第1章绪论线性规划数学模型
- 格式:ppt
- 大小:495.00 KB
- 文档页数:41
第一篇 线性规划模型及应用第一章 线性规划问题的数学模型及其解的性质§1-1-1线性规划问题的数学模型引例:某工厂生产某种型号的机床,每台机床上需要2.9米、2.1米和1.5米长的三种轴各一根,这些轴需要用同一种圆钢制作,圆钢的长度为7.4米。
如果要生产100台机床,应如何下料,才能使得用料最省?分析:对于每一根长为7.4米的圆钢,截成2.9米、2.1米和1.5米长的毛坯,可以有若干种下料方式,把它截成我们需要的长度,有以下8种下料方式(表1-1-1):表1-1-1 下料方式及每种方式毛坯的数目下料方式是从大到小、从长到短的顺序考虑的。
1.假若考虑只用3B 方式下料,需要用料100根;2.若采用木工师傅的下料方法:先下最长的、再下次长的、最后下短的(见表1-1-2):表1-1-2 木工师傅的下料情况的用料表动一下脑筋,就可以节约用料4根,降低成本。
但这仍然不是最好的下料方法。
3.如果要我们安排下料,暂不排除8种下料方式中的任何一种,通过建立数学模型(线性规划数学模型)进行求解,寻找最好的下料方案。
设用1B ,2B ,3B ,4B ,5B ,6B ,7B ,8B 方式下料的根数分别为87654321,,,,,,,x x x x x x x x ,则可以建立线性规划数学模型:⎪⎪⎩⎪⎪⎨⎧≥≥+++++≥++++≥++++++++++=0,,,,,,,10043231002321002..m in 8765432187643176532432187654321x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x S 用LINGO 10.0软件求解,程序如下: Min=x1+x2+x3+x4+x5+x6+x7+x8;2*x1+x2+x3+x4>=100;2*x2+x3+3*x5+2*x6+x7>=100;x1+x3+3*x4+2*x6+3*x7+4*x8>=100;根据输出结果,得:,20,4021==x x 90m in ,0,0,30,0,0,0876543=======S x x x x x x (最优解不唯一);或90m in ,0,0,0,0,30,0,50,1087654321=========S x x x x x x x x 。
第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134m ax x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选适当的决策变量,是我们建立有效模型的关键之一。
1.2 线性规划的Matlab 标准形式线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。
第一章线性规划及单纯形法1、一般线性规划问题的数学模型问题的提出在生产管理的经营活动中,通常需要对“有限的资源”寻求“最佳”的利用或分配方式。
任何资源,如劳动力、原材料、设备或资金等都是有限的。
因此,必须进行合理的配置,寻求最佳的利用方式。
由此可以把有限资源的合理配置归纳为两类问题:一类是如何合理地使用有限的资源,使生产经营的效益达到最大;另一类是在生产或经营的任务确定的条件下如何合理地组织生产,安排经营活动,使所消耗的资源数最少。
这是最常见的两类规划问题。
与规划问题有关的数学模型由两部分组成:一部分是约束条件,反映了有限资源对生产经营活动的种种约束,或者生产经营必须完成的任务,另一部分是目标函数,反映生产经营在有限资源条件下希望达到的生产或经营的目标。
例1 常山机器厂生产甲、乙两种产品。
这两种产品都要分别在A、B、C三种不同设备上加工。
按工艺材料规定,生产每件产品甲需占用各设备分别为2小时、4小时、0小时,生产每件产品乙需占用各设备分别为2小时、0小时、5小时。
已知各设备计划期内用于生产这两种产品的能力分别为12小时、16小时、15小时,又知每生产一件甲产品企业能获得2元利润,每生产一件乙产品企业能获得3元利润,问该企业应安排生产两种产品各多少件,使总的利润收入为最大?解:为更加直观理解题意,把上述问题转化为如下表格假定用x1和x2分别表示甲、乙两种产品在计划期内的产量。
因设备A在计划期内的可用时间为12小时,不允许超过,于是有2x1+2x2≤12。
对设备B、C也可列出类似的不等式:4x1≤16,5x2≤15。
企业的目标实在各种设备能力允许的条件下,使总的利润收入z=2x1+3x2为最大。
所以可归结为:约束于s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+0,1551641222212121x x x x x x 使 z=2x 1+3x 2→max这是一个将生产安排问题抽象为在满足一组约束条件的限制下,寻求变量xl 和x2的决策值,使目标函数达到最大值的数学规划问题。
第1节线性规划的数学模型线性规划(linear programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,即单周期决策,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
一、线性规划的三个要素决策变量(decision variable)是决策问题待定的量值。
决策变量应当完全描述出此问题应当作出的决策。
约束条件(constraint conditions)是指决策变量取值时受到的各种资源条件的限制。
目标函数(objective function)是指决策变量的函数表达式,表示决策者希望实现的目标,它是衡量决策优劣的准则。
线性规划的决策目标是单一的;同时,目标函数也是决策变量的线性函数。
目标函数中变量的系数称为价值系数,反映出每个决策变量单位取值对目标的贡献程度。
二、线性规划模型线性规划模型是目标函数和约束条件都是决策变量的线性函数的最优化数学模型。
(一)线性规划一般模型[例1—1]生产计划问题某厂生产甲、乙两种产品,生产工艺路线为:各自的零部件分别在设备A,B加工,最后都需在设备C上装配。
经测算得到相关数据如表1—1所示。
表1—1甲、乙单位产品的生产消耗据市场分析,甲、乙单位产品的销售价格分别为73元和75元,试确定获利最大的产品生产计划。
解建立模型过程如下:(1)决策变量:此问题是要确定甲、乙两种产品的产量,这些待定的量值就称为决策变量。
设x1=生产甲产品的产量x2=生产乙产品的产量(2)约束条件:生产产品受到现有设备能力的制约,能力需求量不能突破有效供给量。
如果只考虑目标函数,则随着决策变量x1和x2值的增大,目标函数的值也会很快地增大,但是决策变量x1和x2的值受到三种设备加工能力的限制。
约束条件1:生产单位甲产品需耗2个小时的设备A,设备A加工能力不能超过16个小时,则设备A的约束条件表达为:2x1≤16约束条件2:设备B的加工能力约束条件表达为:2x2≤10约束条件3:设备C的装配能力也有限,其约束条件表达式为:3x1+4x2≤32(3)目标函数:目标是企业利润最大化,用Z表示利润。