2018江苏高考问卷
- 格式:docx
- 大小:179.26 KB
- 文档页数:11
2018年普通高等学校招生全国统一考试(江苏卷)英语第Ⅰ卷第一部分听力(共两节,满分 20 分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节 (共 5 小题;每小题 1 分,满分 5 分)听下面 5 段对话。
每段对话后有一个小题,从题中所给的 A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19. 15.B. £9. 18.C. £9. 15.答案是 C1. What will James do tomorrow?A. Watch a TV program.B. Give a talk.C. Write a report.2. What can we say about the woman?A. Sh e’s generous.B. She’s curious.C. She’s helpful.3. When does the train leave?A. At 6:30.B. At 8:30.C. At 10:30.4. How does the woman go to work?A. By car.B. On foot.C. By bike.5. What is the probable relationship between the speakers?A. Classmates.B. Teacher and student.C. Doctor and patient.第二节 (共 15 小题;每小题 1 分,满分 15 分)听下面 5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的 A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题 5 秒钟;听完后,各小题将给出 5 秒钟的作答时间。
2018年江苏省高考语文真题试卷+Word版+解析版本一、语言文字运用(15分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)中国古代的儒家经典,莫不是古圣人深思熟虑、的结晶。
如果把经典仅仅当作一场的说教,那你永远进不了圣学大门。
必得躬亲实践,才能切实摇圣人的心得,如此我们的修为才能日有所进。
A.特立独行耳提面命顿悟B.特立独行耳濡目染领悟C.身体力行耳提面命领悟D.身体力行耳濡目染顿悟2.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)“理性经济人”,把利己看作人的天性,只追求个人利益的最大化,这是西方经济学的基本假设之一。
,。
,,,,更倾向于暂时获得产品或服务,或与他人分享产品或服务。
使用但不占有,是分享经济最简洁的表述。
①反而更多地采取一种合作分享的思维方式②不再注重购买、拥有产品或服务③但在分享经济这一催化剂的作用下④人们不再把所有权看作获得产品的最佳方式⑤在新兴的互联网平台上⑥这个利己主义的假设发生了变化A.③⑥⑤①④②B.③⑥⑤④②①C.⑤⑥③①④②D.⑤⑥③④②①3.下列诗句与所描绘的古代体育活动,对应全部正确的一项是(3分)①乐手无踪洞箫吹,精灵盘丝任翻飞。
②雾縠云绡妙剪裁,好风相送上瑶台。
③浪设机关何所益,仅存边角未为雄。
④来疑神女从云下,去似姮娥到月边。
A.①下围棋②荡秋千③抖空竹④放风筝B.①抖空竹②荡秋千③下围棋④放风筝C.①下围棋②放风筝③抖空竹④荡秋千D.①抖空竹②放风筝③下围棋④荡秋千4.对下面一段文字主要意思的提炼,最准确的一项是(3分)偏见可以说是思想的放假。
它是没有思想的人的家常日用,是有思想的人的星期天娱乐。
假如我们不能怀挟偏见,随时随地必须得客观公正、正经严肃,那就像造屋只有客厅,没有卧室,又好比在浴室里照镜子还得做出摄影机前的姿态。
学#A.没有思想的人往往更容易产生偏见。
B.即使有思想的人也常常会怀挟偏见。
C.人无法做到随时随地保持客观公正。
2018年普通高等学校招生全国统一考试(江苏卷)英语第Ⅰ卷第一部分听力(共两节,满分20 分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5 小题;每小题 1 分,满分5 分)听下面 5 段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19. 15.B. £9. 18.C. £9. 15.答案是C1. What will James do tomorrow?A. Watch a TV program.B. Give a talk.C. Write a report.2. What can we say about the woman?A. Sh e’s generous.B. She’s curious.C. She’s helpful.3. When does the train leave?A. At 6:30.B. At 8:30.C. At 10:30.4. How does the woman go to work?A. By car.B. On foot.C. By bike.5. What is the probable relationship between the speakers?A. Classmates.B. Teacher and student.C. Doctor and patient. 第二节(共15 小题;每小题 1 分,满分15 分)听下面 5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题 5 秒钟;听完后,各小题将给出 5 秒钟的作答时间。
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
学科@网4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲ .2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数()f x =的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=.(1)求cos2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).学@科网数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分. 解:(1)因为,,所以. 因为,所以, 因此,. (2)因为为锐角,所以.4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈又因为,所以, 因此.因为,所以, 因此,.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则si n θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P 的坐标为. ②因为三角形OAB ,所以1 2AB OP ⋅,从而AB . 设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x =-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立, 即11,1d 3,32d 5,73d 9,得. 112(,)n n n a n d b -=-=1 12|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即,即当时,d 满足.因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). ①当时,, 当时,有,从而.因此,当时,数列单调递增,故数列的最大值为. ②设,当x >0时,, 所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减,故数列的最小值为. 因此,d 的取值范围为.75[,]32111(1),n n n a b n d b b q -=+-=1111|1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n n n q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)x f x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =BC 的长. B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学@科网 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=OC=2,所以OP.