弹塑性力学疲劳强度及设计.
- 格式:ppt
- 大小:1.71 MB
- 文档页数:142
2023年 第49卷·71·作者简介:袁卫明(1971-),男,本科,正高级工程师,副总工程师,现从事塑料注射成型机研发设计。
收稿日期:2023-07-200 引言注塑机机筒是注射机构中的重要零部件,在工作中其要承载注射高压的冲击,当前注塑机的注射压力已从传统的170 MPa 发展到270 MPa 以上。
面对机筒在高压和超高压中出现的失效现象,沿用传统的注塑机筒强度理论[1],不能圆满解释机筒失效的实际现象。
本文从厚壁圆筒的弹塑性力学理论[2]分析研究注塑机筒的工作特性,阐述以往用弹性力学角度分析研究机筒强度的局限性,提出了符合实际的注塑机筒疲劳强度的设计准则,并用实例加以论证。
1 厚壁圆筒1.1 厚壁圆筒的应力分析根据厚壁圆筒体[3]的应力变形特点,我们假设将厚壁圆筒看成是由许多个薄壁圆筒相互连在一起所组成,如图1所示,当厚壁圆筒内径承受内压力后,其组成的各层薄壁圆筒由里至外逐步受力,其变形受到里层薄壁圆筒的约束和受到外层薄壁圆筒的限制,因此各个单元薄壁圆筒体都会受到内外侧变形的约束和限制所引起的均布压力作用,从里往外各层薄壁圆筒体的变形被受到的约束和限制是不同的,环向应力沿壁厚方向分布是不均匀的,这是厚壁圆筒形变和应力的一个基本特点。
厚壁圆筒应力、应变的另一个特点是:由于厚壁圆筒是由多个薄壁圆筒组成,在多层材料变形的相互约束和限制下,沿径向方向产生了径向应力,沿壁厚方向径向应力分布是不均匀的。
厚壁圆筒和薄壁圆筒注塑机筒疲劳强度计算的设计准则袁卫明,成明祥(德清申达机器制造有限公司,浙江 湖州 313205)摘要:传统注塑机筒强度设计理论未能合理解释回答在实际中产生的一些失效现象问题,对比厚壁圆筒的力学分析,确认判断注塑机筒沿用以往的设计理论具有局限性和适用范围。
通过引用分析目前在厚壁圆筒中较常用的弹塑性强度理论设计观点,结合实例,提出了符合实际的注塑机筒强度理论的设计准则。
力学与材料工程力学在材料研究中的应用力学与材料工程力学在材料研究中起着关键作用。
通过力学研究,我们可以深入了解材料的性质、行为和性能,从而开发出更强大、更可靠的材料。
本文将重点介绍力学和材料工程力学在材料研究中的应用,涵盖了实验、数值模拟和理论分析等方面。
1. 弹性力学弹性力学是研究材料的弹性行为的力学分支。
通过应力-应变关系的研究,我们可以了解材料是如何回弹和变形的。
弹性力学还可以帮助我们预测和解释材料的断裂行为。
例如,在钢材研究中,我们可以通过弹性力学分析来预测其抗拉强度和抗压强度。
2. 塑性力学塑性力学是研究材料的塑性变形和流变行为的力学分支。
材料的塑性行为是指材料在受到外力作用时会发生不可逆的变形,如金属的冷拉伸和塑性变形。
塑性力学可以帮助我们理解材料的塑性变形机制,从而设计出更耐用和可靠的材料。
3. 疲劳力学疲劳力学是研究材料在重复加载下逐渐破裂的力学分支。
疲劳破坏是由于材料在受到循环应力作用下的微裂纹扩展而导致的。
疲劳力学可以帮助我们预测和延长材料的寿命,以及提高材料的抗疲劳性能。
例如,在飞机制造中,研究飞机材料的疲劳行为可以保证飞机的安全性和可靠性。
4. 微观力学微观力学是研究材料中微观结构与材料性能之间相互作用的力学分支。
通过研究材料中原子、晶格、晶界等微观结构的力学行为,我们可以了解材料的性能和行为。
微观力学可以用于开发新型材料,如纳米材料和多孔材料,从而提高材料的强度、硬度和韧性。
5. 数值模拟数值模拟是运用计算机仿真的方法来预测和模拟材料的力学行为。
通过数值模拟,我们可以在更短的时间内得到大量数据,从而加速材料研究和开发的过程。
数值模拟可以通过有限元分析、分子动力学模拟等方法,模拟材料在不同载荷条件下的应力分布、变形和破坏行为。
综上所述,力学与材料工程力学在材料研究中起着至关重要的作用。
通过不同的力学方法,我们可以深入了解材料的性质和行为,从而设计出更高性能、更可靠的材料。
材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
塑性力学在工程设计中的关键问题与解决方案塑性力学是研究材料在超过弹性极限后的变形和破坏行为的力学学科。
在工程设计中,我们常常面临着与塑性力学相关的一些关键问题。
本文将讨论这些问题,并提出相应的解决方案。
一、材料的强度和可塑性之间的平衡在工程设计中,我们通常希望材料在承受外部载荷时既具有足够的强度来保证结构的安全性,又具有足够的可塑性来抵抗变形和破坏。
