大学物理学习指导习题解答-第4章
- 格式:pdf
- 大小:169.76 KB
- 文档页数:6
2023大学物理实验 (杜旭日著) 课后习题答案下载大学物理实验 (杜旭日著)课后答案下载序前言绪论第一章测量误差、不确定度和数据处理1.1 测量1.1.1 直接测量和间接测量1.1.2 等精度测量和非等精度测量1.2 测量的误差1.2.1 测量的误差1.2.2 测量误差的分类1.2.3 测量的精密度、准确度和精确度1.3 测量结果的不确定度1.3.1 测量结果的不确定度的基本概念1.3.2 直接测量结果的不确定度评定1.3.3 间接测量结果的不确定度合成1.4 有效数字1.4.1 测量值的有效数字1.4.2 直接测量量有效数字的读取1.4.3 间接测量量有效数字的运算1.4.4 有效数字的修约规则1.5 常用数据处理方法1.5.1 列表法1.5.2 作图法1.5.3 最小二乘法1.5.4 逐差法1.5.5 Origin软件在数据处理中的应用 1.6 物理实验的基本方法1.6.1 比较法1.6.2 放大法1.6.3 转换法1.6.4 模拟法习题第二章物理实验的基本训练2.1 基本物理量的测量2.1.1 长度测量2.1.2 质量测量2.1.3 时间测量2.1.4电学量的测量2.1.5 温度测量2.1.6 发光强度测量2.2 物理实验的基本调整和操作技术2.3 基本操作练习2.3.1 长度与体积的测量2.3.2 电学基本仪器使用2.3.3 物体密度的测量第三章基础性实验实验3.1 扭摆法测物体转动惯量实验3.2 静态法测定金属丝的弹性模量实验3.3 用焦利秤测量弹簧劲度系数实验3.4 弦线上的驻波实验实验3.5 计算机远程控制Pasco系列实验——力学部分实验3.5.1牛顿第二运动定律的验证实验3.5.2动量守恒定律的验证实验3.6 弹性材料应力-应变特性研究实验3.7 光杠杆法测量固体线膨胀系数实验3.8 冷却法测量金属的比热容实验3.9 空气比热容比的测定实验3.10 用补偿法测电源电动势和内阻实验3.11 电阻元件伏安特性的研究实验3.12 霍尔法测磁场实验3.13 示波器的使用实验3.14 平衡电桥与非平衡电桥特性的研究实验3.15 分光计的调节与使用实验3.16 用牛顿环测透镜的曲率半径实验3.17 利用阿贝折射仪测量折射率和色散实验3.18 偏振光的观测与研究第四章综合性实验第五章设计性实验第六章研究性实验附录大学物理实验 (杜旭日著):内容简介点击此处下载大学物理实验 (杜旭日著)课后答案大学物理实验 (杜旭日著):书籍目录本教材是遵照教育部颁发的工科本科物理实验课程教学要求编写而成的。
第七章 振动【例题精选】例7-1 弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为(A) g m x m T 122∆π= . (B) g m x m T 212∆π=. (C) g m x m T 2121∆π=. (D) g m m x m T )(2212+π=∆. [ B ] 例7-2 已知一简谐振动曲线如图所示,由图确定振子:在 s 时速度为零.在 s 时动能最大.0.5(2n +1) n = 0,1,2,… n n = 0,1,2,…例7-3 在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处.然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动.此物体的运动是否是简谐振动?为什么?答:物体是作简谐振动。
当小物体偏离圆弧形轨道最低点θ 角时,其受力如图所示. 切向分力 θs i n mg F t -= ∵θ 角很小, ∴ sin θ ≈θ牛顿第二定律给出 t t ma F = 即 22d /)(d t R m mg θθ=-θωθθ222//d d -=-=R g t 物体是作简谐振动.例7-4 在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长l 0 = 1.2 cm 而平衡.再经拉动后,该小球在竖直方向作振幅为A = 2 cm 的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =.选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得220d /d )(t x m x l k mg =+-将 0/l mg k = 代入整理后得 0//d d 022=+l gx t x ∴ 此振动为简谐振动,其角频率为.π===1.958.28/0l g ω设振动表达式为 )cos(φω+=t A x 由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0∴ )1.9c o s (1022t x π⨯=-例7-5 用余弦函数描述一简谐振子的振动.若其速度~时间(v ~t )关系曲线如图所示,则振动的初相位为 (A) π/6. (B) π/3.(C) π/2. (D) 2π/3. [ A ]g1--例7-6 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为: (A) )3232cos(2π+π=t x . (B) )3232cos(2π-π=t x . (C) )3234cos(2π+π=t x . (D) )3234cos(2π-π=t x .[ C ] 例7-7 一质点沿x 轴作简谐振动,振动方程为 )312cos(1042π+π⨯=-t x (SI).从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 21 [ D ] 例7-8 在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)两种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ;(b) . )212cos(π-=T t A x π )2cos(π+=Tt A x π 例7-9 一个轻弹簧在60N 的拉力下可伸长30cm ,现将以物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正)ma N mg =- )(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 A = 10 cm ,N/m 2003.0/60k ==有 50/==m k ωrad ·s -1 系统最大加速度为 52max ==A a ω m ·s -2 此值小于g ,故小物体不会离开.