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A,det()221310=⨯-⨯=≠A,所以A可逆,从而1-A2312-⎡⎤=⎢⎥-⎣⎦.(2)设P(x,y),则233121xy⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311xy-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cosρθ,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26ρθ-=,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos6AB ==因此,直线l 被曲线C 截得的弦长为 D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz . 因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,222),BP AC ==--,故111||||cos ,|||||5BP AC BP AC BP AC ⋅-===⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.学科¥网因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置. 因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+. 当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
{正文}2018年普通高等学校招生全国统一考试(江苏卷)语文试题一、语言文字运用(15分)1.(3分)在下面一段话的空缺处依次填入词语,最恰当的一组是()中国古代的儒家经典,莫不是古圣人深思熟虑、的结晶。
如果把经典仅仅当作一场的说教,那你永远进不了圣学大门。
必得躬亲实践,才能切实圣人的心得,如此我们的修为才能日有所进。
A.特立独行耳提面命顿悟B.特立独行耳濡目染领悟C.身体力行耳提面命领悟D.身体力行耳濡目染顿悟2.(3分)在下面一段文字横线处填入语句,衔接最恰当的一项是()“理性经济人”,把利己看作人的天性,只追求个人利益的最大化,这是西方经济学的基本假设之一。
,,,,,,更倾向于暂时获得产品或服务,或与他人分享产品或服务。
使用但不占有,是分享经济最简洁的表述。
①反而更多地采取一种合作分享的思维方式②不再注重购买、拥有产品或服务③但在分享经济这一催化剂的作用下④人们不再把所有权看作获得产品的最佳方式⑤在新兴的互联网平台上⑥这个利己主义的假设发生了变化A.③⑥⑤①④②B.③⑥⑤④②①C.⑤⑥③①④②D.⑤⑥③④②①3.(3分)下列诗句与所描绘的古代体育活动,对应全部正确的一项是()①乐手无踪洞箫吹,精灵盘丝任翻飞。
②雾縠云绡妙剪裁,好风相送上瑶台。
③浪设机关何所益,仅存边角未为雄。
④来疑神女从云下,去似姮娥到月边。
A.①下围棋②荡秋千③抖空竹④放风筝B.①抖空竹②荡秋千③下围棋④放风筝C.①下围棋②放风筝③抖空竹④荡秋千D.①抖空竹②放风筝③下围棋④荡秋千4.(3分)对下面一段文字主要意思的提炼,最准确的一项是()偏见可以说是思想的放假。
它是没有思想的人的家常日用,是有思想的人的星期天娱乐。
假如我们不能怀挟偏见,随时随地必须得客观公正、正经严肃,那就像造屋只有客厅,没有卧室,又好比在浴室里照镜子还得做出摄影机前的姿态。
A.没有思想的人往往更容易产生偏见。
B.即使有思想的人也常常会怀挟偏见。
C.人无法做到随时随地保持客观公正。
2018年江苏省高考语文试卷及答案九年级语文说明:1.全卷共4页,满分120分。
考试用时120分钟。
2.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和准考证号、试室号、座位号填写在答题卡上。
3.本试卷设有附加题,共10 分,考生可答可不答;该题得分作为补偿分计入总分,但加分全卷最后得分不得超过120 分。
一、基础知识(24分)1.根据课文默写古诗文(10分)(!)子曰:“三军可夺帅也,。
(《孔子语录》(1分)(2),波撼岳阳城。
(孟浩然《洞庭湖赠张丞相》)(1分)(3)杜甫的《望岳》诗中表现勇攀人生高峰,俯视一切的雄心豪气的句子是□□□□□,□□□□□。
(2分)(4)□□□,□□□,是离愁,别是一般滋味在心头。
(李煜《相见欢》)(2分)(5)默写杜牧的诗《赤壁》。
(4分)□□□□□□□,□□□□□□□。
□□□□□□□,□□□□□□□。
2.根据拼音写出相应的词语。
(4分)(1)而且因为受到良心上的感动,说不定还会huò miǎn()他一部分的欠款。
(2)我生性zhí niù(),急躁,我的情人却坚忍而有耐心。
(3)有个信客,年纪不小了,已经chánɡ tú bá shè()了二三十年。
(4)他已四十多岁了,已经是fù rú jiēzhī()的人物了。
3.下列句子中加点的词语使用不恰当的一项是()(3分)A.那树,那沉默的数,暗中伸展它的根,加大它所能荫庇的土地,一厘米一厘米地向外。
B.他手持一个奇形怪状的东西,在我眼前晃来晃去,晃得我头昏眼花,感觉很玄虚。
C.大熊猫憨态可掬,小猴子顽皮可爱,不仅令孩子们笑得前仰后合,还惹得一向严肃的大人们忍俊不禁。
D.共享单车极大地方便了市民的出行,但是很多未成年人骑着共享单车窜来窜去,造成安全隐患,也令人忧心忡忡。
4.下列对病句的修改不正确的一项是( )(3分)A. 近年来,小榄镇各中小学逐步完善和建立了校园安全工作机制。
届江苏省南京市高考语文调研试卷及答案2018届江苏省南京市高考语文调研试卷及答案语文是教学中的重要科目,其具有一定的工具性和模糊性,多做模拟试卷将对你的高考很有帮助,以下是店铺为你整理的2018届江苏省南京市高考语文调研试卷,希望能帮到你。
2018届江苏省南京市高考语文调研试卷题目一、语言文字运用1.下列词语中加点的字,每对读音都不相同的一组是( )A.稽首/无稽之谈模具/模棱两可摒弃/敛声屏息B.干练/天干地支差遣/差强人意剽悍/虚无缥缈C.测量/量入为出当权/独当一面契约/锲而不舍D.称赞/称心如意请帖/俯首帖耳罢黜/相形见绌2.在下面一段话的空缺处依次填入词语,最恰当的一组是( )(1)今年年初,中国股市首次实施熔断机制,引起了社会,中央政府要求证监会高度重视,严密监控。
(2)自郎平执教以来,中国女排的精神面貌焕然一新,水平突飞猛进,令关注女排的人们无不。
(3)虽然早已知晓杨绛的声名,我从未读过她的作品,没有关注过她的生平,这不能不说是个遗憾。
A.振荡刮目相看却/也B.震荡侧目而视竟/更C.震荡刮目相看却/也D.振荡侧目而视竟/更3.下列各句中,没有语病的一项是( )A.最新全球超级计算机500强榜单公布,我国使用自主芯片制造的“神威•太湖之光” 不仅登上了榜首,而且“超算”上榜总数也首次名列第一.B.瑞士就给全体国民普发奖励工资的提案进行全民公投,76.9%的国民投了反对票,这一结果引起了各国人民的思考.C.一味使用别人的话语体系解释自己,结果往往自我曲解,能否说好故事,让别人理解自己,关键在于找到适合的话语体系.D.承载着无数人记忆的蓝精灵再度成为热点,影片《失落的村庄》将以全新的动画形式,讲述可的蓝精灵与邪恶的格格巫斗智斗勇.4.下面文句排序最恰当的一项是( )①过去80年,物理学家一直未找到马约拉纳费米子存在的证据。
②基本粒子分为费米子和玻色子,都有反粒子。
③但自然界中可能存在一种反粒子就是自身的马约拉纳费米子。
2018年普通高等学校招生全国统一考试语文I试题一、语言文字运用(15分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)C中国古代的儒家经典,莫不是古圣人深思熟虑、的结晶。
如果把经典仅仅当作一场的说教,那你永远进不了圣学大门。
必得躬亲实践,才能切实摇圣人的心得,如此我们的修为才能日有所进。
