±1-⎝ ⎛⎭⎪⎫332=±63 .故tan α=sin αcos α=±2.4.(易错题)已知sin θ+cos θ=43,θ∈⎝ ⎛⎭⎪⎫0,π4,则sin θ-cos θ的值为________.答案 -23解析:∵sin θ+cos θ=43,∴sin θcos θ=718.又∵(sin θ-cos θ)2=1-2sin θcos θ=29,θ∈⎝ ⎛⎭⎪⎫0,π4,∴sin θ-cos θ=-23.5.(2022·昆明诊断)若cos ⎝ ⎛⎭⎪⎫π3-α=15,则sin ⎝ ⎛⎭⎪⎫π6+α=________. 答案 15解析 sin ⎝ ⎛⎭⎪⎫π6+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π3-α=15. 6.(2021·沈阳模拟)已知2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,则sin 2α-12sin 2α-cos 2α=________. 答案 -113解析 由2sin(π-α)=3sin ⎝ ⎛⎭⎪⎫π2+α,得2sin α=3cos α.所以tan α=32,从而sin 2α-12sin 2α-cos 2α= sin 2α-sin αcos α-cos 2αsin 2α+cos 2α=tan 2α-tan α-1tan 2α+1=-113.考点一 诱导公式的应用1.化简:sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=________.答案 -1sin α解析原式=cos α(-cos α)tan2αsin α(-sin α)(-sin α)=-1sin α.2.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则sin β=________.答案1 3解析由已知得α+β=π+2kπ,k∈Z.∵sin α=1 3,∴sin β=sin(π+2kπ-α)=sin α=1 3.3.(2022·皖北名校联考)sin 613°+cos 1 063°+tan(-30°)的值为________.答案-3 3解析sin 613°+cos 1 063°-tan 30°=sin(180°+73°)+cos(-17°)-tan 30°=-sin 73°+cos(-17°)-tan 30°=-cos 17°+cos 17°-33=-33.感悟提升 1.诱导公式的两个应用(1)求值:负化正,大化小,化到锐角为终了.(2)化简:统一角,统一名,同角名少为终了.2.含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算.考点二同角三角函数基本关系及其应用角度1切弦互化例1 (1)已知α是第四象限角,tan α=-815,则sin α等于()A.1517B.-1517C.817 D.-817(2)(2021·新高考Ⅰ卷)若tan θ=-2,则sin θ(1+sin 2θ)sin θ+cos θ=( )A.-65B.-25C.25D.65答案 (1)D (2)C解析 (1)因为tan α=-815, 所以sin αcos α=-815,所以cos α=-158sin α,代入sin 2α+cos 2α=1,得sin 2α=64289, 又α是第四象限角,所以sin α=-817. (2)因为tan θ=-2,所以sin θ(1+sin 2θ)sin θ+cos θ=sin θ(sin θ+cos θ)2sin θ+cos θ=sin θ(sin θ+cos θ)=sin 2 θ+sin θcos θsin 2 θ+cos 2θ=tan 2 θ+tan θ1+tan 2θ=4-21+4=25. 角度2 sin α±cos α与sin αcos α的转化例2 若sin θ-cos θ=43,且θ∈⎝ ⎛⎭⎪⎫34π,π,则sin(π-θ)-cos(π-θ)=( )A.-23B.23C.-43D.43 答案 A解析 由sin θ-cos θ=43得1-2sin θcos θ=169,即2sin θcos θ=-79, ∴(sin θ+cos θ)2=1+2sin θcos θ=29. 又θ∈⎝ ⎛⎭⎪⎫34π,π,∴sin θ+cos θ<0,∴sin θ+cos θ=-23,则sin(π-θ)-cos(π-θ)=sin θ+cos θ=-23,故选A.感悟提升 1.(1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化. (2)形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.2.注意公式的逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.3.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.训练1 (1)(2022·北京市西城区模拟)已知α∈(0,π),cos α=-35,则tan α等于( ) A.34B.-34C.43D.-43(2)(2022·成都联考)在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( ) A.-32B.-52C.52D.±32(3)(2021·兰州诊断)已知sin α+cos α=75,则tan α=________. 答案 (1)D (2)B (3)43或34解析 (1)因为cos α=-35且α∈(0,π),所以sin α=1-cos 2α=45,所以tan α=sin αcos α=-43.