(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-==6.19/2-=-=ωg x cm 即在平衡位置上方19.6 cm 处开始分离由g A a >=2max ω,可得 2/ωg A >=19.6 cm .例7-10 、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为 (A) π23. (B) π. (C) π21. (D) 0. [ B ] 例7-11 一质点同时参与两个在同方向的简谐振动,其表达式分别为)t 2cos(104x 21π/6+⨯=-, )5t 2cos(103x 22π/6-⨯=- (SI) 则其合成振动的振幅为 ,初相为 .1×10-2 m π/6A/ -【练习题】7-1 一质点作简谐振动,振动方程为)cos(φω+=t A x ,其中m 是质点的质量,k 是弹簧的劲度系数,T 是振动的周期.在求质点的振动动能时,下面哪个表达式是对的:(A) )(sin 21222φωω+t A m . (B) )(cos 21222φωω+t A m . (C))sin(212φω+t kA . (D) )(cos 2122φω+t kA . [ A ] 7-2 一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A . (C) φωcos A -. (D) φωcos A .[ B ] 7-3 一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为 (A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ B ] 7-4 与例7-4相同 7-5 一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =;用余弦函数描述时初相φ = .3.43 s -2π/37-6 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ] 7-7 一弹簧振子系统具有1.0 J 的振动能量,0.10 m 的振幅和1.0 m/s 的最大速率,则弹簧的劲度系数为 ,振子的振动频率为 .2×102 N/m 1.6 Hz 7-8 两个同方向的简谐振动曲线如图所示.合振动的振幅为;合振动的振动方程为 .|A 1 – A 2| )212cos(12π+π-=t T A A x 7-9 一单摆的悬线长l = 1.5 m ,在顶端固定点的竖直下方0.45 m 处有一小钉,如图.设摆动很小,则单摆的左右两方振幅之比A 1/A 2的近似值为 ;左右两方周期之比T 1/T 2的近似值为 .0.84 0.84·--7-10 在竖直面内半径为R 的一段光滑圆弧形轨道上,放一小物体,使其静止于轨道的最低处.然后轻碰一下此物体,使其沿圆弧形轨道来回作小幅度运动. 试证明:物体作简谐振动的周期为:g R T /2π=证明: 当小物体偏离圆弧形轨道最低点θ 角时,其受力如图所示. 切向分力 θsin mg F t -= ∵ θ 角很小, ∴ sin θ ≈θ 牛顿第二定律给出 t t ma F = 即 θωθθ222//d d -=-=R g t 将上式和简谐振动微分方程比较可知,物体作简谐振动. 由③知 R g /=ω 周期 g R T /2/2π=π=ω。
第4章 机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动 离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。
简谐振动的运动方程 cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。
3.周期T 作简谐振动的物体完成一次全振动所需的时间。
4.频率ν 单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω 作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位 简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量 作简谐振动的系统具有动能和势能。
弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+== 8.阻尼振动 振动系统因受阻尼力作用,振幅不断减小。
9.受迫振动 系统在周期性外力作用下的振动。
周期性外力称为驱动力。
10.共振 驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。
4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。
重点例题第一章·书中的例题1.1, 1.4(P.6;P.15)一质点作匀速圆周运动,半径为r,角速度为ω,·书中例题:1.2, 1.6(p.7;p.17)(重点)直杆AB两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt随时间变化,其中ω为常量。
求:杆中M点的运动学方程。
·习题指导P9. 1.4(重点)在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少?·书中例题1.3, 1.5, 1.7(p.7;p.16;p.18)已知:运动学方程:x = -0.31t 2+7.2t +28 y = 0.22t 2-9.1t +30 求:t =15s 时的位置矢量和方向。
·例题:已知:a =100-4t 2,且t =0时,v =0,x =0 求:速度v 和运动学方程x第二章·例题:飞机着陆时受到的阻力为F=-ct,(c为常数)且t=0时,v=v0。