A.特立独行耳提面命顿悟B.特立独行耳濡目染领悟C.身体力行耳提面命领悟D.身体力行耳濡目染顿悟2.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)B“理性经济人”,把利己看作人的天性,只追求个人利益的最大化,这是西方经济学的基本假设之一。
,。
,,,,更倾向于暂时获得产品或服务,或与他人分享产品或服务。
使用但不占有,是分享经济最简洁的表述。
①反而更多地采取一种合作分享的思维方式②不再注重购买、拥有产品或服务③但在分享经济这一催化剂的作用下④人们不再把所有权看作获得产品的最佳方式⑤在新兴的互联网平台上⑥这个利己主义的假设发生了变化A.③⑥⑤①④②B.③⑥⑤④②①C.⑤⑥③①④②D.⑤⑥③④②①3.下列诗句与所描绘的古代体育活动,对应全部正确的一项是(3分)D①乐手无踪洞箫吹,精灵盘丝任翻飞。
②雾縠云绡妙剪裁,好风相送上瑶台。
③浪设机关何所益,仅存边角未为雄。
④来疑神女从云下,去似姮娥到月边。
A.①下围棋②荡秋千③抖空竹④放风筝B.①抖空竹②荡秋千③下围棋④放风筝C.①下围棋②放风筝③抖空竹④荡秋千D.①抖空竹②放风筝③下围棋④荡秋千4.对下面一段文字主要意思的提炼,最准确的一项是(3分)D偏见可以说是思想的放假。
它是没有思想的人的家常日用,是有思想的人的星期天娱乐。
假如我们不能怀挟偏见,随时随地必须得客观公正、正经严肃,那就像造屋只有客厅,没有卧室,又好比在浴室里照镜子还得做出摄影机前的姿态。
学#科网A.没有思想的人往往更容易产生偏见。
B.即使有思想的人也常常会怀挟偏见。
C.人无法做到随时随地保持客观公正。
绝密★启用前2018年普通高等学校招生全国统一考试英语(江苏卷)第一部分 听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £ 19. 15.B. £ 9. 18.C. £ 9. 15.答案是C。
1.What will James do tomorrow ?A.Watch a TV program.B.Give a talk.C.Write a report.2.What can we say about the woman?A.She's generour.B.She's curious.C.She's helpful.3.When does the train leave?A.At 6:30.B.At8:30.C.At 10:30.4.How does the woman go to work?A.By car.B.On foot.C.By bike5.What is the probable relationship between the speakers?A.Classmates.B.Teacher and student.C.Doctor and patient.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2018年普通高等学校招生全国统一考试(江苏卷)英语试题注意事项:1. 答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4. 考试结束后,请将本试题卷和答题卡一并上交。
第一部分听力(共两节,满分20 分)做题时,先将答案标在试卷上,录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5 小题;每小题1 分,满分5 分)听下面5 段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt.z.x.xk?A.₤19.15.B.₤9.18.C.₤9.15.答案是C。
1.What does the woman think of the movie?A.It’s amusing.B. It’s exciting.C. It’s disappointing.2.How will Susan spend most of her time in France?A.Traveling around.B.Studying at a school.C.Looking after her aunt.3.What are the speakers talking about?A.Going out.B.Ordering drinks.C.Preparing for a party.4.Where are the speakers?A.In a classroom.B.In a library.C.In a bookstore.5.What is the man going to do?A.Go on the Internet.B.Make a phone call.C.Take a train trip.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
2018江苏高考问卷work Information Technology Company.2020YEAR1、文科类或理科类院校(专业)在省控线上生源不足时,如何降分录取(单选)正确答案为: AA、先对平行院校志愿填报该校的考生降分录取,如生源仍不足,再对征求平行院校志愿填报该校的考生降分录取。
B、先对征求平行院校志愿填报该校的考生降分录取,如生源仍不足,再对平行院校志愿填报该校的考生降分录取。
C、只对平行院校志愿填报该校的考生降分录取。
D、只对征求平行院校志愿填报该校的考生降分录取。
2、下列关于高考考试过程中的一些说法,正确的有哪些(多选)正确答案为: A B C D EA、监考教师贴好条形码后,考生须核对条形码上的信息是否与自己的准考证号、姓名相符,答题卡如分A、B卡,考生还必须检查所得A或B卡是否与自己应持卡一致。
B、考生只准用0.5毫米黑色墨水的签字笔作答非选择题。
选择题一律用2B铅笔将答案在答题卡规定的位置按填涂示例涂黑、涂满,作图时须用2B铅笔绘、写清楚,线条及符号必须加黑、加粗。
C、考生不准在答题卡规定以外的区域答题,不准在答题卡上做任何标记,否则答题无效。
在试卷、草稿纸上作答,其答题无效。
D、从2018年起,考试结束前不允许提前交卷。
E、考试终了信号发出后,立即停笔,不准超时答题。
3、文科类、理科类考生的投档过程包含以下哪几方面(多选)正确答案为: B CA、将省控制线上的考生,按照总分排序,逐个检索每个考生所填报的院校志愿。
B、将省控制线上的考生,分文科类、理科类,按照总分从高分到低分的顺序,依次检索每个考生所填报的院校志愿。
C、按照院校学业水平测试等级要求,根据院校的招生计划数,放宽一定比例(不超过105%)分文科类、理科类进行投档。
D、按照院校学业水平测试等级要求,根据院校的招生计划数进行投档。
4、在普通高校招生考试中,《国家教育考试违规处理办法》除了适用于全国统一文化考试(含选测科目)外,还适用以下哪些考试(测试)(多选)正确答案为: A B C D E F G H IA、保送生选拔测试B、自主招生测试C、综合评价录取测试D、高水平艺术团测试E、高水平运动队测试F、艺术类专业省统考G、艺术类专业校考H、体育类专业省统考I、高职院校提前招生考试5、以下关于高校招生考试中违规行为的处理,说法正确的有(多选)正确答案为: A B C DA、考生、考试工作人员、社会其他人员在高校招生考试中的各种违规行为的处理,按照《教育法》以及《国家教育考试违规处理办法》(教育部令第33号)和《普通高等学校招生违规行为处理暂行办法》(教育部令第36号)执行。
2018年普通高等学校招生全国统一考试(江苏卷)语文注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
I试题一、语言文字运用1. 在下面一段话的空缺处依次填入词语,最恰当的一组是中国古代的儒家经典,莫不是古圣人深思熟虑、的结晶。
如果把经典仅仅当作一场的说教,那你永远进不了圣学大门。
必得躬亲实践,才能切实摇圣人的心得,如此我们的修为才能日有所进。
A. 特立独行耳提面命顿悟B. 特立独行耳濡目染领悟C. 身体力行耳提面命领悟D. 身体力行耳濡目染顿悟2. 在下面一段文字横线处填入语句,衔接最恰当的一项是“理性经济人”,把利己看作人的天性,只追求个人利益的最大化,这是西方经济学的基本假设之一。
,。
,,,,更倾向于暂时获得产品或服务,或与他人分享产品或服务。
使用但不占有,是分享经济最简洁的表述。
①反而更多地采取一种合作分享的思维方式②不再注重购买、拥有产品或服务③但在分享经济这一催化剂的作用下④人们不再把所有权看作获得产品的最佳方式⑤在新兴的互联网平台上⑥这个利己主义的假设发生了变化A. ③⑥⑤①④②B. ③⑥⑤④②①C. ⑤⑥③①④②D. ⑤⑥③④②①3. 下列诗句与所描绘的古代体育活动,对应全部正确的一项是①乐手无踪洞箫吹,精灵盘丝任翻飞。