(2)∵在△ABC 中,sin A ·cos A =-18, ∴A 为钝角,∴cos A -sin A <0, ∴cos A -sin A =-(cos A -sin A )2=-cos 2A +sin 2A -2sin A cos A =-1-2×⎝ ⎛⎭⎪⎫-18=-52.(3)将sin α+cos α=75两边平方得1+2sin αcos α=4925, ∴sin αcos α=1225, ∴sin αcos αsin 2α+cos 2α=tan αtan 2α+1=1225, 整理得12tan 2α-25tan α+12=0,解得tan α=43或tan α=34. 考点三 同角三角函数基本关系和诱导公式的综合应用例3 (1)(2020·全国Ⅰ卷)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α=( ) A.53 B.23 C.13 D.59(2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a (|a |≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________.答案 (1)A (2)0解析 (1)由3cos 2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0, 解得cos α=-23或cos α=2(舍去). 又因为α∈(0,π), 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-232=53.故选A. (2)∵cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a ,sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a , ∴cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0.感悟提升 1.利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形.注意角的范围对三角函数值符号的影响.2.用诱导公式求值时,要善于观察所给角之间的关系,利用整体代换的思想简化解题过程.常见的互余关系有π3-α与π6+α,π3+α与π6-α,π4+α与π4-α等,常见的互补关系有π6-θ与5π6+θ,π3+θ与2π3-θ,π4+θ与3π4-θ等.训练2 (1)已知θ为第四象限角,sin θ+3cos θ=1,则tan θ=________; (2)已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________.答案 (1)-43 (2)-33解析 (1)由(sin θ+3cos θ)2=1=sin 2θ+cos 2 θ, 得6sin θcos θ=-8cos 2 θ, 又因为θ为第四象限角,所以cos θ≠0, 所以6sin θ=-8cos θ,所以tan θ=-43.(2)∵⎝ ⎛⎭⎪⎫π6-α+⎝ ⎛⎭⎪⎫5π6+α=π,∴tan ⎝ ⎛⎭⎪⎫5π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.1.sin 1 050°等于( ) A.12 B.-12C.32D.-32答案 B解析 sin 1 050°=sin(3×360°-30°) =-sin 30°=-12.2.若角α的终边在第三象限,则cos α1-sin 2 α+2sin α1-cos 2α的值为( ) A.3 B.-3C.1D.-1答案 B解析 由角α的终边在第三象限,得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3,故选B. 3.已知α是第四象限角,sin α=-1213,则tan(π+α)等于( ) A.-513 B.513C.-125D.125答案 C解析 因为α是第四象限角,sin α=-1213, 所以cos α=1-sin 2 α=513,故tan(π+α)=tan α=sin αcos α=-125. 4.已知sin α-cos α=54,则sin 2α=( ) A.-916 B.-716 C.716 D.916答案 A解析 ∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α,∴sin 2α=1-⎝ ⎛⎭⎪⎫542=-916.5.已知3sin(π+θ)=cos(2π-θ),|θ|<π2,则θ等于( ) A.-π6 B.-π3C.π6D.π3答案 A解析 ∵3sin(π+θ)=cos(2π-θ),∴-3sin θ=cos θ,∴tan θ=-33,∵|θ|<π2,∴θ=-π6.6.若3sin α+cos α=0,则1cos 2α+2sin αcos α的值为 ( )A.103B.53C.23D.-2 答案 A解析 由3sin α+cos α=0,得tan α=-13,则1cos 2 α+2sin αcos α=sin 2 α+cos 2 αcos 2 α+2sin αcos α =tan 2α+11+2tan α=19+11-23=103. 7.若θ∈⎝ ⎛⎭⎪⎫π2,π,则1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=( )A.sin θ-cos θB.cos θ-sin θC.±(sin θ-cos θ)D.sin θ+cos θ答案 A 解析 1-2sin (π+θ)sin ⎝ ⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=(sin θ-cos θ)2=|sin θ-cos θ|, 又∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0, 所以原式=sin θ-cos θ.8.