然而,材料的强度和可塑性之间存在着平衡关系。
如果材料过于强硬,可能导致脆性破坏;而如果材料过于韧性,可能导致过度变形。
因此,我们需要找到合适的材料和设计方法来平衡材料的强度与可塑性。
解决方案:1. 选择适当的材料:在工程设计中,我们可以根据具体的应用需求选择合适的材料。
例如,对于需要更高强度的结构,可以选择高强度材料,而对于需要更高可塑性的结构,可以选择具有良好塑性的材料。
同时,还可以通过合金化、热处理等方法改善材料的性能。
2. 优化结构设计:通过合理的结构设计,可以减少或避免材料的过度应力和塑性变形。
例如,增加结构的支撑和加强部位,合理布置剪切墙和支撑柱等。
二、塑性变形的控制和预测在工程设计中,我们需要准确预测和控制材料的塑性变形,以确保结构在工作过程中不超过允许的变形范围。
然而,塑性变形是一个复杂的过程,与材料的力学性能、加载条件等因素密切相关,因此,对于塑性变形的控制和预测面临着一些困难。
解决方案:1. 借助计算机模拟:通过使用计算机模拟软件,可以对材料的塑性变形进行建模和仿真分析。
例如,有限元方法可以用来模拟结构的应力和变形分布,帮助工程师准确预测和控制塑性变形。
2. 结合实验测试:在工程设计中,可以结合实验测试来验证计算模型的准确性。
通过对材料的试验研究,可以获取其应力-应变曲线等关键参数,并将其用于计算模型中,提高预测的准确性。
三、材料的疲劳与裂纹扩展在实际工程中,结构常常会受到循环加载,从而引起材料的疲劳和裂纹扩展。
这些问题会进一步导致结构的强度和可靠性降低,对工程的安全性和可持续性造成影响。
材料力学概念整理材料力学是研究材料的力学性质和行为的一门学科。
它是工程力学的重要组成部分,与材料科学和工程密切相关。
材料力学主要研究材料的变形、破坏和疲劳等力学性质,揭示材料内部的微观结构与力学性能之间的关系,为材料设计和工程应用提供理论依据。
1.弹性力学弹性力学是材料力学的基础。
弹性力学研究材料在受力作用下的变形行为,弹性变形和弹性力学的关系遵循胡克定律。
弹性变形是指在外力作用下,材料会发生可逆的形变,当外力消除后,材料会恢复其初始形状。
弹性力学的经典理论主要包括拉压力学、剪切力学和折弯力学等。
2.塑性力学塑性力学研究材料在受力作用下的塑性变形行为。
与弹性变形不同,塑性变形一旦发生,材料无法恢复其初始形状。
塑性变形的机制主要包括滑移、位错移动和晶粒形变等。
塑性力学的经典理论主要包括单轴拉伸、多轴变形和硬化等。
3.破坏力学破坏力学研究材料在受力作用下的破坏行为。
材料的破坏可表现为断裂、裂纹扩展和脆性破坏等形式。
破坏力学的研究可通过断裂力学、裂纹力学和损伤力学等方法来解释材料的破坏行为,例如断裂力学中的强度理论和断裂韧性的表征。
4.疲劳力学疲劳力学研究材料在交变循环载荷下的疲劳行为。
疲劳是材料由于反复载荷引起的局部损伤积累而导致的失效现象。
疲劳失效通常可通过疲劳寿命和疲劳强度等指标来评价。
疲劳力学的研究主要包括S-N曲线、疲劳寿命预测和疲劳裂纹扩展等。
5.蠕变力学蠕变力学研究材料在长时间高温下的蠕变变形行为。
蠕变是材料在高温下由于内部应力的作用而发生的不可逆变形。
蠕变力学的研究可通过蠕变曲线、蠕变寿命和蠕变机制等方面来描述材料的蠕变特性。
6.微观力学微观力学是研究材料内部微观结构与力学性能之间关系的力学分支。
它涉及到材料的原子、晶格和位错等微观结构,并通过探索这些微观结构对材料强度、塑性和破坏等性能的影响,了解材料的力学行为的基本机制。
总结:材料力学作为一门重要的工程力学学科,涵盖了弹性、塑性、破坏、疲劳、蠕变和微观力学等诸多概念。
材料力学的研究范围
材料力学是研究材料力学性能、破坏行为和力学行为的领域。
其研究范围包括以下几个方面:
1. 弹性力学:弹性力学是研究材料在受力下的弹性变形和回复行为的分支学科。
它主要涉及材料的应力、应变、弹性模量等力学参数,以及材料的线性和非线性弹性行为。
2. 硬度学:硬度学是研究材料在受力下的硬度、强度和韧性等性质的分支学科。
它主要研究材料的硬度测试方法、硬度值的测量和分析等。
3. 塑性力学:塑性力学是研究材料在受力下的塑性变形和破坏行为的分支学科。
它主要涉及材料的塑性应变、塑性模量等力学参数,以及材料的线性和非线性塑性行为。
4. 断裂力学:断裂力学是研究材料在受力下的破坏和断裂行为的分支学科。
它主要涉及材料的断裂韧性、断裂形态、断裂机制等力学参数。
5. 疲劳力学:疲劳力学是研究材料在长期循环载荷下的疲劳寿命和疲劳破坏行为的分支学科。