②雾縠云绡妙剪裁,好风相送上瑶台。
③浪设机关何所益,仅存边角未为雄。
④来疑神女从云下,去似姮娥到月边。
A. ①下围棋②荡秋千③抖空竹④放风筝B. ①抖空竹②荡秋千③下围棋④放风筝C. ①下围棋②放风筝③抖空竹④荡秋千D. ①抖空竹②放风筝③下围棋④荡秋千4. 对下面一段文字主要意思的提炼,最准确的一项是偏见可以说是思想的放假。
2018年普通高等学校招生全国统一考试(江苏卷)英语第Ⅰ卷第一部分听力(共两节,满分20 分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共 5 小题;每小题 1 分,满分 5 分)听下面 5 段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19. 15.B. £9. 18.C. £9. 15.答案是 C1. What will James do tomorrow?A. Watch a TV program.B. Give a talk.C. Write a report.2. What can we say about the woman?A. Sh e’scurious. C. She’s helpful.generous. B. She’s3. When does the train leave?A. At 6:30.B. At 8:30.C. At 10:30.4. How does the woman go to work?A. By car.B. On foot.C. By bike.5. What is the probable relationship between the speakers?A. Classmates.B. Teacher and student.C. Doctor and patient.第二节(共15 小题;每小题 1 分,满分15 分)听下面 5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题 5 秒钟;听完后,各小题将给出 5 秒钟的作答时间。
2018普通高等学校招生全国统一考试(江苏卷)英语2018年江苏高考英语卷总评2018年江苏高考英语卷总体难度较前三年有所降低,紧扣高中英语课程标准的教学要求,对考生在英语听力、词汇、语法、英语知识综合应用、阅读理解、书面表达等知识和能力进行了全面、深入的考察。
整体稳定,注重基础,贴近生活,努力将知识和能力的考查融为一体,难易结合,体现了英语高考改革的趋势。
听力:听力部分沿用全国卷听力,除了Text10部分语速稍快,前面9段材料语速比较正常,总体难度不算大,和往年相似,考查的都是平时常用的功能性用语,考查形式以细节信息、语音辨析、意图推测、结论判断等题型为主。
单选:“中规中矩”单选部分同往年相同,强调在语境中理解词汇的意思。
侧重对词汇和词组的考查,考点为名词性从句、动词、动词词组、形容词副词、非谓语、情景交际等,贴近生活实际。
重视语法基础,题量和重点语法点基本没变,难度有所下降,只要学生正常发挥,不要被平时难题所影响,应该可以拿满分。
完形填空是一个有关人生感悟的故事。
“John”在和陌生人交流以后反思人生,这篇完形填空仍以名词、动词和词组、及形容词副词为主,词汇为较为常用的高频词。
几乎所有的答案都可以在上下文中找到串联痕迹,这也是理解这篇完形填空的重要线索。
阅读部分“题量设置沿袭过去两年,难度有所降低”今年与往年相比较,阅读部分是难度下降最多的,主要体现在词汇、长难句和文章的整体理解,设题以细节理解题为主,推理判断为辅。
A篇是一篇说明文介绍网络课程,文章以短句为主,难度一般,使用关键词定位法可以直接找到答案。
B篇是科技说明文,说明了黑猩猩的主观能动性,比去年的B篇相比难度下降较多。
C篇为说明文,主要介绍厄尔尼诺现象,本文与时事结合较为紧密,话题也是考生较为熟悉的,但本文中的专业词汇和长难句对理解有一定影响。
D 篇是记叙文,介绍了牙买加女运动员的励志故事,难度较去年也有较大的下降,集中考查细节题。
南通市2018届高三第二次调研测试数学Ⅰ参考公式:柱体的体积公式V Sh =柱体,其中S 为柱体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲. 2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 3.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示, 则成绩不低于60分的人数为▲.4.如图是一个算法流程图,则输出的S 的值为▲.5.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积 大于32 cm 2的概率为▲.6.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点/分(第3题)()2P -,则双曲线C 的焦距为▲.8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.9.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲.11.在平面直角坐标系xOy 中,若动圆C上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲.12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点,则实数 m 的取值范围是▲.13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.14.已知a为常数,函数()f x =23-,则a 的所有值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异于 端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是AA 1B 1C 1B CFE(第16题)(第18题)椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为 (1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆 柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形 (各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大?19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,.记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由.20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(第17题)0(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <.南通市2018届高三第二次调研测试数学Ⅱ(附加题)若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=.B .[选修4-2:矩阵与变换](本小题满分10分)换1T ,在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变2T 对应的矩阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.ABDOC(第21—A 题)D .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张 如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元, 点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖总金额为X 元. (1)求概率(600)P X =;(2)求X 的概率分布及数学期望()E X .23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除.南通市2018届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合{}{} 1012 3 10 2 U A =-=-,,,,,,,,则U A =ð▲.