(2022·太原调研)已知3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,则tan ⎝ ⎛⎭⎪⎫5π14+α等于( ) A.-53 B.-35 C.35 D.53 答案 A解析 由3sin ⎝ ⎛⎭⎪⎫33π14+α=-5cos ⎝ ⎛⎭⎪⎫5π14+α,得sin ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+α,所以tan ⎝ ⎛⎭⎪⎫5π14+α=sin ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53cos ⎝ ⎛⎭⎪⎫5π14+αcos ⎝ ⎛⎭⎪⎫5π14+α=-53. 9.(2022·合肥模拟)已知tan(π-α)=2,则sin α+cos αsin α-cos α=________.答案 13解析 由tan(π-α)=2,得tan α=-2,则sin α+cos αsin α-cos α=tan α+1tan α-1=-2+1-2-1=13.10.已知k ∈Z ,则sin (k π-α)cos [(k -1)π-α]sin [(k +1)π+α]cos (k π+α)的值为________. 答案 -1解析 当k =2n (n ∈Z )时,原式=sin (2n π-α)cos [(2n -1)π-α]sin [(2n +1)π+α]cos (2n π+α)=sin (-α)cos (-π-α)sin (π+α)cos α=-sin α(-cos α)-sin α cos α=-1. 当k =2n +1(n ∈Z )时,原式=sin [(2n +1)π-α]cos [(2n +1-1)π-α]sin [(2n +1+1)π+α]cos [(2n +1)π+α]=sin (π-α)cos αsin αcos (π+α)=sin αcos αsin α(-cos α)=-1. 综上,原式=-1.11.已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α=________,cos ⎝ ⎛⎭⎪⎫α-π4=________. 答案 -74 34解析 sin ⎝ ⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α =cos ⎝ ⎛⎭⎪⎫π4+α, ∵α为钝角,∴34π<π4+α<54π.∴cos ⎝ ⎛⎭⎪⎫π4+α<0.∴cos ⎝ ⎛⎭⎪⎫π4+α=-1-⎝ ⎛⎭⎪⎫342=-74. cos ⎝ ⎛⎭⎪⎫α-π4=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫π4+α=34. 12.若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m 2,解得m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5.13.已知角α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( ) A.-32 B.32 C.-12 D.12答案 D解析 终边在直线y =x 上的角为k π+π4(k ∈Z ),因为角α和β的终边关于直线y=x 对称,所以α+β=2k π+π2(k ∈Z ).又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=sin ⎝ ⎛⎭⎪⎫2k π+5π6=12. 14.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=( )A.355B.377C.31010D.13答案 C解析 由已知得⎩⎪⎨⎪⎧3sin β-2tan α+5=0,tan α-6sin β-1=0.消去sin β,得tan α=3,∴sin α=3cos α,代入sin 2α+cos 2α=1,化简得sin 2α=910,则sin α=31010(α为锐角).15.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 023)的值为________.答案 -3解析 因为f (x )=a sin(πx +α)+b cos(πx +β),所以f (4)=a sin(4π+α)+b cos(4π+β)=a sin α+b cos β=3,所以f (2 023)=a sin(2 023π+α)+b cos(2 023π+β)=a sin(π+α)+b cos(π+β)=-a cos α-b cos β=-3.16.已知2θ是第一象限角,且sin 4θ+cos 4θ=59,那么tan θ=________. 答案 22解析 因为sin 4θ+cos 4θ=59,所以(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59. 所以sin θcos θ=23,所以sin θcos θsin 2θ+cos 2θ=23, 即tan θ1+tan 2θ=23,解得tan θ=2或tan θ=22. 又因为2θ为第一象限角,所以2k π<2θ<2k π+π2,k ∈Z .所以k π<θ<π4+k π,k ∈Z .所以0<tan θ<1.所以tan θ=22.。
高考数学一轮复习知识点总结:三角函数高考第一轮复习既以教材为基本内容,又以教学大纲以及当年的考试说明为依据,做到知识点的全面涉及与提高巩固。