它主要涉及材料的疲劳强度、疲劳寿命预
测和疲劳破坏机制等力学参数。
总之,材料力学研究的是材料在力学条件下的各种力学行为和性能,是材料科学研究的重要分支。
材料力学公式大全引言材料力学是材料学和力学的交叉学科,研究材料在外部力作用下的力学行为。
材料力学公式是描述材料力学行为的数学方程式,通过使用这些公式,可以预测和解释材料的力学性能。
本文将介绍一些常见的材料力学公式,帮助读者更好地理解材料的力学行为。
弹性力学霍克定律弹性材料的应力与应变之间的关系可以通过霍克定律来描述。
霍克定律表示为:σ = Eε其中,σ是应力,E是弹性模量,ε是应变。
杨氏模量是一种衡量材料刚度的物理量,表示为:E = σ / ε其中,E是杨氏模量,σ是应力,ε是应变。
泊松比泊松比是一种描述材料压缩应变与正交方向上的伸长应变比例关系的参数。
泊松比的定义如下:ν = -ε_2 / ε_1其中,ν是泊松比,ε_1是材料在一个方向上的伸长应变,ε_2是材料在与该方向正交的方向上的压缩应变。
屈服强度材料的屈服强度是指在材料发生塑性变形之前所能承受的最大应力。
屈服强度可以通过应力-应变曲线中的屈服点来确定。
硬化指数硬化指数是衡量材料抵抗塑性变形的能力的物理量,表示材料在塑性变形过程中的硬度增加速率。
硬化指数可以通过屈服应力与屈服应变之间的关系来计算。
应力松弛应力松弛是指材料在恒定应变条件下,应力随时间逐渐减小的现象。
应力松弛可以通过材料应力与时间之间的关系来描述。
强度理论强度理论是一种预测材料破坏的理论模型。
常用的强度理论包括最大剪应力理论、最大正应力理论和最大能量释放率理论。
裂纹扩展速率裂纹扩展速率是描述材料中裂纹扩展过程的物理量,表示裂纹边缘的扩展速度。
裂纹扩展速率可以通过材料裂纹长度与时间之间的关系来计算。
疲劳力学疲劳寿命疲劳寿命是指材料在循环加载下能够承受的次数或时间。
疲劳寿命可以通过应力与循环次数或时间之间的关系来计算。
疲劳强度是指材料在循环加载下能够承受的最大应力。
疲劳强度可以通过应力循环试验来确定。
结论本文介绍了一些常见的材料力学公式,包括弹性力学、塑性力学、破坏力学和疲劳力学方面的公式。
材料力学在机械工程中的应用材料力学是机械工程领域中的重要学科,它研究材料的力学性质及其应用。
机械工程师常常需要对材料的强度、刚度和耐久性进行评估,以确保设计的机械系统能够承受各种工作条件下的力学负荷,从而保障其安全可靠的运行。
一、材料的弹性力学性质材料的弹性力学性质是机械工程设计过程中必不可少的重要参数。
弹性力学性质主要包括杨氏模量、剪切模量和泊松比。
杨氏模量描述了材料的刚度,指示了材料在加载和释放载荷时的应力应变关系。
剪切模量则反映了材料抵抗剪切应变的能力,泊松比则衡量了材料在受到拉伸时的侧向收缩程度。
这些弹性力学性质的准确测量和评估对于机械工程师来说至关重要。
基于这些性质的测定,设计师可以选择适当的材料,并计算有关结构件的最大应变、应力和变形。
这种信息是设计和制造与材料及其力学性质密切相关的组件、零件和装配件所必需的。
二、材料的塑性力学性质材料的塑性力学性质也是机械工程设计中需要考虑的重要因素。
塑性力学性质涉及材料的屈服、强度和延展性。
屈服强度是指材料开始塑性变形的临界应力值,而强度则指材料能够承受的最大应力值。
延展性则表示材料能够在破坏之前的塑性变形程度。
在机械系统设计中,材料的塑性变形是一种常见的现象。
因此,机械工程师需要了解和利用材料的塑性力学性质来设计强度和耐久性足够的结构件。
此外,对材料的塑性变形行为进行建模和仿真分析,可以帮助工程师更好地理解材料行为并预测结构件的寿命。
三、材料的断裂力学性质材料的断裂力学性质对机械工程师而言也是至关重要的。
断裂力学性质涉及材料的断裂强度、断裂韧性和断裂韧度。
断裂强度指材料在破坏前的最大应力值,而断裂韧性和断裂韧度则衡量了材料对断裂的抗性和能量吸收能力。
了解材料的断裂力学性质可以帮助机械工程师预测结构件的破损模式和破坏机制。
通过在材料表面制造裂纹并进行实验研究,工程师们可以获得关于材料断裂行为的重要信息。
这些信息为合理设计和制造更为耐久的机械系统提供了基础。
材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。
它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。
以下是材料力学的重点总结。