【答案】{}13,2.已知复数12i 34i z a z =+=-,,其中i 为虚数单位.若12z z 为纯虚数,则实数a 的值为▲. 【答案】433.某班40名学生参加普法知识竞赛,成绩都在区间[]40100,上,其频率分布直方图如图所示,则成绩不低于60分的人数为▲.【答案】304.如图是一个算法流程图,则输出的S 的值为▲. 【答案】1255.在长为12 cm 的线段AB 上任取一点C ,以线段AC ,BC 为邻边作矩形,则该矩形的面积大于32 cm 2的概率为▲. 【答案】136.在ABC △中,已知145AB AC B ===︒,,则BC 的长为▲.7.在平面直角坐标系xOy 中,已知双曲线C 与双曲线2213y x -=有公共的渐近线,且经过点()2P -,则双曲线C 的焦距为▲. 【答案】8.在平面直角坐标系xOy 中,已知角αβ,的始边均为x 轴的非负半轴,终边分别经过点 (12)A ,,(51)B ,,则tan()αβ-的值为▲.【答案】979.设等比数列{}n a 的前n 项和为n S .若396S S S ,,成等差数列,且83a =,则5a 的值为▲. 【答案】6-10.已知a b c ,,均为正数,且4()abc a b =+,则a b c ++的最小值为▲. 【答案】811.在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组33030x x x ⎧⎪+⎨⎪++⎩≤,≥,≥表示的平面区域内,则面积最大的圆C 的标准方程为▲./分(第3题)【答案】22(1)4x y -+=12.设函数31e 02()320x x f x x mx x -⎧->⎪=⎨⎪--⎩≤,,,(其中e 为自然对数的底数)有3个不同的零点, 则实数m 的取值范围是▲. 【答案】()1+∞,13.在平面四边形ABCD 中,已知1423AB BC CD DA ====,,,,则AC BD ⋅u u u r u u u r的值为▲.【答案】1014.已知a为常数,函数()f x =23-,则a 的所有值为▲.【答案】144,二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)在平面直角坐标系xOy 中,设向量()cos sin αα=,a ,()sin cos ββ=-,b ,()12=-c .(1)若+=a b c ,求sin ()αβ-的值;(2)设5π6α=,0πβ<<,且()//+a b c ,求β的值.解:(1)因为()cos sin αα=,a ,()sin cos ββ=-,b,()12=-c ,所以1===a b c ,且cos sin sin cos sin ()αβαβαβ⋅=-+=-a b . ……3分因为+=a b c ,所以22+=a bc ,即a 2+ 2a ⋅b + b 2= 1,所以12sin ()11αβ+-+=,即1sin ()2αβ-=-.……6分(2)因为5π6α=,所以()12=,a .依题意,()1sin cos 2ββ+=--,b c .……8分因为()//+a b c,所以)()11cos sin 022ββ-+--=.化简得,11sin 22ββ=,所以()π1sin 32β-=.…… 12分因为0πβ<<,所以ππ2π333β-<-<.所以ππ36β-=,即π2β=.…… 14分16.(本小题满分14分)如图,在三棱柱ABC -A 1B 1C 1中,AB = AC ,点E ,F 分别在棱BB 1 ,CC 1上(均异 于端点),且∠ABE =∠ACF ,AE ⊥BB 1,AF ⊥CC 1. 求证:(1)平面AEF ⊥平面BB 1C 1C ;(2)BC // 平面AEF .证明:(1)在三棱柱ABC -A 1B 1C 1中,BB 1 // CC 1. 因为AF ⊥CC 1,所以AF ⊥BB 1.…… 2分 又AE ⊥BB 1,AE I AF A =,AE ,AF ⊂平面AEF , 所以BB 1⊥平面AEF .…… 5分又因为BB 1⊂平面BB 1C 1C ,所以平面AEF ⊥平面BB 1C 1C .…… 7分 (2)因为AE ⊥BB 1,AF ⊥CC 1,∠ABE =∠ACF ,AB = AC , 所以Rt △AEB ≌Rt △AFC . 所以BE = CF .…… 9分 又由(1)知,BE // CF . 所以四边形BEFC 是平行四边形. 从而BC // EF .…… 11分又BC ⊄平面AEF ,EF ⊂平面AEF , 所以BC // 平面AEF .…… 14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆22221(0)y x a b a b+=>>的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为3y x =+时,线段PB 1的长为 (1)求椭圆的标准方程;(2)设点Q 满足:11QB PB ⊥,22QB PB ⊥.求证:△PB 1B 2与△QB 1B 2的面积之比为定值. 解:设()00P x y ,,()11Q x y ,.(1)在3y x =+中,令0x =,得3y =,从而b = 3. …… 2分由222193y x a y x ⎧+=⎪⎨⎪=+⎩,得()222319x x a ++=. 所以20269a x a=-+.…… 4分(第17题)0AA 1B 1C 1B CFE (第16题)因为10PB x ==,所以2269a a=+,解得218a =.所以椭圆的标准方程为221189y x +=.…… 6分 (2)方法一: 直线PB 1的斜率为1003PB y k x -=, 由11QB PB ⊥,所以直线QB 1的斜率为1003QB x k y =--. 于是直线QB 1的方程为:0033x y x y =-+-. 同理,QB 2的方程为:0033x y x y =--+.…… 8分 联立两直线方程,消去y ,得20109y x x -=.…… 10分因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以012x x =-.…… 12分 所以1212012PB B QB B S xS x ∆∆==.…… 14分 方法二:设直线PB 1,PB 2的斜率为k ,k ',则直线PB 1的方程为3y kx =+. 由11QB PB ⊥,直线QB 1的方程为13y x k=-+.将3y kx =+代入221189y x +=,得()2221120k x kx ++=, 因为P 是椭圆上异于点B 1,B 2的点,所以00x ≠,从而0x =21221k k -+.…… 8分 因为()00P x y ,在椭圆221189y x +=上,所以22001189x y +=,从而220092x y -=-. 所以2000200033912y y y k k x x x -+-'⋅=⋅==-,得12k k '=-.…… 10分 由22QB PB ⊥,所以直线2QB 的方程为23y kx =-.联立1323y x k y kx ⎧=-+⎪⎨⎪=-⎩,则2621k x k =+,即12621k x k =+.…… 12分(第18题)所以1212201212212621PB B QB B k S xk S x kk ∆∆-+===+.…… 14分18.(本小题满分16分)将一铁块高温融化后制成一张厚度忽略不计、面积为100 dm 2的矩形薄铁皮(如图),并沿 虚线l 1,l 2裁剪成A ,B ,C 三个矩形(B ,C 全等),用来制成一个柱体.现有两种方案: 方案①:以1l 为母线,将A 作为圆柱的侧面展开图,并从B ,C 中各裁剪出一个圆形作为圆柱的两个底面;方案②:以1l 为侧棱,将A 作为正四棱柱的侧面展开图,并从B ,C 中各裁剪出一个正方形(各边分别与1l 或2l 垂直)作为正四棱柱的两个底面.(1)设B ,C 都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;(2)设1l 的长为x dm ,则当x 为多少时,能使按方案②制成的正四棱柱的体积最大? 解:(1)设所得圆柱的半径为r dm ,则()2π24100r r r +⨯=, (4)分解得r =6分(2)设所得正四棱柱的底面边长为a dm ,则21004x a a a x ⎧⎪⎨⎪-⎩≤≤,,即220.x a a x ⎧⎪⎨⎪⎩≤≤, (9)分 方法一:所得正四棱柱的体积3204400x x V a x x x⎧<⎪=⎨⎪>⎩≤≤,,……11分记函数304()400x x p x x x⎧<⎪=⎨⎪>⎩≤,,则()p x 在(0,上单调递增,在)⎡+∞⎣上单调递减, 所以当x =max ()p x =所以当x =a=max V =3.