整理了高考数学一轮复习知识点总结:三角函数,供参考。
高中数学三角函数知识点总结:锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]co s[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2] sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsin cos(++)=coscoscos-cossinsin-sincossin-sinsincos tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-ta ntan)高中数学三角函数知识点总结:两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)高中数学三角函数知识点总结:和差化积sin+sin = 2 sin[(+)/2] cos[(-)/2]sin-sin = 2 cos[(+)/2] sin[(-)/2]cos+cos = 2 cos[(+)/2] cos[(-)/2]cos-cos = -2 sin[(+)/2] sin[(-)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 高中数学三角函数知识点总结:积化和差sinsin = [cos(-)-cos(+)] /2coscos = [cos(+)+cos(-)]/2sincos = [sin(+)+sin(-)]/2cossin = [sin(+)-sin(-)]/2高中数学三角函数知识点总结:诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin() = sincos() = -cossin() = -sincos() = -costanA= sinA/cosAtan(/2+)=-cottan(/2-)=cottan()=-tantan()=tan诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin=2tan(/2)/[1+tan^(/2)]cos=[1-tan^(/2)]/1+tan^(/2)]tan=2tan(/2)/[1-tan^(/2)]高中数学三角函数知识点总结:其它公式(1)(sin)^2+(cos)^2=1(2)1+(tan)^2=(sec)^2(3)1+(cot)^2=(csc)^2证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC) 整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nZ)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C /2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n -1)/n]=0cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1) /n]=0 以及sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0高考数学一轮复习知识点总结:三角函数就分享到这里了,更多高考备考信息请继续关注高考频道!。
第一部分:基本知识点回顾第一节:三角函数概念1. 角的概念2. 象限角第I 象限角的集合:⎭⎬⎫⎩⎨⎧∈+<<Z k k k ,222ππαπα 第II 角限角的集合:⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,222ππαππα 第III 象限角的集合: ⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,2322ππαππα 第IV 象限角的集合:⎭⎬⎫⎩⎨⎧∈+<<+Z k k k ,)1(2232παππα3. 轴线角4. 终边相同的角①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {}Z k k ∈+⨯=,360|αββ ; ②终边在x 轴上的角的集合:{}Z k k ∈⨯=,180| ββ;③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ;④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ.5. 弧度制定义:我们把长度等于半径长的弧所对的圆心角叫1弧度角 角度制与弧度制的互化:π=︒1801801π=︒ 1弧度︒≈︒=3.57180π6.弧度制下的公式 扇形弧长公式r =α,扇形面积公式211||22S R R α==,其中α为弧所对圆心角的弧度数。