求:飞机着陆时的速度。
·例题:(重点)质量为m的物体以速度v0投入粘性流体中,受到阻力f=-cv (c为常数)而减速,若物体不受其它力,求:物体的运动速度。
·例题:(重点)光滑的桌面上一质量为M,长为L的匀质链条,有极小一段被推出桌子边缘。
求:链条刚刚离开桌面时的速度。
·例:有一个小球通过一根细线挂在车顶,当车静止时小球铅直向下,当车以加速度a开动时与铅垂线夹角θ。
求:加速度与θ之间的关系。
典型例题·书中例题 2.9(p76 )(非质点问题的处理方法)试证明在圆柱形容器内,以匀角速度ω绕中心轴作匀速旋转的流体表面为旋转抛物面。
y·书中例题P82,例2.14 (变质量,变力问题)长为L质量为M的均匀柔绳,盘绕在光滑的水平面上,从静止开始,以恒定加速度a竖直向上提绳,当提起的高度为l时,作用在绳端力的大小是多少?当以恒定速度v竖直向上提绳,当提起的高度为l时,作用在绳端力的大小又是多少?第三章·书中例题3.1 (P.95)已知:F=6x;cosθ=0.70-0.02x求:质点从x1=10m到x2=20m过程中F所作的功。
第4章动态电路的时域分析学习指导与题解一、基本要求1.明确过渡过程的含义,电路中发生过渡过程的原因及其实。
2.熟练掌握换路定律及电路中电压和电流初始值的计算。
3.能熟练地运用经典分析RC和RL电路接通或断开直流电源时过渡过程中的电压和电流。
明确RC和RL电路放电和充电时的物理过程与过渡过程中电压电流随时间的规律。
4.明确时间常数、零输入与零状态、暂态与稳态、自由分量与强制分量的概念,电路过渡过程中的暂态响应与稳态响应。
5.熟练掌握直流激励RC和RL一阶电路过渡过程分析的三要素法。
能分析含受控源一阶电路的过渡过程。
6.明确叠加定理在电路过渡过程分析中的应用,完全响应中零输入响应与零状态响应的分解方式。
掌握阶跃函数和RC,RL电路阶跃响应的计算。
7.明确RLC电路发生过渡过程的物理过程,掌握RLC串联二阶电路固有频率的计算和固有响应与固有频率的关系,以及振荡与非振荡的概念。
会建立RLC二阶电路描述过渡过程特性的微分方程。
明确初始条件与电路初始状态的关系和微分方程的解法。
会计算RLC 串联二阶电路在断开直流电源时过渡过程中的电压和电流。
了解它在接通直流电源时电压和电流的计算方法。
二、学习指导电路中过渡过程的分析,是本课程的重要内容。
教学内容可分如下四部分:1.过渡过程的概念;2.换路定律;3.典型电路中的过渡过程,包括RC和RL一阶电路和RLC串联二阶电路过渡过程的分析;4.叠加定理在电路过渡过程分析中的应用。
着重讨论电路过渡过程的概念,换路定律,RC和RL一阶电路过渡过程中暂态响应与稳态响应和时间常数的概念,计算一阶电路过渡过程的三要素法,完全响应是的零输入响应和零状态响应,阶跃响应,以及RLC串联二阶电路过渡过程的分析方法。
现就教学内容中的几个问题分述如下。
(一) 关于过渡过程的概念与换路定律1. 关于过渡过程的概念电路从一种稳定状态转变到另一种稳定状态所经历的过程,称为过渡过程。
电路过渡过程中的电压和电流,是随时间从初始值按一定的规律过渡到最终的稳态值。
第三章 功和能【例题精选】*例8-1 一个质点同时在几个力作用下的位移为: k j i r 654+-=∆ (SI),其中一个力为恒力k j i F 953+--= (SI),则此力在该位移过程中所作的功为(A) -67 J (B) 17 J (C) 67 J (D) 91 J [ C ] 例8-2 当重物减速下降时,合外力对它做的功(A) 为正值. (B) 为负值.(C) 为零. (D) 先为正值,后为负值. [ B ] 例8-3 质量m =1 kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开始运动的3 m 内,合力所作的功W = ;且x =3 m 时,其速率v = .18 J 6 m/s例8-4 如图所示,劲度系数为k 的弹簧,一端固定于墙上,另一端与一质量为m 1的木块A 相接,A 又与质量为m 2的木块B 用不可伸长的轻绳相连,整个系统放在光滑水平面上.现在以不变的力F 向右拉m 2,使m 2自平衡位置由静止开始运动,求木块A 、B 系统所受合外力为零时的速度,以及此过程中绳的拉力T 对m 1所作的功. 解:设弹簧伸长x 1时,木块A 、B 所受合外力为零,即有: F -kx 1 = 0 x 1 = F /k 设绳的拉力T 对m 2所作的功为W T 2,恒力F 对m 2所作的功为为W F ,木块A 、B 系统所受合外力为零时的速度为v ,弹簧在此过程中所作的功为W K . 对m 1、m 2系统,由动能定理有 W F +W K =221)(21v m m + ① 对m 2有 W F +W T 2=2221v m 而 W K =k F kx 221221-=-, W F =Fx 1=kF 2 代入①式可求得 )(21m m k F +=v由②式可得+-=F T W W 22221v m ])(21[2122m m m k F +--=)(2)2(21212m m k m m F ++-= 例8-5 一质量为m 的质点在Oxy 平面上运动,其位置矢量为 j t b i t a r ωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b .(1) 求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2 )求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F 的分力x F 作的功.解:(1) 位矢 j t b i t a r ωωsin cos += (SI) t a x ωc o s=, t b y ωsin =xt a t x x ωωsin d d -==v , t b ty ωωc o s d dy -==v 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ω E KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 例8-6 质量为m 的汽车,在水平面上沿x 轴正方向运动,初始位置x 0=0,从静止开始加速.