…… 14分 方法二:202a x a≤≤,从而a 11分所得正四棱柱的体积()222020V a x a a a ==≤≤.所以当a =x =max V=3.…… 14分答:(1dm;(2)当x 为 16分 【评分说明】①直接“由()21002x x x ⋅+=得,x =2分;②方法一中的求解过程要体现()p x V ≤≤,凡写成()p x V =≤5分, 其它类似解答参照给分.19.(本小题满分16分)设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且10q d ≠≠,. 记i i i c a b =+(i = 1,2,3,4).(1)求证:数列123c c c ,,不是等差数列; (2)设11a =,2q =.若数列123c c c ,,是等比数列,求b 2关于d 的函数关系式及其定义域; (3)数列1234c c c c ,,,能否为等比数列?并说明理由. 解:(1)假设数列123c c c ,,是等差数列, 则2132c c c =+,即()()()2211332a b a b a b +=+++.因为12b b ,,3b 是等差数列,所以2132b b b =+.从而2132a a a =+.……2分 又因为12a a ,,3a 是等比数列,所以2213a a a =. 所以123a a a ==,这与1q ≠矛盾,从而假设不成立.所以数列123c c c ,,不是等差数列.……4分 (2)因为11a =,2q =,所以12n n a -=.因为2213c c c =,所以()()()2222214b b d b d +=+-++,即223b d d =+,……6分 由2220c b =+≠,得2320d d ++≠,所以1d ≠-且2d ≠-.又0d ≠,所以223b d d =+,定义域为{}120d d d d ∈≠-≠-≠R ,,.……8分 (3)方法一:设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则1111111221111331111=2=3=.a b c a q b d c q a q b d c q a q b d c q +=⎧⎪++⎪⎨++⎪⎪++⎩①②③④,,,……10分将①+③-2×②得,()()2211111a q c q -=-,⑤将②+④-2×③得,()()22111111a q q c q q -=-,⑥……12分 因为10a ≠,1q ≠,由⑤得10c ≠,11q ≠. 由⑤⑥得1q q =,从而11a c =.……14分 代入①得10b =.再代入②,得0d =,与0d ≠矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.……16分方法二:假设数列1234c c c c ,,,是等比数列,则324123c c c c c c ==.……10分 所以32432132c c c c c c c c --=--,即32432132a a d a a d a a d a a d -+-+=-+-+. 两边同时减1得,321432213222a a a a a a a a d a a d-+-+=-+-+.……12分 因为等比数列a 1,a 2,a 3,a 4的公比为q ()1q ≠,所以()321321213222q a a a a a a a a d a a d-+-+=-+-+. 又()23211210a a a a q -+=-≠,所以()2132q a a d a a d -+=-+,即()10q d -=. ……14分这与1q ≠,且0d ≠矛盾,所以假设不成立.所以数列1234c c c c ,,,不能为等比数列.……16分20.(本小题满分16分)设函数()sin (0)f x x a x a =->.(1)若函数()y f x =是R 上的单调增函数,求实数a 的取值范围;(2)设1()()ln 1(0)2a g x f x b x b b ==++∈≠R ,,,()g x '是()g x 的导函数.①若对任意的0()0x g x '>>,,求证:存在0x ,使0()0g x <;② 若1212()()()g x g x x x =≠,求证:2124x x b <. 解:(1)由题意,()1cos 0f x a x '=-≥对x ∈R 恒成立,因为0a >,所以1cos x a≥对x ∈R 恒成立,因为()max cos 1x =,所以11a ≥,从而01a <≤.……3分(2)①()1sin ln 12g x x x b x =-++,所以()11cos 2b g x x x '=-+.若0b <,则存在02b ->,使()()11cos 0222b b g '-=---<,不合题意,所以0b >.……5分 取30e bx -=,则001x <<.此时()30000111sin ln 11ln 10222b g x x x b x b e -=-++<+++=-<.所以存在00x >,使()00g x <.……8分 ②依题意,不妨设120x x <<,令21x t x =,则1t >. 由(1)知函数sin y x x =-单调递增,所以2211sin sin x x x x ->-. 从而2121sin sin x x x x ->-.……10分因为()()12g x g x =,所以11122211sin ln 1sin ln 122x x b x x x b x -++=-++,所以()()()2121212111ln ln sin sin 22b x x x x x x x x --=--->-. 所以212120ln ln x x b x x -->>-.……12分下面证明2121ln ln x x x x ->-1ln t t ->()ln 0t <*.设())ln 1h t t t =>,所以()210h t -'=<在()1+∞,恒成立.所以()h t 在()1+∞,单调递减,故()()10h t h <=,从而()*得证.所以2b ->2124x x b <.……16分数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是⊙O 上的3个不同的点,半径OA 交弦BC 于点D . 求证:22DB DC OD OA ⋅+=. 证明:延长AO 交⊙O 于点E ,则()()DB DC DE DA OD OE OA OD ⋅=⋅=+⋅-.……5分因为OE OA =,所以()()22DB DC OA OD OA OD OA OD ⋅=+⋅-=-. 所以22DB DC OD OA ⋅+=.……10分B .[选修4-2:矩阵与变换](本小题满分10分)在平面直角坐标系xOy 中,已知(00)(30)(22)A B C ,,,,,.设变换1T ,2T 对应的矩 阵分别为1002⎡⎤=⎢⎥⎣⎦M ,2001⎡⎤=⎢⎥⎣⎦N ,求对△ABC 依次实施变换1T ,2T 后所得图形的面积.解:依题意,依次实施变换1T ,2T 所对应的矩阵=NM 201020010202⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ……5分则20000200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20360200⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,20240224⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 所以(00)(30)(22)A B C ,,,,,分别变为点(00)(60)(44)A B C ''',,,,,. 从而所得图形的面积为164122⨯⨯=.……10分C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求以点()23P π,为圆心且与直线l :()sin 23ρθπ-=相切的圆的极坐标方程.解:以极点为原点,极轴为x 轴的非负半轴,建立平面直角坐标系xOy .则点P的直角坐标为()1.……2分将直线l :()sin 23ρθπ-=的方程变形为:sin cos cos sin 233ρθρθππ-=,40y -+=.……5分所以()1P 到直线l40y -+=2=.故所求圆的普通方程为()(2214x y -+=.……8分化为极坐标方程得,()π4sin 6ρθ=+.