7. 任意角的三角函数定义:利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数.在α终边上任取一点(,)P x y (与原点不重合),记22||r OP x y ==+,则sin y r α=,cos x r α=,tan y xα=,注: ⑴三角函数值只与角α的终边的位置有关,由角α的大小唯一确定,∴三角函数是以角为自变量,以比值为函数值的函数.(2)正弦、余弦、正切函数的定义域8. 各象限角的各种三角函数值符号:一全二正弦,三切四余弦第二节:同角三角函数的基本关系式及诱导公式 一、基础知识(一) 同角三角函数的基本关系式: ①平方关系;1cos sin 22=+αα ②商式关系;αααtan cos sin = 任意角三角函数定义单位圆定义: 坐标点定义: 象限角的三角函数值的符号轴线角的三角函数值 三角函数线 同角三角函数的基本关系式 诱导公式三角函数的图像与性质 定义域、值域、周期性、奇偶性、 单调性(最值)、对称性三角函数的图像 三角函数的性质 函数)sin(ϕω+=x A y 的图像 五点作图法 三角函数的图像变换相关概念的物理意义 先相位后周期:先周期后相位:三角恒等变换1.和、差角公式;2.二倍角公式;3.升、降幂公式;4.半角公式;5.辅助角公式(收缩代换). 解三角形正弦定理 余弦定理及推论 解三角形的四种类型 三角形的面积公式 角的有关概念任意角 定义 分类终边相同角的概念 按旋转方向分: 按终边位置分:弧度制 定义及规定 弧度与角度的换算特殊角的度数与 弧度数的对应表 扇形公式③倒数关系。
三角函数●网络体系总览角的概念推广●考点目标定位1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.2.掌握任意角的正弦、余弦、正切的定义,并会利用与单位圆有关的三角函数线表示正弦、余弦和正切;了解任意角的余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式.3.掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆).4.会用正弦线、正切线画出正弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义,并通过它们的图象理解正弦、余弦、正切函数的性质;会用“五点法”画正弦函数、余弦函数和函数y=A sin(ωx+ϕ)的简图,理解A、ω、ϕ的物理意义.5.了解反正弦、反余弦、反正切的概念,会用反三角表示角.●复习方略指南本部分内容历来为高考命题的热点,其分值约占20%,一般都是三或四个小题,一个大题.小题主要考查三角函数的基本概念、图象、性质及“和、差、倍角”公式的运用.大题则着重考查y=A sin(ωx+ϕ)的图象和性质及三角函数式的恒等变形.试题大都来源于课本中的例题、习题的变形,一般为容易题或中档题.因此复习时应“立足于课本,着眼于提高”.本章内容公式多,三角函数作为工具,和其他知识间的联系密切,因此复习中应注意:1.弄清每个公式成立的条件,公式间的内在联系及公式的变形、逆用等.切不可死记硬背,要在灵、活、巧上下功夫.2.本章突出显现以数形结合思想与等价转化思想为主导的倾向.在本章复习中,应深刻理解数与形的内在联系,理解众多三角公式的应用及三角函数式的化简、求值、证明等无一不体现等价转化思想.3.通过图象的变换理解并掌握利用变换研究图象的思想方法,并从中体会“变换美”.4.有关三角函数方面的应用题,大都需要用“辅助角公式”a sin x +b cos x =22b a + sin (x +ϕ)(其中ϕ角所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定)将函数化成y =A sin (ωx +ϕ)+h 的形式,再求其最值或周期等.4.1 三角函数的概念、同角三角函数的关系、诱导公式●知识梳理1.任意角的三角函数设α是一个任意角,α的终边上任意一点P (x ,y )与原点的距离是r (r =22y x +>0),则sin α=r y ,cos α=r x,tan α=xy . 上述三个比值不随点P 在终边上的位置改变而改变. 2.同角三角函数关系式sin 2α+cos 2α=1(平方关系); ααcos sin =tan α(商数关系); tan αcot α=1(倒数关系). 3.诱导公式α+2k π(k ∈Z )、-α、π±α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.另外:sin (2π-α)=cos α,cos (2π-α)=sin α. ●点击双基 1.已知sin2α=53,cos 2α=-54,那么α的终边在A.第一象限B.第三或第四象限C.第三象限D.第四象限解析:sin α=2sin2αcos 2α=-2524<0,cos α=cos 22α-sin 22α=257>0,∴α终边在第四象限.答案:D2.设cos α=t ,则tan (π-α)等于 A.tt 21-B.-tt 21-C.±tt 21-D.±21tt -解析:tan (π-α)=-tan α=-ααcos sin . ∵cos α=t ,又∵sin α=±21t -, ∴tan (π-α)=±tt 21-.答案:C3.α是第二象限角,P (x ,5)为其终边上一点且cos α=42x ,则x 的值为 A.3B.±3C.-3D.-2解析:∵cos α=r x =52+x x =42x ,∴x =0(舍去)或x =3(舍去)或x =-3. 答案:C 4.若ααsin sin 1-1+=ααcos sin 1+,则α的取值范围是_______.解析:∵ααsin sin 1-1+=|cos |sin 1αα+=ααcos sin 1+,∴cos α>0.∴α∈(2k π-2π,2k π+2π)(k ∈Z ). 答案:α∈(2k π-2π,2k π+2π)(k ∈Z ) 5.化简8sin 1-=_________.解析:8sin 1-=24cos 4sin )(-=|sin4-cos4|=sin4-cos4.答案:sin4-cos4 ●典例剖析【例1】 (1)若θ是第二象限的角,则)()(θθ2sin cos cos sin 的符号是什么?(2)π<α+β<3π4,-π<α-β<-3π,求2α-β的范围.剖析:(1)确定符号,关键是确定每个因式的符号,而要分析每个因式的符号,则关键看角所在象限.