在其发动机的功率P 维持不变、且不计阻力的条件下,证明:在时刻t 其速度表达式为:m Pt /2=v . 证明: 由P =F v 及F =ma ,P =ma v 代入 t a d d v = P =tm d d v v 由此得P d t =m v d v ,两边积分,则有⎰⎰=t t m t P 00d d v v ∴ 221v m Pt = ∴ m Pt /2=v 例8-7 已知地球的半径为R ,质量为M .现有一质量为m 的物体,在离地面高度为2R 处.以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无穷远处为势能零点,则系统的引力势能为 .(G 为万有引力常量)R GmM 32 RGmM 3- 例8-8 有人把一物体由静止开始举高h 时,物体获得速度v ,在此过程中,若人对物体作功为W ,则有mgh m W +=2/2v ,这可以理解为“合外力对物体所作的功等于物体动能的增量与势能的增量之和”吗?为什么?答:W 并不是合外力所作的功.因为物体所受的力除了人的作用力F 外,还有重力P =mg , 根据动能定理,合外力所作的功等于物体动能的增量,则可写为221v m mgh Fh =- 即 021)(2+=-v m h P F 所以 mgh m Fh W +==221vW 是人对物体所作的功,而不是物体所受合外力所作的功.例8-9 对功的概念以下几种说法中正确的是:(1) 保守力作正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.(A) (1)、(2)是正确的. (B) (2)、(3)是正确的.(C) 只有(2)是正确的. (D) 只有(3)是正确的. [ C ]例8-10 一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求:物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ )ctg 1(220αμ+=g h v =4.5 m (2) 根据功能原理有fs m mgh =-221v αμc t g 212m g h m g h m -=v []21)ctg 1(2αμ-=gh v =8.16 m/s【练习题】3-1 质量为10kg 的质点在力F =(7+5x )i(SI)的作用下沿x 轴从静止开始作直线运动, 从x =0到x =10 m 的过程中,力F 所做的功为 .质点末态的速度为 .320J 8 m/s3-2 对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0. (B) 合外力不作功.(C) 外力和非保守内力都不作功. (D) 外力和保守内力都不作功. [ C ] 3-3 速度为v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,当子弹射入木板的深度等于其厚度的一半时,子弹的速度是(A) v 41. (B) v 31. (C) v 21. (D) v 21. [ D ] 3-4 如图所示,小球沿固定的光滑的1/4圆弧从A 点由静止开始下滑,圆弧半径为R ,则小球在A 点处的切向加速度a t = ,小球在B 点处的法向加速度a n = .g 2g3-5 劲度系数为k 的弹簧,上端固定,下端悬挂重物.当弹簧伸长x 0,重物在O 处达到平衡,取重物在O 处时各种势能均为零,则当弹簧长度为原长时,系统的重力势能为 ;系统的弹性势能为 .(答案用k 和x 0表示) 20kx 2021kx -3-6 一人造地球卫星绕地球作椭圆运动,近地点为A ,远地点为B .A 、B 两点距地心分别为r 1 、r 2 .设卫星质量为m ,地球质量为M ,万有引力常量为G .则卫星在A 、B 两点处的万有引力势能之差E PB - E P A =;卫星在A 、B 两点的动能之差E PB -E PA = . 2112r r r r GMm - 2121r r r r GMm - *3-7 设两个粒子之间相互作用力是排斥力,其大小与粒子间距离r 的函数关系为3r k f =,k 为正值常量,试求这两个粒子相距为r 时的势能(设相互作用力为零的地方势能为零)。
第八章 波动【例题精选】例8-1 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 t y π⨯=-4c o s 1032(SI). (1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.解:(1) 坐标为x 点的振动相位为 )]/([4u x t t +π=+φω )]/([4u x t +π=)]20/([4x t +π=波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI)(2) 以B 点为坐标原点,则坐标为x 点的振动相位为 ]205[4-+π='+x t t φω (SI) 波的表达式为 ])20(4cos[1032π-+π⨯=-xt y (SI) 例8-2已知波长为λ 的平面简谐波沿x 轴负方向传播.x = λ /4处质点的振动方程为ut A y ⋅π=λ2cos(SI)(1) 写出该平面简谐波的表达式. (2) 画出t = T 时刻的波形图.解:(1) 如图A ,取波线上任一点P ,其坐标设为x ,由波的传播特性,P 点的振动落后于λ /4处质点的振动.波的表达式 )]4(22cos[x utA y -π-π=λλλ)222cos(x ut A λλπ+π-π= (SI) (2) t = T 时的波形和 t = 0时波形一样. t = 0时)22cos(x A y λπ+π-=)22cos(π-π=x A λ 按上述方程画的波形图见图B .