……10分ABDC(第21—A 题)EOD .[选修4-5:不等式选讲](本小题满分10分)已知a ,b ,c 为正实数,且12a b c ++=2. 证明:因为a ,b ,c 为正实数,=2a c b c +++2=(当且仅当a b c ==取“=”).……10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应 写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的3⨯3表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X 元. (1)求概率()600P X =;(2)求X 的概率分布及数学期望()E X .解:(1)从3⨯3表格中随机不重复地点击3格,共有39C 种不同情形. 则事件:“600X =”包含两类情形: 第一类是3格各得奖200元;第二类是1格得奖300元,一格得奖200元,一格得奖100元,其中第一类包含34C 种情形,第二类包含111144C C C ⋅⋅种情形. 所以()3111414439C C C C 560021C P X +⋅⋅===.……3分 (2)X 的所有可能值为300,400,500,600,700.则()3439C 413008421C P X ====,()121439C C 242400847C P X ⋅====, ()1212144439C C C C 3055008414C P X ⋅+⋅====,()121439C C 637008442C P X ⋅====. 所以X 的概率分布列为:……8分所以()12553300400500600700500217142142E X=⨯+⨯+⨯+⨯+⨯=(元). ……10分23.(本小题满分10分) 已知212012(1)n x a a x a x ++=+++ (21)21n n a x+++,*n ∈N .记0(21)nn n k k T k a -==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n ∈N ,n T 都能被42n +整除. 解:由二项式定理,得21C i i n a +=(i =0,1,2,…,2n +1).(1)210221055535C 3C 5C 30T a a a =++=++=;…… 2分(2)因为()()()()()12121!1C 11!!n kn n n k n k n k n k ++++++=++⋅++-()()()()212!!!n n n k n k +⋅=+-()221C n kn n +=+, …… 4分所以()021nn n k k T k a -==+∑()21021C nn kn k k -+==+∑ ()121021C nn k n k k +++==+∑ ()()12102121C nn k n k n k n +++==++-+⎡⎤⎣⎦∑ ()()112121021C21C nnn kn kn n k k n k n ++++++===++-+∑∑()()12210221C21C nnn kn knn k k n n ++++===+-+∑∑()()()2212112212C 21222n n n n n n +=+⋅⋅+-+⋅⋅ ()221C n n n =+. …… 8分()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----=+=++=+. 因为21C n n *-∈N ,所以n T 能被42n +整除.…… 10分。
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)试卷含答案数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积,其中是锥体的底面积,是锥体的高..一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上........1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l 交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).内作答,解答时应写出文字说明、证明过二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A 1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A 1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC 与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S 点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2018年普通高等学校招生全国统一考试(江苏卷)英语第Ⅰ卷第一部分听力(共两节,满分20 分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5 小题;每小题1 分,满分5 分)听下面5 段对话。
每段对话后有一个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听完每段对话后,你都有10 秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19. 15.B. £9. 18.C. £9. 15.答案是C1. What will James do tomorrow?A. Watch a TV program.B. Give a talk.C. Write a report.2. What can we say about the woman?A. Sh e’s generous.B. She’s curious.C. She’s helpful.3. When does the train leave?A. At 6:30.B. At 8:30.C. At 10:30.4. How does the woman go to work?A. By car.B. On foot.C. By bike.5. What is the probable relationship between the speakers?A. Classmates.B. Teacher and student.C. Doctor and patient.第二节(共15 小题;每小题 1 分,满分15 分)听下面5 段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题 5 秒钟;听完后,各小题将给出5 秒钟的作答时间。
2018 江苏高考问卷1、文科类或理科类院校(专业)在省控线上生源不足时,如何降分录取?(单选)正确答案为:AA 、先对平行院校志愿填报该校的考生降分录取,如生源仍不足,再对征求平行院校志愿填报该校的考生降分录取。
B 、先对征求平行院校志愿填报该校的考生降分录取,如生源仍不足,再对平行院校志愿填报该校的考生降分录取。
C 、只对平行院校志愿填报该校的考生降分录取。
D 、只对征求平行院校志愿填报该校的考生降分录取。
2、下列关于高考考试过程中的一些说法,正确的有哪些?A 、将省控制线上的考生,按照总分排序,逐个检索每个考生所填报的院校志愿。
B 、将省控制线上的考生,分文科类、理科类,按照总分从高分到低分的顺序,依次检索每个考生所填报的院校志愿。
C、按照院校学业水平测试等级要求,根据院校的招生计划数,放宽一定比例(不超过105% )分文科类、理科类进行投档。
D 、按照院校学业水平测试等级要求,根据院校的招生计划数进行投档。
4、在普通高校招生考试中,《国家教育考试违规处理办法》除了适用于全国统一文化考试(含选测科目)外,还适用以下哪些考试(测试)?(多选)正确答案为:A B C D E F G H IA、保送生选拔测试 B 、自主招生测试C、综合评价录取测试D、高水平艺术团测试E、高水平运动队测试 F 、艺术类专业省统考G、艺术类专业校考H、体育类专业省统考I 、高职院校提前招生考试5、以下关于高校招生考试中违规行为的处理,说法正确的有?(多选)正确答案为:A B C DA 、考生、考试工作人员、社会其他人员在高校招生考试中的各种违规行为的处理,按照《教育法》以及《国家教育考试违规处理办法》(教育部令第33 号)和《普通高等学校招生违规行为处理暂行办法》(教育部令第36 号)执行。