一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。
正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。
2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。
线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。
3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。
二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。
2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。
当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。
3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。
三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。
在应力达到屈服强度后,材料开始发生塑性应变。
2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。
3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。
四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。
韧性高的材料能够承受较大的变形和吸能。
2.断裂强度:指材料在断裂前所能承受的最大应力值。
断裂强度高的材料具有较好的抗拉强度。
3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。
五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。
疲劳强度与材料的强度和韧性都有关。
2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。
疲劳寿命与材料的疲劳强度和循环载荷有关。
3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。
塑性力学对钢吊车梁中的设计及影响一、概述近年来,钢结构吊车在重型厂房中的应用越来越广泛。
钢结构吊车的设计安全与工作安全直接影响着重型厂房的生产能否顺利进行。
为安全起见,对动力荷载的钢结构吊车梁,一般是不采用塑性设计的,这主要是因为担心采用塑性设计后,对这类结构的疲劳寿命会产生下利影响。
然而,实际工程中,结构承受静力或动力荷载时,是不可能在任何时候,内应力都只限制在弹性范围内,它不可避免地会产生塑性变形,因而,如果能明智地在设计中运用结构的塑性性能进行塑性设计,是有利于节省材料和方便计算的。
现在,在结构疲劳方面,人们已能较精确地估算结构的疲劳寿命。
因而,当采用两个独立的设计准则—极限强度设计准则和疲劳设计准则中的前项设计准则控制设计时,考虑结构塑性进行设计就很值得重视。
二、吊车梁系统2.1 吊车梁系统组成吊车梁系统一般由吊车梁、制动结构、辅助桁架、水平支撑和垂直支撑等构件组成。
吊车梁系统的结构形式随着荷载、跨度、造价和工程特点等因素变化多端。
一般分为三种:(a)、吊车梁跨度小,重量小,采用三块板焊接而成工字型截面;(b)、吊车梁位于边列柱,且起重量较大,采用辅助制动结构;(c)、吊车梁跨度大,采取使用槽钢作为制动结构。
2.2 吊车梁主要类型及分类吊车梁通常分为实腹式和空腹式两种类型,实腹式的为吊车梁,空腹式的为吊车桁架。
按构造连接,一般将吊车梁分为焊接梁、栓焊梁和铆接梁。
焊接梁制作简单,在工程上得到了广泛的应用;栓焊梁的可靠度高,抗疲劳性好;铆接梁因用钢量大,制作复杂,现在已经很少使用。
钢结构吊车梁主要有以下几种结构类型:1)焊接工字型钢吊车梁:是目前焊接钢结构吊车梁中应用最为广泛的一种结构形式。
其主体由三块钢板焊接而成,与普通的工字钢的结构形式相近。
其优点是构造简单,施工方便。
2)悬挂式吊车梁:一般也是采用工字型钢制作而成。
主要应用在无桥式吊车的工业厂房。
3)型钢吊车梁:主要由型钢制作而成。
其优点是制作简单,运输安装方便。