例8-3 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求:(1) 该质点的振动方程; (2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程 )22c o s (06.00π+π=ty )c o s (06.0π+π=t (SI) (2) 波动表达式 ])/(cos[06.0π+-π=u x t y ])21(cos[06.0π+-π=x t (SI)(3) 波长 4==uT λ mABxuOxPxλ/4 u图A例8-4 一平面简谐波沿Ox 轴正向传播,波动表达式为 ]4/)/(cos[π+-=u x t A y ω,则 x 1 = L 1处质点的振动方程是 ; x 2 = -L 2 处质点的振动和x 1 = L 1 处质点的振动的相位差为 φ2 - φ1 = . ]4/)/(cos[11π+-=u L t A y ωuL L )(21+ω例8-5一平面简谐波的表达式为 )37.0125cos(025.0x t y -= (SI),其波速u = ;波长λ = .338 m/s 17.0 m例8-6 已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波长为 ;波沿x轴传播的速度为 .2π / b a /b例8-7 一平面简谐波的表达式为 )/(2c o sλνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是 (A) -1. (B)31. (C) 1. (D) 3. [ A ] 例8-8 沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程. 解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图.此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ )2121c o s (5.0π+π=t y (SI) 例8-9 一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式. 解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则波的表达式可写成 )/27c o s(1.0φλ+π-π=x t y (SI) t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy因此时a 质点向y 轴负方向运动,故 π=+π-π21)/1.0(27φλ ① b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ②由①、②两式联立得 λ = 0.24 m 3/17π-=φx (m)y (m) 0u0.5 12t = 0 -1∴ 该平面简谐波的表达式为 ]31712.07cos[1.0π-π-π=x t y (SI) 例8-10 图示一简谐波在t = 0时刻与t = T /4时刻(T 为周期)的波形图,则o处质点振动的初始相位为 ;x 1处质点的振动方程为 .π /2 )22cos(1π-π=t T A y x 例8-11 图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250Hz ,且此时质点P 的运动方向向下,求:(1) 该波的表达式;(2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式.解:(1) 由P 点的运动方向,可判定该波向左传播.原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φ O 处振动方程为 )41500c o s (0π+π=t A y (SI) 由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y (SI) (2) 距O 点100 m 处质点的振动方程是 )45500cos(1π+π=t A y振动速度表达式是 )45500cos(500π+ππ-=t A v (SI)例8-12 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [ B ] 例8-13 设入射波的表达式为 )(2cos 1Tt x A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求:(1) 反射波的表达式 (2) 合成的驻波的表达式.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2c o s ()21/2c o s (2π-ππ+π=T t x A λ 例8-14 如果入射波的表达式是)//(2cos 1λx T t A y +=π,在x = 0处发生反射后形成驻波,反射点为波腹.设反射后波的强度不变,则反射波的表达式y 2 = ; 在x = 2λ /3处质点合振动的振幅等于 .)(2cos λxT t A -π A/4例8-15 在固定端x = 0处反射的反射波表达式是)/(2cos 2λνx t A y -π=. 设反射波无能量损失,那么入射波的表达式是y 1 = ;形成的驻波的表达式是y = .])/(2cos[π++πλνx t A )212cos()21/2cos(2π+ππ+πt x A νλ例8-16 驻波表达式为t x A y ωλcos )/2cos(2π=,则2/λ-=x 处质点的振动方程是 ;该质点的振动速度表达式是 .t A y ωcos 21-= t A ωωsin 2=v例8-17 在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ B ]【练习题】8-1 一横波沿绳子传播,其波的表达式为: )2100c o s(05.0x t y π-π= (SI) (1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度. (3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.解:(1) 已知波的表达式为)2100cos(05.0x t y π-π= 与标准形式)/22cos(λνx t A y π-π= 比较得A = 0.05 m , ν = 50 Hz , λ = 1.0 m u = λν = 50 m/s(2) 7.152)/(max max =π=∂∂=A t y νv m /s 322max 22max 1093.44)/(⨯=π=∂∂=A t y a ν m/s 2 (3) π=-π=∆λφ/)(212x x ,二振动反相8-2 一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为 (A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν.(C) ]21)(2cos[0π--π=t t A y ν. (D)])(2cos[0π+-π=t t A y ν. [ B ]8-3 已知一平面简谐波的表达式为 )cos(dx bt A y -=,(b 、d 为正值常量),则此波的频率ν = ;波长λ = . b / 2π 2π / dx8-4 一平面简谐机械波沿x 轴正方向传播,波动表达式为)2/cos(2.0x t y ππ-= (SI),则波速u = ;x = -3 m 处媒质质点的振动加速度a 的表达式为 .2 m/s )23cos(2.02x t a π+ππ-= (SI) 8-5 一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点为λ/8处质点的振动方程.(3) 求距O 点为λ/8处质点在t = 0时的振动速度. 解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为0cos 0==φA y , 0s i n 0<-=φωA v 所以 2/π=φ 波的表达式为]2/)/(c o s [π+-=u x t A y ωω(2) 8/λ=x 处振动方程为]2/)8/2(cos[ππ+-=λλωt A y )4/cos(π+=t A ω (3) )2//2sin(/d d ππ+--=λωωx t A t yt = 0,8/λ=x 处质点振动速度 ]2/)8/2sin[(/d d ππ+--=λλωA t y 2/2ωA -= 8-6 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为 (A) ])/(cos[0φω+-=u x t A y . (B) )]/([cos u x t A y +=ω.(C) })]/([cos{0φω+-=u x t A y . (D) })]/([cos{0φω++=u x t A y . [ D ] 8-7 已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI). (1) 求该波的波长λ ,频率ν 和波速u的值; (2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置. 解:(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 波速 u = νλ = 2 m/s(2) 波峰的位置,即y = A 的位置.由 1)24(c o s=+πx t 有 π=+πk x t 2)24( ( k = 0,±1,±2,…) 解上式,有 t k x 2-=. 当 t = 4.2 s 时, )4.8(-=k x m . 所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8, 可得 x = -0.4 的波峰离坐标原点最近.8-8 与例8-3相同8-9 一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为 ;与P 1点处质点振动状态相同的那些点的位置是 .])(2cos[212φλν++-π=L L t A y λk L x +-=1 ( k = ± 1, ± 2, …)xuOyxOP 1 P 2 L 1 L 28-10 一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [ D ] 8-11 一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [ C ] 8-12 一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π=, 求:(1) x = λ/4 处介质质点的合振动方程; (2) x = λ/4 处介质质点的速度表达式.解:(1) x = λ /4处 )2/2cos(1ππ-=t A y ν , )2/2cos(22ππ+=t A y ν∵ y 1,y 2反相 ∴合振动振幅A A A A s =-=2, 合振动的初相φ 和y 2的初相一样为π21. 合振动方程 )2/2c o s(ππ+=t A y ν (2) x = λ /4处质点的速度 )2/ 2sin(2/d d v πππ+-==t A t y νν)2cos(2π+ππ=t A νν8-13 在绳子上传播的平面简谐入射波表达式为)2cos(1λωxt A y π+=,入射波在x = 0处绳端反射,反射端为自由端.设反射波不衰减,证明形成的驻波表达式为:t xA y ωλcos )2cos(2π=证明:入射波在x = 0处引起的振动方程为 t A y ωcos 10=,由于反射端为自由端,所以反射波在O 点的振动方程为 t A y ωcos 20=∴ 反射波为 )2c o s (2λωxt A y π-=驻波方程21y y y +=)2cos(λωx t A π+=)2cos(λωx t A π-+t x A ωλcos )2cos(2π= 8-14 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差 ]2[]2[1112λφλφx x d π---π-π+=)12(K 即 π+=-π--)12(22)(112K x d λφφ ① 在x 2点两波引起的振动相位差 ]2[]2[2122λφλφxx d π---π-π+=)32(K即 π+=-π--)32(22)(212K x d λφφ ②②-①得 π=-π2/)(412λx x 6)(212=-=x x λ m由① π+=-π+π+=-)52(22)12(112K x d K λφφ当K = -2、-3时相位差最小π±=-12φφ。