B 、 考生在高校招生考试中的各种违规行为涉嫌犯罪的,应及时移送司法机关,依照《刑法》等追究法律责任。
C 、 对违规参加高校招生考试的高级中等教育学校非应届毕业的在校生,取消其当年高校招生考试各科成绩,同时给予其应届毕 业当年不得报名参加高校招生考试的处理。
D 、 考生或者其法定监护人认为所报考高等学校的招生录取行为违反相关规定的,按照 “高校负责,省教育考试院监督 ”的原则,可向所报考高等学校提出异议、申诉或者举报。
6、关于文科类、理科类各批次志愿设置,以下说法正确的是?(多选) 正确答案为:A 、 文科类、理科类本科各批次院校,考生可填报的平行志愿院校数为7、考生参加高考时,在入场时间方面有何要求?(多选)正确答案为:A 、 考生在每科开考时进入考场即可8、下列关于 “国家教育考试考生诚信档案 ”的说明正确的是多选) 正确答案为:A 、 用于记录、保留在国家教育考试中违规考生的相关信息9、考生无意中携带手机或手表进入考场,开考前听到广播提示语中有关禁带物品的提醒,遂将禁带物品关闭电源放正确答案为:A 、 该考生的行为被认定为考试违纪行为B 、 该考生的行为被认定为考试作弊行为C 、 取消当场考试科目的成绩D 、 其所报名参加考试的各阶段、各科成绩无效8 所 ,可填报的征求平行志愿院校数为 10 所。
B 、C 、D 、E 、 文科类、理科类本科各批次院校,考生可填报的平行志愿和征求平行志愿院校数为 5 所。
文科类、理科类高职(专科)批次院校,考生可填报的平行志愿院校数为 8 所,可填报的征求平行志愿院校数为 10 所。
文科类、理科类高职(专科)批次院校,考生可填报的平行志愿和征求平行志愿院校数为 5 所。
文科类、理科类每所院校志愿中含有 6 个专业志愿和 1 个专业服从调剂志愿。
B 、C 、D 、E 、 语文科目考试, 数学科目考试, 外语科目考试, 选修科目考试,考生应在开考前 考生应在开考前 考生应在开考前 考生应30 分钟进入考场 25 分钟进入考场 30 分钟进入考B 、C 、D 、E 、 其记录的信息未经法定程序,任何组织、个人不得删除、变更 可以依申请接受社会有关方面的查询 应当及时向招生机构提供相关信息,作为招生参考条件 提供给有关部门,记入社会征信体系至考场外的 “物品摆放处 ”。
该考生将被如何处理?(单选)E 、可以视情节轻重,暂停参加高考 1 至 3 年甚至暂停参加各种国家教育考试 1 至 3 年F 、正常参加考试,不需要接受任何处理10、我省分两阶段填报高考志愿,填报时间分别为6 月27 日至7 月2 日(截止到7 月2 日17:00,其中,填报艺术类提前录取本科第1 小批志愿的考生,须在6 月29 日17:00 前完成填报)和7 月27 日至28 日(截止到7 月28 日17:00),征求(平行)志愿的填报时间印在《准考证》背面,考生须按规定时间凭考生号、身份证号、密码和动态口令卡上网填报志愿,不再需要现场签字确认信息。
考生如果不按规定填报志愿,会引起哪些后果?(多选)正确答案为:A BA、志愿无效B、不能被录取 C 、可以被录取11 、以下哪些行为应被认定为考试违纪?(多选)正确答案为:A B D E F H I JA 、携带规定以外的物品进入考场或者未放在指定位置的B 、未在规定的座位参加考试的C 、在答卷上填写与本人身份不符的姓名、考号等信息的D 、在考试过程中旁窥、交头接耳、互打暗号或者手势的E 、在考场或者教育考试机构禁止的范围内,喧哗、吸烟或者实施其他影响考场秩序的行为的F 、未经考试工作人员同意在考试过程中擅自离开考场的G 、传、接物品或者交换试卷、答卷(含答题卡、答题纸等,下同)、草稿纸的H 、用规定以外的笔或者纸答题或者在试卷规定以外的地方书写姓名、考号或者以其他方式在答卷上标记信息的I、考试开始信号发出前答题或者考试结束信号发出后继续答题的J、将试卷、答卷、草稿纸等考试用纸带出考场的12 、在考试过程中,以下哪些行为应被认定为考试作弊?(多选)正确答案为:A B C D E F G IA 、携带与考试内容相关的材料或者存储有与考试内容相关资料的电子设备参加考试的B 、抄袭或者协助他人抄袭试题答案或者与考试内容相关的资料的C 、抢夺、窃取他人试卷、答卷或者胁迫他人为自己抄袭提供方便的D 、携带具有发送或者接收信息功能的设备(手机、对讲机等)的E 、由他人冒名代替参加考试的F 、故意销毁试卷、答卷或者考试材料的G 、在答卷上填写与本人身份不符的姓名、考号等信息的H 、未经考试工作人员同意在考试过程中擅自离开考场的I、传、接物品或者交换试卷、答卷、草稿纸的J、携带规定以外的物品进入考场或者未放在指定位置的13 、教育考试机构、考试工作人员在考试过程中或者在考试结束后发现考生有以下行为的,哪些可认定为考生实施考试作弊行为?(多选)正确答案为:A B C DA 、通过伪造证件、证明、档案及其他材料获得考试资格、加分资格和考试成绩的B 、评卷过程中被认定为答案雷同的C 、考场纪律混乱、考试秩序失控,出现大面积考试作弊现象的D 、考试工作人员协助实施作弊行为,事后查实的E 、在考试过程中,未经考试工作人员同意,考生离开考场上厕所F 、未在规定的座位参加考试的14、对不遵守考场纪律,不服从考试工作人员的安排与要求,被认定为考试违纪的考生,将被如何处理?(单选)正确答案为:CA 、不作任何处理,考生继续参加考试B 、仅由考试工作人员对违纪考生进行纪律教育即可C 、取消当场考试科目的成绩D 、其所报名参加考试的各阶段、各科成绩无效15、考生填报文科类或理科类院校(专业)志愿时,其学业水平测试科目的等级和综合素质评价须符合哪些要求?(多选) .正确答案为:A B C DA、应届毕业生的综合素质评价中的“道德品质”和“公民素养”必须合格B 、选修测试科目等级须达到高校提出的等级要求C 、必修测试科目均须达到 C 级及以上等级(技术科目合格)D 、必修测试科目等级还须达到高校提出的等级要求16、考生进入考场时需要进行身份验证,以下说法正确的有哪些?(多选)正确答案为:A B DA 、使用金属探测器对考生进行检查后,再进行身份验证。
B、考生须将身份证放在考务通上的指定位置并“刷脸”进行验证身份,“刷脸”时须将面部正对身份识别设备的摄像头。
C、考生在考务通上进行身份证和“刷脸”验证时,暂时不能通过的,不能参加考试。
D、考生在考务通上进行身份证和“刷脸”验证时,暂时不能通过的,可先就座应考,待监考员进一步核验。
17、以下哪些行为可视为扰乱考试秩序的行为?(多选).正确答案为:A B C DA、故意扰乱考点、考场、评卷场所等考试工作场所秩序B 、拒绝、妨碍考试工作人员履行管理职责C 、威胁、侮辱、诽谤、诬陷或者以其他方式侵害考试工作人员、其他考生合法权益的行为D 、故意损坏考场设施设备18、文科类、理科类平行院校志愿在投档过程中,如投档成绩相同,则按什么分数再次排序?(多选)正确答案为:A C DA、语文、数学两门科目的原始分(含附加分)之和从高分到低分再次排序。
B 、语文、数学两门科目的原始分(不含附加分)之和从高分到低分再次排序。
C 、语文、数学两门科目的原始分(含附加分)之和仍相同时,文科类考生再依次按语文(不含附加分)、数学、外语分数从高到低进行排序,理科类考生再依次按数学(不含附加分)、语文、外语分数从高到低进行排序。
D 、按照排序规则排序后,如仍相同,则将这部分考生按志愿全部投档。
19 、在平行院校志愿投档过程中,如考生档案被投到某所院校后因故被退档,是否还可以补投到该批次平行院校志愿的其它院校?(单选)正确答案为:BA、可以 B 、不可以C、不一定20、《刑法》规定,在法律规定的国家考试中,下列哪些行为构成犯罪,将由司法机关追究刑事责任?(多选)正确答案为:A B C DA 、组织作弊B 、为他人组织作弊提供作弊器材或者其他帮助C 、为实施考试作弊行为,向他人非法出售或者提供考试的试题、答案D 、代替他人或者让他人代替自己参加考试21 、教育考试机构、考试工作人员在考试过程中或者在考试结束后,根据发现的情形,被认定参与组织团伙作弊的考生,或被认定向考场外发送、传递试题信息的或使用相关设备接收信息实施作弊的考生,或被认定伪造、变造身份证、准考证及其他证明材料,由他人代替或者代替考生参加考试的考生,将被采用何种处理办法?(多选)正确答案为:B CA 、取消当场考试科目的成绩B 、其所报名参加考试的各阶段、各科成绩无效C 、情节严重,构成犯罪的,由司法机关依法追究刑事责任22、考生如果发生扰乱考试秩序的行为,以下处理办法中哪几项是正确的?(多选)正确答案为:B C D A 、对考生予以警告,提醒考生遵守秩序继续答题。
B 、终止考生继续参加本科目考试,其当次报名参加考试的各科成绩无效。