(2)可以把α+β与α-β看成两个变量(整体思想),然后把2α-β用这两个变量表示出来即可.解:(1)∵2k π+2π<θ<2k π+π(k ∈Z ),∴-1<cos θ<0,4k π+π<2θ<4k π+2π,-1<sin2θ<0. ∴sin (cos θ)<0,cos (sin2θ)>0.∴)()(θθ2sin cos cos sin <0.(2)设x =α+β,y =α-β,2α-β=mx +ny ,则2α-β=m α+m β+n α-n β=(m +n )α+(m -n )β. ∴⎩⎨⎧-=-=+.12n m n m ,∴m =21,n =23.∴2α-β=21x +23y . ∵π<x <3π4,-π<y <-3π,∴2π<21x <3π2,-2π3<23y <-2π. ∴-π<21x +23y <6π. 评述:(1)解此题的常见错误是: π<α+β<34π, ① -π<α-β<-3π, ② ①+②得0<2α<π,③ 由②得3π<β-α<π,④ ①+④得3π4<2β<3π7,∴3π2<β<6π7. ⑤ ∴-6π7<-β<-3π2.⑥③+⑥得-6π7<2α-β<3π.(2)本题可用线性规划求解,读者不妨一试. 【例2】 已知cos α=31,且-2π<α<0,求ααααtan cos π2sin πcot ⋅-+⋅--)()()(的值.剖析:从cos α=31中可推知sin α、cot α的值,再用诱导公式即可求之.解:∵cos α=31,且-2π<α<0,∴sin α=-322,cot α=-42.∴原式=ααααtan cos sin cot ⋅-⋅-)()(=αααsin sin cot ⋅-=-cot α=42.评述:三角函数式的化简求值是三角函数中的基本问题,也是常考的问题之一.【例3】 已知sin β=31,sin (α+β)=1,求sin (2α+β)的值.剖析:由已知sin (α+β)=1,则α+β=2k π+2π,再将2α+β改造成2(α+β)-β即可求之.解:∵sin (α+β)=1,∴α+β=2k π+2π. ∴sin (2α+β)=sin [2(α+β)-β]=sin β=31.评述:整体代入是常用的技巧,这里要分析已知和要求的结论之间的角的关系和三角函数名称之间的关系.●闯关训练 夯实基础1.角α的终边过点P (-8m ,-6cos60°)且cos α=-54,则m 的值是 A.21 B.-21 C.-23D.23 解析:P (-8m ,-3),cos α=96482+-m m=-54. ∴m =21或m =-21(舍去). 答案:A2.设α、β是第二象限的角,且sin α<sin β,则下列不等式能成立的是 A.cos α<cos β B.tan α<tan β C.cot α>cot β D.sec α<sec β 解析:A 与D 互斥,B 与C 等价,则只要判断A 与D 对错即可.利用单位圆或特殊值法,易知选A.答案:A3.已知tan110°=a ,则tan50°=_________.解析:tan50°=tan (110°-60°)=︒︒+︒-︒60tan 110tan 160tan 110tan =aa 313+-.答案:aa 313+-4.(2004年北京东城区二模题)已知sin α+cos α=51,那么角α是第_______象限的角. 解析:两边平方得1+2sin αcos α=251, ∴sin αcos α=-2512<0. ∴α是第二或第四象限角.答案:第二或第四5.若sin α·cos α<0,sin α·tan α<0,化简2sin 12sin1αα+-+2sin12sin 1αα-+. 解:由所给条件知α是第二象限角,则2α是第一或第三象限角. 原式=2sin 12sin12sin12ααα-++-=|2cos |2α=⎪⎪⎩⎪⎪⎨⎧-.22sec 222sec 2是第三象限角)(是第一象限角),(αααα6.化简[][])()()()(θθθθ+⋅--+⋅++πcos πsin π1cos π1sin k k k k (k ∈Z ). 解:当k =2n (n ∈Z )时,原式=)()()()(θθθθ+⋅--+⋅++π2cos π2sin ππ2cos ππ2sin n n n n=θθθθcos sin cos sin ⋅--⋅-)(=-1.当k =2n +1(n ∈Z )时, 原式=[][])()()()(θθθθ++⋅-+-+⋅++ππ2cos ππ2sin π22cos π22sin n n n n =)(θθθθcos sin cos sin -⋅⋅=-1.综上结论,原式=-1. 培养能力7.(2005年北京东城区模拟题)已知tan (4π+α)=2,求: (1)tan α的值;(2)sin2α+sin 2α+cos2α的值.(1)解:tan (4π+α)=ααtan tan 1-1+=2,∴tan α=31. (2)解法一:sin2α+sin 2α+cos2α=sin2α+sin 2α+cos 2α-sin 2α =2sin αcos α+cos 2α =1+ααα2cos cos sin 2=ααααα222cos sin cos cos sin 2++=1+1+αα2tan tan 2=23. 解法二:sin2α+sin 2α+cos2α=sin2α+sin 2α+cos 2α-sin 2α =2sin αcos α+cos 2α.①∵tan α=31,∴α为第一象限或第三象限角. 当α为第一象限角时,sin α=101,cos α=103,代入①得2sin αcos α+cos 2α=23; 当α为第三象限角时,sin α=-101,cos α=-103,代入①得2sin αcos α+cos 2α=23. 综上所述sin2α+sin 2α+cos2α=23. 8.