第四章动量、角动量【例题精选】例4-1一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t+0.96(SI),则2秒末物体的速度大小v = .2秒末物体的加速度大小a = .0.89 m/s1.39 m/s 2 例4-2质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v(v A > v B )的两质点A 和B ,受到相同的冲量作用,则 (A) A 的动量增量的绝对值比B 的小. (B) A 的动量增量的绝对值比B 的大. (C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等.[ C ] *例4-3质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 点时,轨道作用于质点的冲量的大小为 (A) m v (B)2m v(C)3m v (D) 2m v [ C ]例4-4一人用恒力F推地上的木箱,经历时间∆t 未能推动木箱,此推力的冲量等于多少?木箱既然受了力F的冲量,为什么它的动量没有改变?答:推力的冲量为t F ∆.动量定理中的冲量为合外力的冲量,此时木箱除受力F外还受地面的静摩擦力等其它外力,木箱未动说明此时木箱的合外力为零,故合外力的冲量也为零,根据动量定理,木箱动量不发生变化. 例4-5如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重) 解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为 t q m m ∆=∆设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x )(00v m t f y ∆--=∆将t q m m ∆=∆代入得v m x q f =,0v m y q f =∴14922=+=y x f f f Nf与x 轴正向夹角为α = arctg (f x / f y ) = 57.4°由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.hAvAxyαf y ∆tt f ∆f x ∆t例4-6在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力) (A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ] 例4-7质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量. 解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒. 令子弹穿出时物体的水平速度为v '有m v 0 =m v +M v 'v '=m (v 0 -v )/M=3.13 m/s T=Mg+M v 2/l=26.5 N(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向)负号表示冲量方向与0v方向相反.例4-8如图所示,质量M = 2.0 kg 的笼子,用轻弹簧悬挂起来,静止在平衡位置,弹簧伸长x 0 = 0.10 m ,今有m = 2.0 kg 的油灰由距离笼底高h = 0.30 m 处自由落到笼底上,求笼子向下移动的最大距离. 解:油灰与笼底碰前的速度gh 2=v 0/x Mg k =碰撞后油灰与笼共同运动的速度为V ,应用动量守恒定律V M m m )(+=v ①油灰与笼一起向下运动,机械能守恒,下移最大距离∆x ,则x g m M kx V m M x x k ∆∆++++=+)(21)(21)(2120220② 联立解得:3.0)(20222020=+++=∆m M M hx m Mx m x M mx m 例4-9假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C)角动量不守恒,动能守恒.(D)角动量守恒,动量也守恒. [ A ] *例4-10 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K分别表示卫星对地心的角动量及其动能的瞬时值,则应有 (A) L A >L B ,E KA >E kB (B) L A =L B ,E KA <E KB(C) L A =L B ,E KA >E KB (D) L A <L B ,E KA <E KB [ C ]Mm0v【练习题】4-1一颗子弹在枪筒里前进时所受的合力大小为 t F 31044005⨯-=(SI)子弹从枪口射出时的速率为300 m/s .假设子弹离开枪口时合力刚好为零,则子弹在枪筒中所受力的冲量I = ;子弹的质量m = .0.6 N·s 2 g 4-2如图,两个长方形的物体A 和B 紧靠着静止放在光滑的水平桌面上,已知m A =2 kg ,m B =3 kg .现有一质量m =100g 的子弹以速率v 0=800 m/s 水平射入长方体A ,经t =0.01 s ,又射入长方体B ,最后停留在长方体B 内未射出.设子弹射入A 时所受的摩擦力为F= 3×103 N ,求: (1) 子弹在射入A 的过程中,B 受到A 的作用力的大小. (2) 当子弹留在B 中时,A 和B 的速度大小. 解:子弹射入A 未进入B 以前,A 、B 共同作加速运动.F =(m A +m B )a , a=F/(m A +m B )=600 m/s 2B 受到A 的作用力N =m B a =1.8×103N 方向向右A 在时间t 内作匀加速运动,t 秒末的速度v A =at .当子弹射入B 时,B 将加速而A 则以v A的速度继续向右作匀速直线运动.v A =at =6 m/s取A 、B 和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动量守恒,子弹留在B中后有B B A A m m m m v v v )(0++=m/s 220=+-=BAA B m m m m v v v4-3 质量m =2kg 的质点在力i t F 12=(SI)的作用下,从静止出发沿x 轴正向作直线运动,前三秒内该力作用的冲量大小为 ;前三秒内该力所作的功为 .54N ·s729 J*4-4光滑圆盘面上有一质量为m 的物体A ,拴在一根穿过圆盘中心O 处光滑小孔的细绳上,如图所示.开始时,该物体距圆盘中心O 的距离为r 0,并以角速度ω 0绕盘心O 作圆周运动。
第五章 刚体【例题精选】例5-1 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ C ]例5-2 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度增大,角加速度减小. (B) 角速度增大,角加速度增大.(C) 角速度减小,角加速度减小.(D) 角速度减小,角加速度增大.[ A]例5-3 一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ C 例5-4 光滑的水平面上,有一长为2L 、质量为m 的细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为mL 2/3,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A)L 32v . (B) L 54v . (C) L 76v . (D) L98v . [ C ] 例5-5 一个作定轴转动的物体,对转轴的转动惯量为J .正以角速度ω0=10 rad ·s -1匀速转动.现对物体加一恒定制动力矩 M =-0.5 N ·m ,经过时间t =5.0 s 后,物体停止了转动.物体的转动惯量J = ,物体初态的转动动能为 .0.25 kg ·m 2 12.5 J 例5-6 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 (A)02ωmR J J +. (B) ()02ωRm J J+. (C) 02ωmR J . (D) 0ω. [ A ] 例5-7 质量m 、长l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内转动(转动惯量J =m l 2/12).开始时棒静止,有一质量m 的子弹在水平面内以速度v 0垂直射入棒端并嵌在其中. 则子弹嵌入后棒的角速度为 ;子弹嵌入后系统的转动动能为 .3v 0 / (2l ) 3m v 02 / 32O v俯视图m0v俯视图例5-8 如图,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图. m 1g -T 1=m 1a T 2-m 2g =m 2a设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β由以上四式消去T 1,T 2得:()()Jr m m gr m m ++-=22121β开始时系统静止,故t 时刻滑轮的角速度()()Jr m m grt m m t ++-==22121βω例5-9 质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.解:受力分析如图.mg -T 2 = ma 2 T 1-mg = ma 1T 2 (2r )-T 1r = 9mr 2β/ 22r β = a 2 r β =a 1解上述5个联立方程,得: rg192=β 例5-10 一轻绳跨过两个质量均为m 、半径均为r 端分别挂着质量为m 和2m 滑.两个定滑轮的转动惯量均为2/2mr 的重物组成的系统从静止释放,求两滑轮之间绳内的张力. 解:受受力分析如图所示.2mg -T 1=2ma T 2-mg =maT 1 -T r =β221mr T r -T 2 r =β221mra =r β解上述5个联立方程得: T =11mg / 8例5-11 一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块碰撞前后的速度分别为1v 和2v,如图.求碰撞后细棒从开始转动到停止所需的时间.(棒绕O 点的转动惯量3/21l m J =)解:对棒和滑块系统,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.aa 1Am 1 ,l1v2俯视图m因而系统的角动量守恒: m 2v 1l =-m 2v 2l +ω2131l m ① 碰后棒在转动过程中所受的摩擦力矩为 gl m x x l m gM lf 10121d μμ-=⋅-=⎰② 由角动量定理ω210310l m dt Mtf-=⎰ ③由①、②和③解得 gm m t 12122μv v +=例5-12 一轻绳绕过一轴光滑的定滑轮,滑轮半径为R ,质量为M /4,均匀分布在其边缘上.绳子的A 端有一质量M 的人抓住了绳端,而在另一端B 系了一质量M /2的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2/4 ) 解:受力分析如图所示. 设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.根据牛顿第二定律可得:对人:Mg -T 2=Ma ①对重物:T 1-21Mg =21Ma ②根据转动定律,对滑轮有 (T 2-T 1)R =J β=MR 2β / 4 ③因绳与滑轮无相对滑动, a =βR ④ ①、②、③、④四式联立解得 a =2g / 72【练习题】5-1 转动着的飞轮的转动惯量为J ,在t =0时角速度为ω 0.此后飞轮经历制动过程.阻力矩M 的大小与角速度ω 的平方成正比,比例系数为k (k >0常量).当ω=ω0/3时,飞轮的角加速度β = .从开始制动到ω=ω0/3所经过的时间t = .Jk 920ω- 02ωk J5-2 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ A ] 5-3 一长为l ,质量可以忽略的直杆,绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量m 的小球,如图.将杆由水平位置无初转速地释放.杆刚释放时的角加速度为 , 杆与水平方向夹角为60°时的角加速度为 .g / l g / (2l )*5-4 如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳 端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J 。