已知sin θ=a a +-11,cos θ=aa +-113,若θ是第二象限角,求实数a 的值. 解:依题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+-++-<+-<-<+-<.11131101131111022)()(,,a a a a a a a a解得a =91或a =1(舍去). 故实数a =91. 9.设α∈(0,2π),试证明:sin α<α<tan α. 证明:如下图,在平面直角坐标系中作单位圆,设角α以x 轴正半轴为始边,终边与单位圆交于P 点.∵S △OP A <S 扇形OP A <S △OAT ,∴21|MP |<21α<21|A T|. ∴sin α<α<tan α. 探究创新 10.是否存在α、β,α∈(-2π,2π),β∈(0,π)使等式sin (3π-α)=2cos (2π-β),3cos (-α)=-2cos (π+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.解:由条件得⎪⎩⎪⎨⎧.==②①,βαβαcos 2cos 3sin 2sin①2+②2得sin 2α+3cos 2α=2,∴cos 2α=21. ∵α∈(-2π,2π), ∴α=4π或α=-4π. 将α=4π代入②得cos β=23.又β∈(0,π),∴β=6π,代入①可知,符合.将α=-4π代入②得β=6π,代入①可知,不符合. 综上可知α=4π,β=6π. ●思悟小结1.要熟悉任意角的概念、弧度制与角度制的互化、弧度制下的有关公式、任意角的三角函数概念.2.在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范围,并就不同的象限分别求出相应的值.3.注意公式的变形使用,弦切互化、三角代换、消元是三角变换的重要方法,要尽量减少开方运算,慎重确定符号.4.注意“1”的灵活代换,如1=sin 2α+cos 2α=sec 2α-tan 2α=csc 2α-cot 2α=tan α·cot α.5.应用诱导公式,重点是“函数名称”与“正负号”的正确判断,一般常用“奇变偶不变,符号看象限”的口诀.●教师下载中心 教学点睛1.本课时概念多且杂,要求学生在预习的基础上,先准确叙述回忆,复习中注意“三基”的落实.2.利用同角三角函数的关系及诱导公式进行化简、求值、证明时,要细心观察题目的特征,注意培养学生观察、分析问题的能力,并注意做题后的总结,引导学生总结一般规律.如:“切割化弦”“1的巧代”,sin α+cos α、sin αcos α、sin α-cos α这三个式子间的关系.拓展题例【例1】 求sin 21°+sin 22°+…+sin 290°. 分析:sin 21°+cos 21°=sin 21°+sin 289°=1. 故可倒序相加求和.解:设S =sin 20°+sin 21°+sin 22°+…+sin 290°,S =sin 290°+sin 289°+sin 288°+…+sin 20°,∴2S =(sin 20°+sin 290°)+…+(sin 290°+sin 20°)=1×91.∴S =45.5.【例2】 已知sin α+cos β=1,求y =sin 2α+cos β的取值范围. 分析:本题易错解为y =sin 2α+1-sin α,sin α∈[-1,1],然后求y 的取值范围.解:y =sin 2α-sin α+1=(sin α-21)2+43.∵sin α+cos β=1,∴cos β=1-sin α. ∴⎩⎨⎧1.≤≤1-1≤-≤-ααsin sin 11,∴sin α∈[0,1]. ∴y ∈[43,1].。
高考数学第一轮复习必考知识点:三角函数三角函数在研究三角形和圆等几何形状的性质时有重
要作用,下面是高考数学第一轮复习必考知识点,希望对考生报考有帮助。
考试内容
角的概念的推广.弧度制.
任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切. 正弦函数、余弦函数的图像和性质.周期函数.函数
y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.
正弦定理.余弦定理.斜三角形解法.
考试要求
(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.
(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值
和恒等式证明.
(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.
(6)会由已知三角函数值求角,并会用符号
arcsinxarc-cosxarctanx表示.
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. 要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会
用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
(8)“同角三角函数基本关系式:sin2α+cos2α=1,
sinα/cosα=tanα,tanα?cotα=1”.
高考数学第一轮复习必考知识点:三角函数就为大家分享到这里,更多精彩内容请关注高考数学知识点栏目。
语文课本中的文章都是精选的比较优秀的文章,还有不少名
家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教
师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。